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Change Log
This will also be a log of major design decisions. A major design decision is a decision that changes re-
sponsibilities or functions of the subsystems.

Table 1. Changes done

When What Who

2005-07-22 Removed the /modules/junit. (See Section 2.8, “Making a release”). Linus Tolke

2005-07-19 Change to the descriptions of the Model, Diagrams, and Persistence
subsystems (See Section 5.1, “Model”, Section 5.3, “Diagrams”, and
Section 5.5, “Persistence”).

Design decision - Bob Tarling
2005-07-14

The Diagrams subsystem does not store any data. All
data it works on is stored in the Model subsystem.

Linus Tolke

2005-07-18 Change to the short list of subsystems and responsibilities. (See
Chapter 5, Inside the subsystems).

Linus Tolke

2005-06-18 Restructured: all main chapters are now in seperate files. No content
changes.

Michiel van der
Wulp

2005-06-15 Change to how internationalization is done. Subprojects. (See Sec-
tion 5.13, “Internationalization”).

Linus Tolke

2005-06-12 Change to the description on how to set up an Eclipse environment.
(See Section 9.7.1, “Checking out through Eclipse”).

Linus Tolke

2005-06-11 Change to how to make an announcement. (See Section 2.8, “Making
a release”).

Linus Tolke

2005-05-23 Change to release building description. (See Section 2.8, “Making a
release”).

Linus Tolke

2005-05-06 Added instructions on how we work with sub-projects. (See Sec-
tion 2.4.2.2, “Working in a subproject” and Chapter 8, CVS in the
ArgoUML project).

Linus Tolke

2005-05-01 Change to the tools for releases. (See Section 2.8, “Making a
release”).

Linus Tolke

2005-04-29 Added a diagram explaining Explorer. (See Section 5.17.3, “Details
of the Explorer Implementation”).

Michiel van der
Wulp

2005-03-10 Change to process for verifying issues. Any release after the one
where the issue is fixed can be used for verifications. (See Sec-
tion 12.5, “How to verify an Issue that is FIXED”).

Linus Tolke

2005-03-06 Change to description of how to build. src directory is now in-
volved. (See Chapter 2, Building from source).

Linus Tolke

2005-03-01 Removed the modules component. (See 10). Linus Tolke

2005-02-01 Change to Model subsystem. (See Section 5.1, “Model” [37], Sec-
tion 5.3, “Diagrams”). Added the Persistence subsystem. More work
is needed. (See Section 5.5, “Persistence”).

Linus Tolke

2005-01-30 Change to the description on how to use the Model subsystem, the
ModelFacade does not exist anymore. (See Section 5.1.5, “How to

Linus Tolke
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When What Who

work against the model”).

2005-01-29 Change to Model subsystem chapter. Removed references to Um-
lEventPump and clearified how to remove elements using the Uml-
Factory. (See Section 5.1.3.2.1, “ How do I register a listener for a
certain type event ” and Section 5.1.5, “How to work against the
model”).

Linus Tolke

2005-01-26 Change to requirement of JDK version support. (See Section 3.3.1,
“Choice of JRE: ArgoUML will support any JRE compatible with a
Sun specification of any JRE from Sun that has not begun the Sun
End of Life (EOL) process. ”).

Linus Tolke

2005-01-07 Added copyright notices to the files. Linus Tolke

2004-12-30 Change the default year in the copyright notices. Yes, I am a little
early. (See Chapter 9, Standards for coding in ArgoUML and Sec-
tion 9.7, “How to work with Eclipse 3”).

Linus Tolke

2004-11-01 Change to the way we generate documentation. The FILENAME.id
files are no longer used. (See Section 2.7, “Generating documenta-
tion”).

Linus Tolke

2004-10-29 Change to the description on how to generate documentation. Better
explanation of how it works. (See Section 2.7, “Generating docu-
mentation”).

Linus Tolke

2004-10-19 Change to How to Contribute. Changed some spelling errors in cook-
book.in while at it. (See Section 1.3, “How to contribute”).

Linus Tolke

2004-10-11 Changes to description of module loader making the new module
loader a fact. (See Section 5.18, “Module loader” and Section 6.2,
“Modules and PlugIns”).

Linus Tolke

2004-09-17 Change to the description on how to extend ArgoUML. Now module
loader described. (See Chapter 6, Extending ArgoUML).

Linus Tolke

2004-09-16 Changed the meaning of RESOLVED/LATER. (See 10 f and g in
Section 2.8, “Making a release”, and Section 12.2.2, “Resolutions”).

Linus Tolke

2004-09-15 Change to design of new module loader. (See Section 5.18.2,
“Design of the new Module Loader”).

Linus Tolke

2004-08-17 Deemphasized the layers and instead describe the subsystems in
groups according to the MVC-pattern. (See Chapter 4, ArgoUML
Design, The Big Picture and Chapter 5, Inside the subsystems).

Linus Tolke

2004-08-17 Change to the definition of the priorities. Now they are defined in
terms of how much release blocker they are. (See Section 12.2.1,
“Priorities”).

Linus Tolke

2004-08-02 Added rationale for not using RESOLVED/REMIND or RE-
SOLVED/LATER (See Section 12.2.2, “Resolutions”).

Linus Tolke

2004-07-28 Reorganized the description on how to use Eclipse 3. Added instruc-
tions on how to use the Eclipse JUnit test runner. (See Section 9.7,
“How to work with Eclipse 3”).

Linus Tolke

2004-07-25 Added this Change Log. (See Change Log). Linus Tolke

Change Log

ix



Chapter 1. Introduction
1.1. Thanks

We, the authors, would like to take the opportunity to thank everyone involved in the creation of this
documentation, and especially the people behind setting up the DocBook environment. In particular
thanks go out to Alejandro Ramirez, Phillipe Vanpeperstraete and Andreas Rueckert. Thank you!

1.2. About the project
ArgoUML is an open source project, so it depends on people that volunteer to work on it. Especially in
the area of development there is still so much to do! This Cookbook is dedicated to everyone interested
in taking part in the ArgoUML project as such and should help to transfer the knowledge from the old
experts to them. Please feel free to send more questions and/or answers to the dev mailing list
[mailto:dev@argouml.tigris.org]!

1.3. How to contribute
You can help, there are big tasks and small tasks waiting for you.

Here is a suggestion on how you could become part of the ArgoUML Project. This could be perceived
as a ladder to climb but remember that if so it is firstly a ladder of levels of commitment and time spent
by you. You get no prize for climbing higher, you just get more responsibility in the project.

1. Use ArgoUML.

2. Report found bugs.

There are bugs in ArgoUML. When you use ArgoUML you might encounter them where you least
expect it. To help, make sure they are known about i.e. that there exists an issue in Issuezilla de-
scribing the problem. You need to be a registered user at Tigris to report bugs but notice that to add
further comments to the issue you also need to have gotten a Role in the ArgoUML project.

3. Subscribe to the users' mailing list.

Discuss how you use ArgoUML in your project and how you promote ArgoUML in your organiza-
tion. You can also help other users with their ArgoUML-related problems.

4. Apply for an Observer role.

This shows that you are committed to the project and also allows you to comment on issues.

5. Familiarize yourself with the project and how we work.

Suggestion on how to go about this:

a. Read through most of the User manual and install and run the latest version of ArgoUML.

b. Subscribe to the issues list.

You will get updates on all issues so you can monitor what we are doing in the project. (It
could be a lot of mails. If it turns out you don't like watching issues in this way, you unsub-
scribe!)

1
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c. Subscribe to the CVS list.

You will get updates on all changes that are done to code, documentation, and the web site. (It
could be a lot of large mails. If it turns out you don't like watching what is going on in the
project in this way you unsubscribe.)

d. Read the process part of the Developers Cookbook at Chapter 12, Processes for the ArgoUML
project.

This will give you the idea of how the ArgoUML project attempts to release with good quality
and especially how we use Issuezilla.

e. Get the Observer role granted.

f. From this on you can comment on bugs yourself directly in Issuezilla.

You can also verify issues according to the verification process (see Section 12.5, “How to
verify an Issue that is FIXED”).

This will help you understand the terminology used in the project and also gives you an idea
of the current quality of ArgoUML and what needs to be done in the future.

This is also a very low-commitment level task that could be completed in a couple of minutes
(depending on your choice of issue).

g. Read the rest of the Developers Cookbook.

There is a lot of stuff discussed in here that is interesting for your understanding of the project
and the code.

h. Check out the source from CVS and build.

6. Subscribe to the dev list.

The purpose of this is to see what the developers are discussing in the project.

Monitor the discussions and as soon as you see something discussed where you have an opinion,
jump right in!

7. Familiarize yourself with the code.

For this a good knowledge of Java is more or less a prerequisite.

Suggestion on how to go about this:

a. Take active part in the discussions on the dev-list.

b. Solve issues registered in Issuezilla.

c. Convince someone to commit your changes.

Establish a relationship with one developer that has volunteered to help you with the commits.
That developer will check that your code reaches the quality level that we strive for in the
project and obeys the design.

d. Repeat.

This can go on until the developer helping you knows that you have good knowledge of the
project quality and design and the main problem for you two is that the sending, waiting, com-

Introduction

2



mitting, updating et.c. is extra work.

8. Apply for a Developer role.

This allows you to do commits on your own and you can now increase the pace in which you are
working while also increasing your responsibilities in the project.

This role is granted by the Project leader after he is convinced that you have learned the enough
about the project w.r.t.:

• Understanding and accepting the goals.

• Understanding where we are in the development process.

• Understanding the terminology used in the project.

• Understanding how we use CVS in the project.

• Understanding the set of tools (ant, JUnit) and how to use them.

9. Focus your work in a specific area.

Everybody has different interests and the best contribution is made when someone is allowed to
pursue his own interests. Hopefully ArgoUML provides you with interesting challenges to your
taste.

10. Accept responsibility for a specific area.

With this you are part of the core team developing ArgoUML.

1.4. About this Cookbook
This document, the Cookbook for Developers of ArgoUML, is provided with the hopes of being helpful
for the developers of ArgoUML when it comes to learning and understanding how ArgoUML work in
order to improve on its functions and features. It can also be of interest for persons that wish to analyze
the ArgoUML project for whatever purpose that may be.

1.4.1. In this Cookbook, you will find...
Information on how to compile ArgoUML.

Information on how different features of ArgoUML are implemented.

Information on how you should add modules and Plug-ins to ArgoUML.

Information that you, as a developer of ArgoUML, need to know about how the project is organized and
how to contribute.

1.4.2. In this Cookbook, you will not find...
You will not find information on how to install and use ArgoUML.

You will not find information on what UML is and if or how you should use it in your project.

Introduction
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You will not find information on how to convince your project to use ArgoUML as a modeling tool.

1.5. Mailing Lists
All developers MUST subscribe to the mailing list for developers. Please find the details at: ht-
tp://argouml.tigris.org/servlets/ProjectMailingListList
[http://argouml.tigris.org/servlets/ProjectMailingListList]

It is also recommended to join the CVS and Issues mailing lists. Both give you a good idea of what is
going on. Developers should also work with Issuezilla registering or fixing problems found by them-
selves and others.

Introduction
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Chapter 2. Building from source
Building ArgoUML from source requires a CVS client, a current JDK (1.4 or later), and 150MB of free
disk space. All other tools, including the Ant build tool upon which the build is based, are included in
the project source tree. If you have these tools and are familiar with them, the next section contains
quick instructions to build ArgoUML from source. For more detailed directions follow that.

2.1. Quick Start
If you are using Eclipse 3.0 or later, see Section 9.7, “How to work with Eclipse 3” for quick setup in-
structions.

If you are using Windows, the follow commands will build ArgoUML from source and run it. If you us-
ing Unix/Linux, the comparable commands modified slightly for your particular shell will do work.

C:\Work>set CVSROOT=:pserver:guest@cvs.tigris.org:/cvs
C:\Work>cvs login (use guest as password)
C:\Work>cvs checkout argouml/src argouml/src_new argouml/tools argouml/lib
C:\Work>set JAVA_HOME=C:\Programs\jdkwhatever
C:\Work>cd argouml\src_new
C:\Work\argouml\src_new>build run

After a couple of minutes the newly compiled ArgoUML will open in a new window.

Notes:

Tip
JDK 1.4 or later is required

Tip
On Windows, the directory path for the JDK installation directory must not contain any
spaces.

That was the compact version for Windows + JDK. (Note: JDK cannot be installed in a directory that
contains space in its name.) Modifying these steps slightly as appropriate for your shell should work on
Unix/Linux systems as well.

If you don't understand these instructions or they don't work, please read the rest of the chapter for more
detailed instructions on how to build ArgoUML.

2.2. Preparations
In order to develop with ArgoUML it is absolutely mandatory to get the CVS version of ArgoUML.
How this is done is described in Download from the CVS repository.

Notice that the CVS contents is not only a set of source files but instead it is the complete development
environment for all work within the ArgoUML project.

2.2.1. Which tools do I need to build ArgoUML?
These are the tools not included in the CVS repository that you need to work with ArgoUML.
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• A computer with an Internet connection and free disk space for your work.

100MB is enough to download everything from the repository. (Currently March 2003 it is 68MB).
150MB is enough to download all and build the tool and the documentation. (Currently March 2003
it is 114MB). 250MB is enough to build it all (Javadocs, documentation, classes, packages, ...).

• CVS for getting the files and committing source code updates (or an IDE with a CVS client built-in).

• JDK, at least version 1.4.2 (includes the Java compiler)

For building the documentation from DocBook format, you futhermore needs these tools:

• DocBook XSL style sheets.

There exists rules in the argouml/documentation/build.xml for downloading this cor-
rectly.

• Jimi

Used by FOP for including PNG pictures.

Detailed instructions:

1. Download the file jimi1_0.zip from java.sun.com [http://java.sun.com/products/jimi/]. It
contains a file: "JimiProClasses.zip".

2. Copy this file into the argouml\tools\lib directory.

2.2.2. Which tools are part of the ArgoUML development
environment?

These tools are provided by the development environment that you get when you check out from CVS.

• Ant, the tool to manage compiling and packaging.

• ANTLR, for regenerating the built-in parser.

• JUnit, for running the JUnit test cases.

• JDepend, for examining the code.

For building the documentation from DocBook format, these tools are also provided with the develop-
ment environment that you get when you check out from CVS.

• Saxon for building documentation from DocBook format.

• fop for generating PDF versions of the DocBook format.

To build a PDF file with the pictures included you need Jimi that is downloaded separately. See
Jimi.
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2.2.3. What libraries are needed and used by ArgoUML?
These libraries are provided in the development environment that you get when you check out CVS.
They are checked by the Java compiler when compiling, needed for running ArgoUML and therefore
distributed with ArgoUML.

• NSUML, the Novosoft UML library.

The ArgoUML project doesn't develop the Java classes for storing, saving and loading an UML
Model. That work is done by NSUML and is used by ArgoUML.

• GEF graph editing framework, available from gef.tigris.org [http://gef.tigris.org].

It is also recommended that you check out GEF at the same time as you check out ArgoUML be-
cause many things in Argo relate to GEF and it is quite handy to have the source code available.
GEF is also residing at Tigris so you can do a simple cvs -d :user@cvs.tigris.org:/cvs
co gef (with the same checkout arguments you had when you checked out ArgoUML) to get it.

• The OCL package to parse and run the Object Constraint Language things.

Details about the package are available from SourceForge OCL Compiler
[http://dresden-ocl.sourceforge.net/].

• log4j, a library with infrastructure for logs.

• antlrall, the run-time part of the ANTLR tool.

2.3. Download from the CVS repository
The CVS repository at Tigris is accessible using the pserver protocol. The CVS root is /cvs at
cvs.tigris.org. You use your Tigris login and Tigris password.

The first thing you will need to do, is select the CVS client. Most of the description below is about the
command line CVS tool, which is available for most operating systems.

Whatever tool you use, do not checkout into a directory that contains spaces in a directory name some-
where in the path! E.g. c:\Documents and Settings\...\My Documents\Java Devel-
opment\ violates this advise 3 times. Reason: You can not build the documentation. (BTW: Building
ArgoUML itself works.)

In case you use the command-line CVS client, the above means that you will set the CVSROOT-variable
to :pserver:login@cvs.tigris.org:/cvs where login is your Tigris login. This needs to
be done before the first checkout. After that the root will be remembered by the checked out copy.

If you use one of the CVS clients with a graphical user interface, (like WinCVS, GruntSpud, ...), or an
IDE with a built-in CVS client (like Eclipse, ...) then configuration will be done by filling in fields.
These fields mean the following:

• Type: pserver

• User: Your Tigris login name

• Host: cvs.tigris.org

• Repository: /cvs
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If you used the command line CVS client before, then your Tigris password is stored in the file
~/.cvspass. Some graphical UI CVS clients are able to use this password, in others you'll have to
enter it again.

The next thing to do is to login. It is done using the command: cvs login. This only needs to be done
once and then the account on your machine remembers this.

Then you do the actual checking out. cvs checkout directory .

The CVS repository directories you need to check out to work with ArgoUML are argouml/lib,
argouml/tools, argouml/src_new, argouml/src, and argouml/tests.

If you want to build the documentation you check out the directories argouml/lib argouml/
tools and argouml/documentation.

If you want to work with the web site you check out the directory argouml/www.

If you give the argument argouml all of ArgoUML is checked out. That is no problem except for the
extra use of bandwidth and disk space but if you have plenty of both, get it all, and eventually you will
see how everything is used for a purpose in the project.

If you don't want to acquire a Tigris login to do this you can use the "guest" account with the password
"guest". Since the checked out copy remembers the login you used to do the check out, if you do this,
you will have to remember to delete this copy and start over if you get a developer role in the project
and want to do commits directly.

2.4. Build Process
The ArgoUML build process is driven by Apache Ant, and it is highly recommend that you stick to that.
There are people known to build from Eclipse and NetBeans, but always make sure that your work com-
piles with the plain vanilla build process. There are also some Java files generated by magic scripts in
Ant that you need to create before opening with the IDE.

Ant is a tool written in Java developed for Apache that reads an XML-file with rules telling what to
compile to what result and what files to include in what jar-file.

The rule file is named build.xml. There is one of those in every separate build directory (src_new,
src/whatever , documentation, and modules/whatever ).

2.4.1. How ANT is run from the ArgoUML development
environment

For your convenience the ant tool of the correct version is present in the CVS repository of ArgoUML in
the file argouml/tools/ant-1.4.1/lib/ant.jar.

Normally ant is started with the command ../tools/ant-1.4.1/bin/ant arg and in the modules
../../tools/ant-1.4.1/bin/ant arg . On windows the command ..\tools\ant-1.4.1\bin\ant arg runs the
program ant.bat.

To keep you from having to write this and keeping track if you are working with a module or not there
are two scripts (one for Unix and one for Windows) that are called build.sh and build.bat re-
spectively present in most of the directories that contain a build.xml file. These two scripts run the
equivalence of the above paths.

By setting JAVA_HOME to different values you can at different times build with different versions of
JDK and Java.
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To use different versions of ANT, you are responsible for installing your own version. Also, you must
execute /where/ever/you/placed/your/new/ant target rather than build target .

2.4.1.1. Compiling for Unix

Here is what you need to do in order to compile and run your checked out copy of ArgoUML under
Unix.

1. JAVA_HOME=/where/you/have/installed/jdk

export JAVA_HOME

This is for sh-style shells like sh, ksh, zsh and bash. If you use csh-style shells like csh and tcsh you
will instead have to write setenv JAVA_HOME /where/you/have/installed/jdk .

2. Change the current directory to the directory you are building

cd /your/checked/out/copy/of/argouml/src_new

3. Start Ant with no parameters to get a list of build targets with descriptions

./build.sh

4. Compile and run ArgoUML using ./build.sh run

You can do this over and over again when you have modified something or want to compile and
run again.

2.4.1.2. Compiling for Windows

1. set JAVA_HOME=\where\you\have\installed\jdk

2. Change the current directory to the directory you are building

chdir \your\checked\out\copy\of\argouml\src_new

3. Start Ant with no parameters to get a list of build targets with descriptions

build

4. Compile and run ArgoUML using build run

You can do this over and over again when you have modified something or want to compile and
run again.

If you do this from Cygwin you work just like for Unix.

2.4.1.3. Customizing and configuring your build

It is possible to customize your compilation of ArgoUML.

If you issue the command build list-property-files you can see what files are searched for properties.

Don't change the argouml/src_new/default.properties file (unless you are working with
updating the development environment itself). Instead create one of the other files locally on you ma-
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chine. The properties in these files have precedence over the properties in argouml/
src_new/default.properties.

Remember that if you do this, you have modified your development environment. To be sure that you
will not break anything for anyone else when checking in things developed using this modified environ-
ment, remove these files temporarily for the compiling and testing you do just before you commit.

2.4.1.4. Building Javadoc

By running ANT again using build prepare-docs the Javadoc documentation is generated and put into
argouml/build/javadocs.

2.4.1.5. Building one of the modules

If you want to run ArgoUML with modules enabled the build.xmls are set up to do this in two ways:

1. Test just one module

a. Build ArgoUML, the package

This is done with ant package in the argouml/src_new-directory.

b. Run the module

This is done with ant run-command in the argouml/modules/whatever -directory.

2. Test several modules together

a. Build ArgoUML, the package

This is done with ant package in the argouml/src_new-directory.

b. Compile and install the modules

This is done with ant install-command in each of the argouml/modules/whatever -
directories.

c. Start ArgoUML

This is done with ant run in the argouml/src_new-directory.

This will start ArgoUML with all modules available.

2.4.2. Developing in a subproject
This describes how to do development in one of the ArgoUML sub-projects.

If you are in a hurry:

C:\Work>mkdir argouml\build

Download and unpack the latest release of ArgoUML into this directory.

C:\Work>set CVSROOT=:pserver:guest@cvs.tigris.org:/cvs
C:\Work>cvs login (use guest as password)
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C:\Work>cvs checkout argouml-XX
C:\Work>set JAVA_HOME=C:\Programs\jdkwhatever
C:\Work>cd argouml-XX
C:\Work\argouml-XX>ant run

An ArgoUML starts with the module from the subproject argouml-XX enabled.

That was the short version provided that, you are using Windows + JDK, you have ant installed, and the
subproject in question does not require any of the ArgoUML tools to build.

If you don't understand this or it doesn't work read the rest of the chapter that describes why and how in
more detail.

2.4.2.1. The sub-project's relation to ArgoUML

The purpose of a subproject to ArgoUML is to develop things that are run within ArgoUML. In
ArgoUML we call them modules, in other tools they are called add-ins or plug-ins.

If you want to start working with a module of your own you could do it by letting the ArgoUML project
leader set up a subproject to ArgoUML for you. The benefits are:

• You will inherit all the infrastructure from the ArgoUML project.

This includes a site for your CVS repository, mailing lists, web server..., a common way to set up the
project, releases, bug fixes, Xenofarm builds, static checks, and coding guidelines and license.

• You get a community of ArgoUML developers that might monitor your work.

The draw-backs are:

• You are forced to use the ArgoUML infrastructure

CVS, BSD license, coding guidelines.

• You are forced to make your module Open Source.

If you decide not to make your module a argouml subproject, you can still benefit from using a similar
set up as described here but since you have your module repository elsewhere, some adaptations are ne-
cessary.

The sub-projects are developed close to the ArgoUML project and reside in the same CVS repository.
We try to provide a working set of tools and instructions to fit the whole set of projects. These tools are
sometimes located in the argouml project and sometimes in the subproject. Also, to compile the module,
you need the argouml interfaces, and to run it you need argouml in place. In most cases the argouml in-
terfaces is argouml itself so this distinction is mostly formal.

There are two ways to get the argouml in place w.r.t. your module. The ArgoUML source way and the
quicker ArgoUML distribution way.

Using the ArgoUML source way you check out the argouml project alongside the subproject you are go-
ing to work with and build it. If you are doing development in the argouml project too, if the subproject
in question requires a tool from the argouml project, or if your modules is on the bleeding edge of
argouml development and you can't wait for distributions, this is the preferred way. You will need to up-
date and rebuild the argouml project regularly.

Using the ArgoUML distribution way, you check out only your module and then download the
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ArgoUML distribution and work against that. This is the approach described in the beginning of this
section. You will need to download and replace the ArgoUML distribution whenever you need a newer
version to work against. You could also, at any point, upgrade to the ArgoUML source way to get to the
bleeding edge.

The build.xml ant configuration file in the subproject and the argouml main project are set up to allow
for both of these ways.

2.4.2.2. Working in a subproject

Each subproject has its own web site with documentation and plans of the subproject.

The subproject has its own CVS mailing list that you need to join to monitor the commits. It also has its
own dev mailing list where the people working within that subproject discusses the subproject. Join both
of these mailing list to see what is going on in the subproject!

The sub-projects don't use their own Issuezilla database but instead they are subcomponents in the
ArgoUML Issuezilla. Because of this you need to acquire an Observer role in the argouml project to
work in a subproject.

2.4.2.3. Targets in build.xml in a subproject

The following targets have the same documented meaning in all sub-projects:

• clean - optional

Removes files that are generated by running any of the other targets.

• compile - optional

Compiles the code. The result is in build/classes.

• generate - optional

This is a step that, if it exists, must be run before compile. The result of this is some files that is a
prerequisite for compile.

• install

This builds the whole module and copies it into the ext directory in the argouml installation.

The purpose of the ext directory is so that argouml can be started with several different modules star-
ted at once.

• jar - optional

This builds the whole module and puts the resulting jar file(s) in build.

• run

This starts argouml with this module active.

This is the way to start this module with the newly compiled source.

• tests - optional

This runs all the JUnit test cases available in the module. This probably requires the junit.jar
tool from the argouml project.
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2.4.3. Troubleshooting the development build

2.4.3.1. Compiling failed. Any suggestions?

It might be that some other developer has made a mistake in checking in things that contain errors, or
forgotten to check in some files in a change. Look at the last couple of hours on the developers mailing
list [http://argouml.tigris.org/servlets/BrowseList?listName=dev]! It is probably on fire.

Another reason for problems is an unclean local source tree. This means that if you have updated differ-
ent parts of your source tree at different times it might contain inconsistencies. If you suspect this, first
try to fix it by doing build clean and cvs update -d before trying to build again. If that doesn't work re-
move your checked out copy completely and get it all again through CVS.

Another reason might be that you have an build.properties or
argouml.build.properties file that you have been working with earlier and that is doing
something. If in doubt, remove those files.

If nothing helps, ask the developers mailing list [mailto:dev@argouml.tigris.org]!

2.4.3.2. Can't commit my changes?

You need to have a developer role in the ArgoUML project. If you don't then you cannot do commit
yourself. Discuss what you have done and how best to test it on the developers mailing list
[mailto:dev@argouml.tigris.org]! Eventually someone will commit it for you.

Furthermore the checkout of your copy needs to be done with your Tigris id that has the Developer role.
If you for some reason have earlier checked out a copy as guest and then made modifications, changed
the CVSROOT variable you still cannot commit changes done in the repository since the checked out
copy contains information on who checked out. For this reason, it is best to apply for an Observer role in
the project if you are going to work with the source at all. The Observer role is probably granted within
a couple of days (we welcome everybody!) and then you can check out with your Tigris id. This means
that when you eventually are granted a Developer role you can continue working with the same checked
out copy.

2.5. The JUnit test cases
ArgoUML has a set of automatic test cases using JUnit-framework for testing the insides of the code.
The purpose of these are to help in pin-pointing problems with code changes before even starting
ArgoUML.

The JUnit test cases are residing in a separate directory and run from ant targets in the
src_new/build.xml. They are never distributed with ArgoUML but merely a tool for developers.

By running the command build tests guitests in src_new these test cases are started, each in their own
JVM.

Each test case writes its result on the Ant log.

The result is also generated into a set of files that can be found at build/
test/reports/junit/output/html/index.html.

The test cases' Java source code is located under argouml/tests/org/argouml.

2.5.1. How to write a test case
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Now this will make all you Java enthusiasts go nuts! We have both class names and method names with
a special syntax.

2.5.1.1. About the Test case Class

The name of the test case class starts with "Test" (i.e. Capital T, then small e, s and t) or "GUITest" (i.e.
Capital G, U, I, T then small e, s, t). The reason for this is that the special targets in
src_new/build.xml search for test case classes with these names. If you write a test case class that
does not comply to this rule, you still can run the test cases in this class manually by starting with build
run-with-test-panel, but it wont be known and run by other developers and automatic build mechan-
isms so don't do it.

Test case classes that don't require GUI components in place have filenames like Test*.java. They
must be able to run on a headless system. To make sure that this works, always run your newly de-
veloped test cases with build tests using JDK 1.4 or later.

Test case classes that do require GUI components in place have filenames like GUITest*.java.

We should try to get as many tests from a GUITest* class to the corresponding Test* class because the
latter are run by automatic builds regularly.

Every class org.argouml.x.y.z stored in the file src_new/org/argouml/x/y/z.java
should have a JUnit test case class called org.argouml.x.y.Testz stored in the file tests/
org/argouml/x/y/Testz.java containing all the Unit Test Cases for that class that don't need
the GUI components to run. Tests that do need GUI components to run should be part of a class named
org.argouml.x.y.GUITestz stored in the file
tests/org/argouml/x/y/GUITestz.java

If you only want to run your newly written test cases and not all the test cases, you could start with the
command build run-with-test-panel and give the class name of your test case like
org.argouml.x.y.Testz or org.argouml.x.y.GUITestz . You will then get the output
in the window. You could run all tests in this way by specifying the special test suite
org.argouml.util.DoAllTests in the same way.

Every test case class imports the JUnit framework:

import junit.framework.*;

and it inherits TestCase (i.e. junit.framework.TestCase).

2.5.1.2. About the Test case Method

Methods that are tests must have names that start with "test" (i.e. all small t, e, s, t). This is a require-
ment of the JUnit framework.

Try to keep the test cases as short as possible. There is no need in cluttering them up just to beautify the
output. Prefer

// Example from JUnit FAQ
public void testIndexOutOfBoundsExceptionNotRaised()

throws IndexOutOfBoundsException {
ArrayList emptyList = new ArrayList();
Object o = emptyList.get(0);

}

over
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public void testIndexOutOfBoundsExceptionNotRaised() {
try {

ArrayList emptyList = new ArrayList();
Object o = emptyList.get(0);

} catch (IndexOutOfBoundsException iobe) {
fail("Index out of bounds exception was thrown.");

}
}

because the code is shorter, easier to maintain and you get a better error message from the JUnit frame-
work.

A lot of times it is useful just to run the compiler to verify that the signatures are correct on the inter-
faces. Therefor Linus has thought it is a good idea to add methods called compileTestStatics,
compileTestConstructors, and compileTestMethods that was thought to include correct
calls to all static methods, all public constructors, and all other public methods that are not otherwise
tested. These methods are never called. They serve as a guarantee that the public interface of a class will
never lose any of the functionality provided by its signature in an uncontrolled way in just the same way
as the test-methods serve as a guarantee that no features will ever be lost.

Example 2.1. An example without Javadoc comments

package org.argouml.uml.ui;
import junit.framework.*;

public class GUITestUMLAction extends TestCase {
public GUITestUMLAction(String name) {

super(name);
}

// Testing all three constructors.
public void testCreate1() {

UMLAction to = new UMLAction(new String("hexagon"));
assert("Disabled", to.shouldBeEnabled());

}
public void testCreate2() {

UMLAction to = new UMLAction(new String("hexagon"), true);
assert("Disabled", to.shouldBeEnabled());

}
public void testCreate3() {

UMLAction to = new UMLAction(new String("hexagon"), true, UMLAction.NO_ICON);
assert("Disabled", to.shouldBeEnabled());

}
}

and the corresponding no-GUI-class:

package org.argouml.uml.ui;
import junit.framework.*;

public class TestUMLAction extends TestCase {
public TestUMLAction(String name) {

super(name);
}

// Functions never actually called. Provided in order to make
// sure that the static interface has not changed.
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private void compileTestStatics() {
boolean t1 = UMLAction.HAS_ICON;
boolean t2 = UMLAction.NO_ICON;
UMLAction.getShortcut(new String());
UMLAction.getMnemonic(new String());

}

private void compileTestConstructors() {
new UMLAction(new String());
new UMLAction(new String(), true);
new UMLAction(new String(), true, true);

}

private void compileTestMethods() {
UMLAction to = new UMLAction(new String());
to.markNeedsSave();
to.updateEnabled(new Object());
to.updateEnabled();
to.shouldBeEnabled();

}
}

2.6. Manual Test Cases
The manual test cases are here to help us test ArgoUML in order to cover things that are not testable
with the JUnit test cases. Since it is a little bit more cumbersome to run them, a tester must read the test
cases, understand what he is supposed to do, do it, and document the result, we try to go as far as pos-
sible with the JUnit test cases and have as few manual test cases as possible. I.e. If one of these tests can
be converted into a JUnit test case we shall try to do so because it can save us a lot of time. On the other
hand, there are several things that cannot possibly be tested with JUnit tests, so there probably are a lot
of Manual Test Cases to be written.

2.6.1. Running the manual tests
Anyone can run the manual tests on any version of ArgoUML. If it doesn't work, i.e. the expected result
is not seen, then this is a defect in that version of ArgoUML and should be reported using Issuezilla.

At every release, the ambition is to run through all manual tests. Initially, when the amount of manual
tests is small, this is done by the release responsible while testing the newly compiled release. Later on,
when the amount of manual tests makes it unpractical to this during the release work, the work can be
done by anyone, or any group of people within the project, after a development release is made and be-
fore a stable release is made. A signed statement with list of run tests including version number, a list
(hopefully empty) of failed tests together with their Issuezilla DEFECT number, the host type, OS, JDK
version, ArgoUML version, ... shall be mailed to the dev list when these tests are completed.

2.6.2. Writing the manual tests
Adding a new manual test to the group of already existing manual tests or improving one of the existing
tests helps the project forward. Remember that the first priority is to test things with the JUnit tests be-
cause they can be, to some extent, run automatically and have their result reported automatically but
then manual tests are the next big improvement.

Every test has several attributes to make sure that we can identify the test and help the developers and
testers.
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• A name

This name is the title of the subsection where the test is described.

• A number

These start with TEST1 and are allocated in sequence and maintained manually in this document
(TEST2, TEST3, TEST4, ...). They are never reused when made available by removing a test case.

• A revision

Every test case has a revision. These start with REVa and are increased with one every time the test
case is changed.

• A list of requirements tested

This list is references to the requirements as stated in Chapter 3, ArgoUML requirements.

• Preparations i.e. what to do before the test

This is Optional. The default is that you have just started ArgoUML.

• A description on what to do an what to expect

This is a description in plain English telling the tester exactly what to do and what to expect. If this
description doesn't work or is ambiguous in any way the tester should consider the test to be DE-
FECT and report it in Issuezilla.

This is probably best written like this:

Do: whatever

Expected output: whatever

Do: whatever

Expected output: whatever

2.6.3. The list of tests
This section contains all the tests each in a subsection of its own.

2.6.3.1. Modules are enabled

TEST1 REVa (Does not test any current requirements.)

Preparations: Download and install ArgoUML together with the modules.

Do: Start in a window that allows you to see the output on Stdout.

Expected output:

Loaded Module: Java from classes
Loaded Module: GeneratorCpp
Loaded Module: GeneratorCSharp
Loaded Module: GeneratorPHP

Building from source

17



Do: Press F7 (or select menu Generation => Generate All Classes...)

Expected output: A window pops up with Class Name, Java, Cpp, CSharp, and PHP.

Do: Select menu File => Import sources, then open the drop-down box Select language for import: to
the far right.

Expected output: The drop-down box contains Java and Java from classes.

2.6.3.2. Class diagram

TEST2 REVa (Requirements tested: Section 3.2.1, “ ArgoUML shall be a correct implementation of the
UML 1.3 model. ” and Section 3.2.2, “ ArgoUML shall implement everything in the UML 1.3 model. ”)

Do: Select the Class Diagram. Click the Package symbol on the Edit pane tool-bar. Click on the dia-
gram. Click the Class symbol on the Edit pane tool-bar. Click on the diagram. Click the Interface sym-
bol on the Edit pane tool-bar. Click on the diagram.

Expected output: The Class diagram and the explorer now contains one package, one class, and one in-
terface.

Do: Select the class. Drag from the four quick-buttons located along the sides of the class and release
somewhere on the diagram. Click on the fifth quick-button (bottom-left of the class). Select the inter-
face. Drag from the quick-button located along the bottom of the interface symbol and release some-
where on the diagram.

Expected output: When releases on the diagram a new class is created both on the diagram, where re-
leased and in the explorer. The type of the association corresponds with the quick-button type. The asso-
ciation created when clicking the fifth quick-button goes back to the class itself.

2.7. Generating documentation
This describes how the documentation is generated i.e. both what to do and how the setup works.

If you are in a hurry:

C:\Work>set CVSROOT=:pserver:guest@cvs.tigris.org:/cvs
C:\Work>cvs login (use guest as password)
C:\Work>cvs checkout argouml/documentation argouml/tools argouml/lib
C:\Work>set JAVA_HOME=C:\Programs\jdkwhatever
C:\Work>cd argouml\documentation
C:\Work\argouml\documentation>build defaulthtml

The HTML version of the Cookbook, Quick Guide, and User Manual are built and the result end up in.
C:\Work\argouml\build\documentation\defaulthtml\cookbook,
C:\Work\argouml\build\documentation\defaulthtml\quick-guide, and
C:\Work\argouml\build\documentation\defaulthtml\manual respectively.

Note

From here on it is the old text that is more or less "Publishing ArgoUML" to be reworked.

2.7.1. How the ArgoUML web site works
Tigris provides the ArgoUML site to be edited through CVS. Everything that is checked in under
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argouml/www becomes immediately available at the URL http://argouml.tigris.org/ with some added
decorations.

Example: The file argouml/www/project.html is available at ht-
tp://argouml.tigris.org/project.html.

This is the way the site is maintained and updated.

2.7.2. The ArgoUML documentation
For the ArgoUML project the same documentation shall be available in both HTML, PDF and JavaHelp.
To this end the documentation is written in DocBook XML and generated into two versions of HTML
(one page per chapter and one page for the whole book), PDF and JavaHelp.

We have tools that does the conversion from DocBook XML to HTML and PDF. The conversion is
done whenever you need to look at the result or when you want to present the final result on the web
site.

There are currently three different books generated in this way, each into its own directory. They are
cookbook (this document), manual and quick-guide. They are all generated and stored in the exact same
way except for the name of the directory that is one of cookbook, manual or quick-guide. Below
I will reference these directories using book .

When a new version of the documentation is to be made available on the web site the responsible docu-
ment release person does the following:

1. He checks out everything needed and a copy of the argouml/www.

If wanted, the CVS repository could be tagged and then the tag can be checked out. This makes it
possible to know exactly how a certain version of the documentation was generated.

2.
The documentation is generated using build docs.

This generates all three books and the result appears in argouml/
build/documentation/defaulthtml/book , argouml/
build/documentation/printablehtml/book , and argouml/
build/documentation/pdf/book .

This has been done several times before while preparing the release so no problems are expected. If
there are problems then the preparations were not good enough and the process is best stopped right
here.

3. All the old files are removed from the checked out copy of argouml/
www/documentation/defaulthtml/book , argouml/
www/documentation/printablehtml/book .

4. New files are copied into the checked out copy of www on top of the previous files there replacing
them.

All the files are copied from argouml/build/documentation/defaulthtml/book to
argouml/www/documentation/defaulthtml/book . The same for printablehtml
and pdf.

5. No longer used files in argouml/www/documentation are removed from CVS and new files
are added.

cvs -n update
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Watch for "Missing" and "Unknown" files.

The missing files are scheduled to be removed by: cvs remove each of the missing
files

The "Unknown" files are scheduled to be added by: cvs add each of the added files

This removing of missing files and adding of unknown files may seem backward but it is from the
perspective of CVS. The missing files are the ones that were present in the previous version of the
documentation and do not have a replacement, either because that chapter does not exist anymore
or that the tool generates filenames differently. The Unknown files are files with filenames that for
the same reason appear from one version of the documentation to the next.

6. Commit the changes thus publishing it on the web site.

cvs commit -m'New version of the documentation published'

7. The PDF book is uploaded to the download page.

2.7.3. How we work with documentation
The developers or authors that work with the documentation or with the tools to generate the document-
ation (or anyone else interested in how it works) can generate the documentation like described above
and examine the result in argouml/build. It is only the last part about checking in and uploading the
result under argouml/www/documentation that requires write access in the CVS and some con-
figuration management since it more or less is releasing the manual.

In order to do this you need to check out the whole of the argouml/documentation directory. You
also need the directory argouml/lib and argouml/tools that contain the tools used: Ant, FOP,
Saxon, ...

The subdirectories of argouml/documentation, cookbook, manual, and quick-guide each
contain one of the three books. The subdirectory docbook-setup contains two things. It contains the
configuration files that control how the generation is done. It contains the XSL rules for all the genera-
tion. The subdirectory images contains all the required pictures for all the books.

When, in the documentation you run ./build.sh defaulthtml or one of the other targets that builds
the documentation, all books are built. What happens is (the target internal-dispatcher):

• The manual/argomanual.xml is copied by ant to manual/argomanual-gener-
ated.xml while doing substitution of tokens: (@VERSION@ to become the version as specified
in default.properties)

• The file manual/argomanual-generated.xml is processed by the special docbook-
setup/create-imglist.xsl xsl script that generates a list of included images.

• All included images are copied.

The purpose of this is to only get the images actually used copied with the document that uses them
and not all images.

• The HTML is generated by processing the file manual/argomanual-generated.xml .

The file manual/argomanual-generated.xml is a temporary file that only exists while pro-
cessing the XML. If editing the XML with a DocBook editors you open the file manual/argomanu-
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al.xml and edit the unsubstituted file. The differences between the unsubstituted file and the substi-
tuted file are so small that it shouldn't make any difference.

2.8. Making a release
The purpose of this chapter is to simplify for the person that is actually doing the release work and to
make sure that everything is done in the exact same way every time and nothing is forgotten.

The scripts involved have been developed and are mostly run on a Cygwin system. They will hopefully
work on any UNIX system but most likely they will need some adjustments.

Note

This is under rework now that the distribution is to be done using a SVN project.

The artifacts in play here are argouml/src_new/build.xml, argouml/
tools/bin/build-release.sh, argouml/tools/bin/pack-release.sh, and other
build.xml files. The plan for the future is that the build.xml files contain rules on how to compile
and package things into jar files. After that the argouml/tools/bin/build-release.sh and
argouml/tools/bin/pack-release.sh will be taken care of signing, packing into tar, zipped
archives, packing sources, and uploading. The build.xml will have rules that places the complete
runnable release in argouml/build. These are the same rules used by developers when compiling for
testing. The build-release.sh and pack-release.sh script takes it from there.

Prerequisites (what you need to be able to do this):

• CVS access to the argouml project (to set tags).

You also need CVS access to the included sub-projects to set the tags there: (argouml-csharp,
argouml-nb, ... and this list will probably grow).

• SVN access to the argouml-downloads project (to upload the result).

• A machine.

This is probably the machine you use for your development if you are an argouml developer.

The machine needs Internet access (it is not a small download and upload so at least 128KB Internet
connection to keep the time reasonable < 2 hours), the correct version of Java installed (should be a
JDK 1.4.2), CVS and SVN installed, Unix or Cygwin to be able to run the scripts.

• That you have set the CVSROOT correctly.

Make sure it is set to :pserver:user@cvs.tigris.org:/cvs.

Here are the steps to be done when one actually does a release:

1. Set the argo.core.version to not include the "PRE-" part.

This is done in the default.properties-file in src_new and documentation and then,
commit the files.

2. Tag the CVS repository with the freeze tag!
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Normally this tag is "VERSION_X_Y_Z_F", e.g. VERSION_0_9_7_F. The according command
line CVS command is cvs rtag VERSION_X_Y_Z_F argouml.

Note

Because of a problem on the Tigris site, this doesn't work. The workaround is that you
make sure you have a complete checked out and copy of ArgoUML, go to the root
directory argouml, and run the command cvs tag VERSION_X_Y_Z_F.

You also need to set the tag in the sub-projects so the following command is more like it:

for proj in argouml argouml-csharp argouml-nb argouml-i18n-zh
do

( cd $proj && cvs tag VERSION_X_Y_Z_F )
done

3. Open the repository for commits toward the next version.

This is done by setting the argo.core.version in default.properties in src_new
and documentation to PRE-Number of next release, committing and telling everyone
on the developers mailing list.

4. Check the key to sign the jar files for Java Web Start.

Run the command keytool -list -v and give the keystore password secret. You should have a key
named argouml that is valid several months in the future.

This is to make sure that you have a valid key for the purpose of signing the Java Web Start version
of the files.

Since the ArgoUML project and the Tigris organization are loose organizations we cannot buy a
"real" key. The keys we use are the unsigned keys that can be generated by anyone using the
keytool provided with Java.

A key is generated with the command keytool -genkey -alias argouml -storepass secret.

By default these keys have a validity of just three (3) months but by giving the -validity
days the validity can be extended.

5. Run the script argouml/tools/bin/build-release.sh and give the answers to the ques-
tions.

Note

You need to have this file checked out.

Actually the script assumes the following set up:

• somedirectory/ - the directory where the script is started from.

• somedirectory/argouml - the place where a checked out copy of
ArgoUML resides and the documentation can be built.

Building from source

22



The script is located here and the JimiProClasses.zip is taken from this in-
stallation so if you can build the PDF documentation correctly in this, a lot is
gained.

• somedirectory/FREEZETAG - the created that will be created where the
whole build will take place

• svn/argouml-downloads/trunk/www/ - where the files to be uploaded
will go

Notice that this is starts one step up, on the same level as somedirectory. It
will be accessed using a path like
../svn/argouml-downloads/trunk/www.

This is achieved using the following commands:

cd ..
svn co -N http://argouml-downloads.tigris.org/svn/argouml-downloads/trunk/www argouml-downloads/trunk/www

This will:

a. Check out the source in a new directory. The new directory is named after the freeze tag that
you have set.

b. Make the ant executable.

c. Build the core ArgoUML.

This is done in the argouml/src_new directory of the newly created copy by using the
package ant target!

d. Build the sub-projects and modules to be included in the release.

e. Download docboox-xsl.

This is normally done using the docbook-xsl-get ant target.

f. Copy the file JimiProClasses.zip.

This is done automatically from the working copy you have alongside. If not, you will be
asked to copy this in manually.

Jimi is downloaded separately. See Jimi.

g. Build the PDF documentation.

h. Run through the automatic tests!

This is done by issuing the command build alltests in the argouml/src_new directory.

There should not be any failed tests. (See details on where to find the result in Section 2.5,
“The JUnit test cases”).

If the tests did not pass See Section 2.8.1, “The release did not work”.
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i. Sign all jar files.

6. Test the release manually!

The purpose of this is to make sure that there isn't any problem introduced by the release procedure
and that the jar files contains the correct list of jars.

Start using the command

cd VERSION_X_Y_Z_F/argouml/build
java -jar argouml.jar
cd ../../..

and do some ad-hoc testing.

7. Set the release tag.

The following command will do it for you:

cd VERSION_X_Y_Z_F
for proj in *
do

( cd $proj && cvs tag VERSION_X_Y_Z )
done
cd ..

8. Run the script argouml/tools/bin/pack-release.sh

This will:

a. Create the files ArgoUML-VERSION-libs.tar.gz, ArgoUML-VERSION-libs.zip,
ArgoUML-VERSION-modules.tar.gz, ArgoUML-VERSION-modules.zip,
ArgoUML-VERSION-src.tar.gz, ArgoUML-VERSION-src.zip, ArgoUML-VER-
SION-app.tgz, ArgoUML-VERSION.tar.gz, ArgoUML-VERSION.zip, and in-
dex.html. There should also be a subdirectory argouml/argouml-VERSION/jws
with .jar and .jnlp files.

b. Copy the files in place in the svn directory.

A tree with all files is located in argouml-version . It is copied to svn/
argouml-downloads/trunk/www/.

9. Commit the release in the SVN download project.

The commands you would do for this are

cd ../svn/argouml-downloads/trunk/www
svn add argouml-VERSION
svn commit -m'Upload the release VERSION'

10. Go through Issuezilla and check things.

Things to check are:

a. That there is a Version created in Issuezilla for the newly created release.
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The purpose of this is to make it possible for everyone to report bugs on the new release.

b. Make sure that the upcoming releases have target milestones created for them. This needs to
be done for all components that has the same release scheme. Also see that the numbering is
the same in all components and that it is in the correct chronological order except for the not
yet done releases that come before the already completed.

c. Change the target milestones of all the not yet resolved issues for this release to ---.

d. Change the target milestones of any fixed issue in component argouml with target milestone -
-- to that of the current release.

This is probably some developer that has fixed an issue by forgot to set the target milestone
correctly.

e. Move all issues reported on 'current' to this release (for the component argouml).

These items were reported between the previous version and this version. Since 'current' will
be reused for the next release, they need to be locked to the closest release to where they were
found.

f. Reopen RESOLVED/REMIND

This can also be a good time to change all RESOLVED/REMIND. Search for them and Re-
open them.

g. Check RESOLVED/LATER

It could also be good to check that all RESOLVED/LATER has a valid target milestone (must
be an upcoming milestone). Search for them and Reopen the ones that haven't. Also, if the
milestone denotes or is going to be resolved in the upcoming release, Reopen them with a
comment that they are now active.

11. Make announcements!

Add the index file to the directory argouml/www/download so that it will show up at the URL
http://argouml.tigris.org/download/release012345.html
[http://argouml.tigris.org/download/releaseXXX.html].

Add new file to the File Sharing area under the correct release. Since a release is made, the Status
of the files is "Baselined". Use the URL added in the previous paragraph as Link.

Write a News announcement in the argouml project. The announcement shall include a statement
on what kind of release this is, information on what major things that have changed (for stable re-
leases this is a list of what has changed since the last stable release). It could also include the list of
resolved issues, a list of serious known problems with this release (stable releases shouldn't have
any), technical details on how the release was built, and the plan for the following release.

Write a short note on the users list (for development releases), and announce lists (for stable re-
leases or major breakthroughs). Include the link to the new item.

Freshmeat: currently Thierry Lach does the Freshmeat announcements which require a login so just
inform him.

2.8.1. The release did not work
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This shouldn't happen! This really shouldn't happen!

The reason that this has happened is that one of the developers has made a mistake. You now must de-
cide a way forward.

2.8.1.1. Fix the problem yourself.

If the problem is obvious to you and you can fix it quickly, do so. This is done by doing the following:

• Make the release tag into a branch

cvs rtag -b -r VERSION_X_Y_Z_F BRANCH_X_Y_Z

• Update your checked out copy to be on that branch

cvs update -r BRANCH_X_Y_Z

• Fix the problem in your checked out copy

• Commit the problem in the branch

cvs commit -m'Fix of problem blabla'

• Continue the build process

This is done by restarting the build dist-release-command and from that point on working in the
branch instead of at the tag.

• Explain to the culprit what mistakes he has made and how to fix it.

It is now his responsibility to make sure that the problem will not appear in the next version. He can
do this either by merging in your fix or by fixing the problem in some other way.

At this point an in-detail description of how poor programming skills the culprit has and how ugly
his mother is, is probably in place but please keep it constructive! Remember, you might be mistaken
when you guess who the responsible is.

2.8.1.2. Delay the release waiting for someone to fix the problem.

Create the branch as described in Section 2.8.1.1, “Fix the problem yourself.”. Then tell the culprit and
everyone on the developer list what the problem is and that it is to be fixed in the release branch a.s.a.p.

Monitor the changes made to the branch to verify that no one commits anything else but the solutions to
the problems.

When you get notified that it is completed, update your checked out copy and continue the release work.
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Chapter 3. ArgoUML requirements
Linus Tolke

This chapter contains a description on how ArgoUML should work and behave for the users.

These things might not be implemented yet and the solutions might not even be clear but it is a defini-
tion of the goal.

The fact that it is not implemented or doesn't work as stated here should be registered as a bug in the bug
registering tool.

Every requirement has a number (REQ1, REQ2, REQ3, ...) that never changes, a revision (REVa, RE-
Vb, REVc, ...) that changes when the requirement change, a text that is the requirement text to imple-
ment, a rationale that is the description on why this is important, a stakeholder that is one of the stake-
holders in the vision for who this is important.

3.1. Requirements for Look and feel
This describes how the ArgoUML look and feel shall behave.

3.1.1. When multiple visual components are showing
the same model element they shall be updated in a con-
sistent manner throughout the application.

REQ1 REVa

Rationale: There is no way of telling where the user is looking while working with ArgoUML. For this
reason he might be terribly confused if some other view that happens to show the same element is not
showing the same thing.

Stakeholder: User of ArgoUML

3.1.2. All views of a model element shall be update as
soon as the model element is updated.

REQ2 REVb

Rationale: If a user makes an update of a part of the model, an immediate feedback in all other parts that
are currently showing might help him to get it right.

Stakeholder: User of ArgoUML

3.1.3. Editable views of the model should update the
model on each keystroke and mouse click.

REQ11 REVa

Rationale: If a user makes an update of a part of the model, an immediate feedback in all other parts that
are currently showing might help him to get it right.
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Stakeholder: User of ArgoUML

3.1.4. Any text fields that require validation should not
be editable directly from a view.

REQ12 REVa

Rationale: If a text field requires validation there exists, by definition, a possibility that the text field is
in an invalid state at any time during editing. Therefore the model cannot be updated until the field is
completed in a valid state or rejected.

Stakeholder: User of ArgoUML. TODO: Is this the correct stakeholder?

3.1.5. With dialogs, the model is not updated until the
dialog is accepted by the user with valid fields.

REQ13 REVa

Rationale: It is a common feature of GUIs that a dialog displays a snapshot of its model at the time of
creation and only updates that model on the user acceptance of the entire dialog. This is a familiar look
and feel for users.

Stakeholder: User of ArgoUML.

3.1.6. The user shall receive some visual feedback dur-
ing the edit process of textual UML to indicate whether
the text represents valid UML syntax.

REQ14 REVa

Rationale: Writing a correct syntax of anything is complicated. Good compilers are helpful in pinpoint-
ing where the problem is (what line and what token is in error). The text fields in ArgoUML are not de-
veloped in the same way as source code and we have no compiler step to verify it all. Instead this valida-
tion needs to be done while editing meaning that the user needs all the help he can get to as quickly as
possible, get the syntax right. TODO: Is this the correct motivation for this?

Stakeholder: User of ArgoUML.

3.1.7. There shall be no indication of an exception on
the screen or in the log if it has occured merely because
of a user mistyping or not being aware of UML syntax.

REQ3 REVa

Rationale: An exception in the log or on the screen is always the sign of a serious error in the applica-
tion that should be reported as a DEFECT. If a mistyping generates such a problem the user might loose
interest in ArgoUML as a tool because he percieves it as not working correctly.

Stakeholder: User of ArgoUML
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28



3.1.8. All text fields shall have context sensitive help.
As follows:

1. A tooltip that explains the data and format expected by the particular field.

This can be omitted when there is a header stating the data of the field and the format is obvious.

2. Pressing F1 or choosing help from the menu shall display a popup window explaining for data and
format required by the current input field. Input focus shall be left on the field during any user in-
teraction with the popup (dragging, scrolling or closing).

REQ4 REVa

Rationale: Throughout a complex application like ArgoUML there are lots of text fields. Unless there is
a possibility to always get this kind of help the user might not be able to make out what he is actually
supposed to do in that field.

Stakeholder: User of ArgoUML

3.2. Requirements for UML
3.2.1. ArgoUML shall be a correct implementation of the
UML 1.3 model.

REQ5 REVa

Rationale: The vision of ArgoUML is to provide a tool that helps people work with an UML model. The
UML model might later on be used in some other tool. If the implementation is not correct then
ArgoUML will not be compatible with that other tool or the user will be confused. There might be a lot
of tough decisions when it comes to if it is ArgoUML or some other tool that deviates from the UML 1.3
but there shall never be any doubt that the intention of ArgoUML is to implement UML correctly.

Stakeholder: User of ArgoUML

3.2.2. ArgoUML shall implement everything in the UML
1.3 model.

REQ6 REVa

Rationale: The ambition is to implement all of UML. This means that no matter how you use UML
ArgoUML will always be a working tool.

Stakeholder: User of ArgoUML

3.3. Requirements on java and jvm
3.3.1. Choice of JRE: ArgoUML will support any JRE
compatible with a Sun specification of any JRE from Sun
that has not begun the Sun End of Life (EOL) process.

ArgoUML requirements
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REQ7 REVb

Rationale: The JREs and the adjoining libraries (especially swing) are always improving to include new
features and new ideas. The developers of ArgoUML would like to use these new features.

Note: J2SE 1.3.1 begun its Sun End of Life (EOL) process on October 25, 2004.

Stakeholder: Developers of ArgoUML

3.3.2. Download and start
It shall be possible to install ArgoUML locally on the machine and use without Internet connection.

REQ8 REVa

Rationale: ArgoUML is an application that edits an UML model. There is no need to have any network
defined while doing this.

Stakeholder: User of ArgoUML

3.3.3. Console output: Logging or tracing information
shall not be written to the console or to any file unless
explicitly turned on by the user.

REQ9 REVa

Rationale: ArgoUML is an application that edits an UML model. Any information written to anywhere
but the files that the user specifies the user won't know what to do with and it will be perceived as
garbage generated by the ArgoUML application.

Stakeholder: User of ArgoUML

3.4. Requirements set up for the benefit of the
development of ArgoUML
3.4.1. Logging: The code shall contain entries logging
important information for the purpose of helping De-
velopers of ArgoUML in finding problems in ArgoUML it-
self.

REQ10 REVa

Rationale: When the developers are searching for some problem or when they ask any of the users to
help them pinpoint some problem such logging messages are very helpful.

Stakeholder: Developers of ArgoUML
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Chapter 4. ArgoUML Design, The Big
Picture

Currently this is more of a base for discussion and ambition but hopefully this will mature and prove
useful.

The code within ArgoUML is separated in subsystems that each have a few responsibilities.

In Issuezilla each subsystem has its issues sorted in a subcomponent with the same name as the subsys-
tem. Furthermore the Diagrams subsystem has a set of subcomponents for issues connected to the spe-
cific diagrams.

This chapter gives an overall picture with a list of subsystems, their dependencies, and their main re-
sponsibility. Chapter 5, Inside the subsystems explains each subsystem in detail.

The subsystems are organized in layers. The purpose of the layers is to make it easy to see in what direc-
tion the dependencies are and thus allow us to know what dependencies are to be removed in the cases
where we have circular dependencies. This will also allow us to know which other subsystems that are
involved when testing a subsystem.

4.1. Definition of subsystem
All ArgoUML code is organized in subsystems.

Each subsystem has:

• A name

• A single directory/Java package where it resides

Subparts of the subsystem can reside in subdirectories of this directory. Auxiliary parts, implemen-
ted in other products, of the subsystems can reside somewhere else. Notice that each other product
used by ArgoUML is, in the design, located within one of the existing subsystems. This means that a
change of version or indeed a change of choice of such a sub-product is an internal matter for the
subsystem and should ideally not affect any other subsystem.

All public and protected methods of all public and protected classes in this directory constitute the
API of that subsystem.

• A section in the chapter Chapter 5, Inside the subsystems .

The section shall for each subsystem contain the responsibilities, the package name, the API, the
Facade (if any), all the plug-in interfaces (if any). This shall be in the first part of the section i.e. not
in a subsection. It should also document the design of the subsystem. This is in subsections.

Each subsystem can have:

• a Facade class

The facade can be used by all other subsystems when using the subsystem.

The Facade class is called SubsystemName Facade and is located in the subsystem package.
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How it is used is primarily documented in the class file itself (as javadoc) but the more complex pic-
ture is documented in the Cookbook (in Chapter 5, Inside the subsystems).

• Plug-in interfaces.

These are Facade objects where modules or plug-ins can connect themselves to modify or augment
the behavior of that subsystem.

• The plug-in interfaces are also all located in the subsystem package and called SubsystemName
PluginPluginType . Example: ModelPluginDiagram, ModelPluginType.

• If the subsystem uses a callback-technique the callback is always made to an interface defined by the
subsystem. The interface is also in the subsystem package and it is called SubsystemName Plu-
ginTypeInterface . Example: ModelDiagramInterface, ModelTypeInterface.

4.2. Relationship of the subsystems
Each subsystem that is used by other subsystems provide two ways for other subsystems to use them:

• The Facade class

The use of Facade class is not wide spread in ArgoUML. This is because ArgoUML is traditionally
built as a whole and no subsystems were clearly defined.

A Facade class provides the most common functions other subsystems want to do when using that
subsystems to reduce the need of having to use anything else but the Facade class. The Facade class
should be very much more stable than the subsystem itself. Methods in the Facade should change
really slowly and only be removed after several months (and one stable release) of deprecation.

The Facade class is documented in the class file itself (as javadoc) and the more complex picture (if
needed) is documented in the Cookbook (in Chapter 5, Inside the subsystems).
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• An API with calls to public or protected methods.

Traditionally, the subsystems in ArgoUML communicate through public methods and public vari-
ables and the subsystems, as defined by the responsibilities, are spread over several packages setting
aside the Java visibility rules. For this reason it is not well-known or documented what public meth-
ods form part of a subsystem's API and what public methods are internal to a subsystem. For this
reason, always exercise extreme caution when changing the signature of a public method. (See Sec-
tion 8.1, “How to work against the CVS repository”.)

In order to improve things, make it very clear when encountering and understanding the purpose of a
public method or class, if it is part of the subsystem's API or not (by improving the javadoc for that
method or class).

Try to help in moving the public API methods and classes from wherever, to the subsystem's direct-
ory/package using the proper deprecation procedure.

In order not to worsen things, always add new API classes and methods in the subsystem's directory/
package.

This way of communicating is still to be used when it is not convenient to use the Facade for a spe-
cific use of that subsystem.

Notice that the Facade is normally a part of the API or a simplified version of the API.

For each subsystem X in ArgoUML that uses the subsystem Y, the designer of the subsystem X must
decide if he wants to use the API of Y when using the subsystem Y (putting a set of import
org.argouml.Y.internals.blabla.*; statements in each file of subsystem X that uses subsystem Y) or use
the Facade class of subsystem Y (putting only one import org.argouml.Y.YFacade; in each file in the
subsystem X that uses subsystem Y).

The API solution makes the subsystem X depending on the subsystem Y meaning that when we change
the API of the subsystem Y we must also change subsystem X. The facade calls solution doesn't make
the subsystem X depending on the API of subsystem Y but just the Facade of subsystem Y.

The choice between the usage of the API or the Facade shall be stated in the Cookbook's description of
subsystem X in the list of used subsystems.

4.3. Low-level subsystems
These subsystems are infrastructure subsystems that just are there for every other subsystem to use.

They are all insignificant enough not to be mentioned when listing dependencies.

All these subsystems are all started and initiated (if needed) from the Application subsystem.

• Logging - see Section 5.14, “Logging”

• Internationalization - see Section 5.13, “Internationalization”.

• GUI - see Section 5.10, “The GUI”.

• Help system - see Section 5.12, “Help System”.

• JRE with utils - see Section 5.15, “JRE with utils”
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4.4. Model subsystems
These subsystems do not rely on any other part of ArgoUML to do their work (except the infrastructure).
They can all be tested in full individually i.e. independent of any other subsystem.

They contain all the information used by all other subsystems so for that reason they represent the model
in the MVC pattern.

All these subsystems are all started and initiated from the Application subsystem.

• The Model - See Section 5.1, “Model”.

• To do items - see Section 5.16, “To do items”.

4.5. View and Control subsystems
These subsystems rely on the information in the model subsystems in order to do their work.

All these subsystems are all started and initiated from the Application subsystem.

• Application - see Section 5.11, “Application”.

• Diagrams - see Section 5.3, “Diagrams”.

• Property panels - see Section 5.4, “Property panels”.

• Explorer - see Section 5.17, “Explorer”.

• Code Generation - see Section 5.7, “Code Generation Subsystem”.
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• Reverse Engineering - see Section 5.6, “Reverse Engineering Subsystem”.

• Module loader - see Section 5.18, “Module loader”.

4.6. Loadable subsystems
These subsystems should be connected only through the interfaces provided by other subsystems. This
means that they can be individually enabled and disabled using the module loader. Note: The old mod-
ule loader does not have the possibility to disable modules. The new one has but is not widely used.
(July 2005).

• Java Code generation, Reverse engineering - see Section 5.8, “Java - Code generations and Reverse
Engineering”.

• Other languages - Code generation, Reverse engineering - see Section 5.9, “Other languages”.

• Critics and checklists - see Section 5.2, “Critics and other cognitive tools”.

• OCL - see Section 5.19, “OCL”.
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Chapter 5. Inside the subsystems
Warning

This chapter is currently under rework with new subsystem organization.

Things that are not actually in place are: TargetManager

...

5.1. Model
Purpose - To remove knowledge from the rest of ArgoUML of what model repository is in use (e.g.
MDR, EMF, NSUML) and to give a consistent interface for manipulating data within those repositories.

The Model is located in org.argouml.model.

The Model is a Model subsystem. See Section 4.4, “Model subsystems”.

Currently there is a full implementation using NSUML to store the OMG UML Model.

Development is in progress for an MDR implmentation storing both the OMG UML Model and Dia-
gram Interchange Model.

The decision of which implementation to use is controlled by the Model class which contols the imple-
mentations as alternative strategies (as in the Strategy Pattern - GOF p315)

The Model class provides the rest of ArgoUML with various interfaces through which ArgoUML can
manipulate the repository.

Currenty there are factory and helper interfaces for controlling the lifetime and properties of elements in
the repository.

An interface is also made available to the Diagram Interchange Model should the repository implement-
ation contain such.

A ModelEventPump interface is provided through which ArgoUML can listen for changes in the repos-
itory in a consistent way. Implementations of this pump convert from the repoiroys specific events to
???

There are discussion underway to provide a facade (GOF p185) to this model. Once the facade is com-
plete this is likely to take over as a replacement model interface. This will allow the complexities of the
existing interfaces to be rationalized without affcting the facade user.

The factories contain all methods that deal with creating and building model elements. The helpers con-
tain all utility methods needed to manipulate the model elements. Per section of chapter 2 of the UML
1.3 specification there is one factory and one helper.

Both helpers and factories (and the Facade and ModelEventPump) are interfaces that are fetched through
static methods in the Model object.

Because the same interface is used internally each implementation must provide objects for each of
these interfaces.
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5.1.1. Factories
The factories contain in most cases a create method for each model element. Example: createClass
resides in CoreFactory-interface.

Besides that, there are several build methods to build classes. The build methods have a signature like

public Object buildMODELELEMENTNAME
(

params
);

.

Each build method verifies the wellformedness rules as defined in the UML spec 1.3. The reason for this
is that NS-UML does not enforce the wellformedness rules even though non-well-formed UML can lead
to non-well-formed XMI which leads to saving/loading issues and all kinds of illegal states of
ArgoUML.

If you want to create an element you shall use the build or create methods in the factories. You are
strongly advised to use a build method or, if there is none that suits your needs, to write a new one re-
using the already existing build methods and utility methods in the helpers. The reason for this is that the
event listeners for the newly created model element are setup correctly.

Question: Am I allowed to call the factories from any thread? Answer: The current checks are not writ-
ten to allow for multiple threads so don't!

5.1.2. Helpers
The helpers contain all utility methods for manipulating model elements. For example, they contain
methods to get all model elements of a certain class out of the model (see getAllModelelement-
sOfKind in ModelManagementHelper).

To find a utility method you need to know where it is. As a rule of thumb, a utility method for some
model element is defined in the helper that corresponds with the section in the UML specification. For
example, all utility methods for manipulating classes are defined in CoreHelper.

There are a few exceptions to this rule, mainly if the utility method deals with two model elements that
correspond to different sections in the UML specification. Then you have to look in both corresponding
helpers and you will probably find what you are searching for.

Question: Am I allowed to call the helpers from any thread? Answer: The current checks are not written
to allow for multiple threads so don't!

5.1.3. The model event pump

5.1.3.1. Introduction

Late 2002, the ArgoUML community decided for the introduction of a clean interface between the
NSUML model and the rest of ArgoUML. This interface consists of three parts:

1. The model factories, responsible for creation and deletion of model elements

2. The model helpers, responsible for utility functions to manipulate the model elements and

3. The model event pump, responsible for sending model events to the rest of ArgoUML.
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The model factories and the model helpers are described in Section 5.1.1, “Factories” and Section 5.1.2,
“Helpers” respectively.

In the beginning of 2003, in the work to replace NSUML, the need for this interface not to use any
NSUML classes was seen. The ModelFacade was introduced to wrap model factories, model helpers,
and direct calls to NSUML but not the model event pump. In April 2004 a ModelEventPump-
interface was introduced to wrap the UmlModelEventPump using PropertyChangeEvents.

The model event pump is the gateway between the model elements and the rest of ArgoUML. Events
fired by the model elements are caught by the pump and then 'pumped' to those listeners interested in
them. The main advantage of this model is that the registration of listeners is concentrated in one place
(see picture *). This makes it easier to change the interface between the model and the rest of
ArgoUML.

Besides this, there are some improvements to the performance of the pump made in comparison to the
situation without the pump. The main improvement is that you can register for just one type of event and
not for all events fired by some model element. In this respect the pump works as a filter.

The model event pump will replace all other event mechanisms for model events in the future. These
mechanisms (like UMLChangeDispatch and ThirdPartyEventlisteners for those who are interested) are
DEPRECATED. Do not use them therefore and do not use classes that use them.

5.1.3.2. Public API

You might wonder: how does this all work? Well, very simple in fact.

A model event (from now on a Event) has a name that uniquely identifies the type of the event. In most
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cases the name of the Event is equal to the name of the property that was changed in the model. In fact,
there is even a 1-1 relationship between the type of Event and the property changed in the model. There-
fore most listeners that need Events are only interested in one type of Event since they are only inter-
ested in the status of 1 property.

TODO: What thread will I receive my event in? What locks will be held by the Model while I receive
my event i.e. is there something I cannot do from the event thread?

In the case described above (the most common one) you only have to subscribe with the pump for that
type of event. This is explained in section Section 5.1.3.2.1, “ How do I register a listener for a certain
type event ” and Section 5.1.3.2.2, “How do I remove a listener for a certain event”

Besides the case that you are interested in only one type of event (or a set of types), there are occasions
that you are interested in all events fired by a certain model element or even for all events fired by a cer-
tain type of model element. For these cases, the pump has functionality too. This is described in section
Section 5.1.3.2.3, “ Hey, I saw some other methods for adding and removing? ”.

5.1.3.2.1. How do I register a listener for a certain type event

This is really very simple. Use the model

addModelEventListener(PropertyChangeListener listener, Object modelelement, String eventName)

like this:

Model.getPump().addModelEventListener(this, modelelementIAmInterestedIn, "IamInterestedInThisEventnameType");

Now your object this gets only the Events fired by modelElementIAmInterestedIn that have the name
"IamInterestedInThisEventnameType".

5.1.3.2.2. How do I remove a listener for a certain event

This is the opposite of registering a listener. It all works with the method

removeModelEventListener(PropertyChangeListener listener, Object modelElement, String eventName)

on the ModelEventPump like this:

Model.getPump().removeModelEventListener(this, modelelementIAmInterestedIn, "IamInterestedInThisEventnameType");

Now your object is not registered any more for this event type.

5.1.3.2.3. Hey, I saw some other methods for adding and removing?

Yes there are some other method for adding and removing. You can add a listener that is interested in
ALL events fired by a certain model elements. This works with the method:

addModelEventListener(PropertyChangeListener listener, Object modelelement)

As you can see no names of events you can register for here.

Furthermore, you can add a listener that is interested in several types of events but coming from 1 model
element. This is a convenience method for not having to call the methods explained in section Sec-
tion 5.1.3.2.1, “ How do I register a listener for a certain type event ” more than once. It works via:
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addModelEventListener(PropertyChangeListener listener, Object modelelement, String[] eventNames)

You can pass the method an array of strings with event names in which your listener is interested.

Thirdly there is a very powerful method to register your listener to ALL events fired by a ALL model
elements of a certain class. You can understand that using this method can have severe performance im-
pacts. Therefore use it with care. The method is:

addClassModelEventListener(PropertyChangeListener listener, Object modelClass)

There are also methods that allow you to register only for one type of event fired by all model elements
of a certain class and to register for a set of types of events fired by all mod elements of a certain class.

Of course you can remove your listeners from the event pump. This works with methods starting with
remove instead of add.

5.1.3.3. Tips

1. Don't forget to remove your listener from the event pump if it's not interested in some event any
more.

If you do not remove it, that's gonna cost performance and it will give you a hard time to debug all
the logical bugs you see in your listener.

2. When you implement your listener, it is wise to NOT DO the following:

propertyChanged(MElementEvent event) {
// do my thing for event type 1
// do my thing for event type 2
// etc.

}

This will cause the things that need to be done for event type 1 to be fired when event type 2 do ar-
rive.

This still happens at a lot of places in the code of ArgoUML, most notably in the modelChanged
method of the children of FigEdgeModelElement.

5.1.3.4. Possible investigation points and improvements

Should we use our own event types?

Should we replace the MElementListener with PropertyChangeListener and MElemen-
tEvent with PropertyChangeEvent? One reason we havn't done so yet is that it involves a lot of
work and testing.

Change the implementation of the Event pump itself? Not the API but the implementation!

At the moment the event pump does not use the AWT Event Thread for dispatching events. This can
make ArgoUML slow (in the perception of the user).

Use the standard data structure that Swing uses for event registration (i.e.
javax.swing.EventListenerList). Would this be an improvement?
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5.1.4. NSUML specifics
This is currently implemented using NSUML internally to implement the UML model. The plan is to re-
place NSUML with some JMI compliant model instead (probably MDR), and for that reason all APIs to
the Model subsystem using NSUML objects are to be replaced by interfaces without NSUML object and
eventually removed.

The NSUML model itself does not define enough 'business' logic to be directly used and the factories
and helper classes provide a set of interfaces that wraps all functions of NSUML.

In the NSUML implementation factories contain delete methods but they are only used internally within
the Model subsystem.

5.1.5. How to work against the model
NS-UML is used within the Model subsystem to keep all data structures in place. Eventually we will
change that to JMI/MDR that is newer and better and will take us into UML 1.4, UML 1.5 and UML
2.0. Working directly against NS-UML or JMI/MDR will make changes in the NS-UML or JMI/MDR
affect large portions of the code. For this reason we have in the Model subsystem, a set of classes that
lay between the NS-UML and JMI/MDR that hides the APIs of NS-UML or JMI/MDR between
something that will not change while moving between them. This is the API classes of the Model sub-
system i.e. Factories, Helpers, Event Pump (where to register for changes).

Here follows a list of how different things are done for the purpose of making the transition easy.
Everything within ArgoUML should access the Model subsystem through the interfaces in the
org.argouml.model package. The NS-UML or JMI/MDR and whatever other implementation we
could eventually come up with would provide the implementation of those interfaces.

Table 5.1. How to work against the model

What NS-UML (use only
within Model subsys-
tem)

JMI/MDR (use only
within Model subsys-
tem)

Model subsystem

Test that an
Object o
has a cer-
tain type

o instanceof
Mmodelelement-
type # boolean

???CLASSNAME???
.isInstanceOf( RefObject
toTest, String class-
Name) # boolean

Model.getFacade() .isAmodelele-
menttype(o) # boolean

Get a single
valued
model ele-
ment from
an Object o

((Mmodelelement-
type)o)
.getproperty() # mod-
el element

((RefFeatured)obj)
.refGetValue( String
propName) #
???Type???

Model.getFacade() .getproperty(o)
# Object

Get a multi
valued
property
from an
Object o

((Mmodelelement-
type)o)
.getproperty() # Col-
lection

((RefFeatured)obj)
.refGetValue(String
propName) # Collection

Model.getFacade() .getproperty(o)
# Iterator or Collection (total confu-
sion!)

Create a
new model
element of
type Type:

MFactory
.getDefaultFactory()
.createType()

???CLASSNAME???
.creatInstance( String
"Type", List argument)
# RefObject

Model
.getModelElementDomain?Fact-
ory
.buildmodelelementtype(args) or
Model
.getModelElementDomain?Fact-
ory .createmodelelementtype() to
create them completely empty.
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What NS-UML (use only
within Model subsys-
tem)

JMI/MDR (use only
within Model subsys-
tem)

Model subsystem

Delete a
model ele-
ment

Model .getUmlFactory() .delete( ob-
ject)

Register for
notification
that a mod-
el element
Object o
has
changed:

((MBase) o)
.addMElementListener(
MElementListener el)

((MDRChangeSource)
obj)
.addChangeListener(???)

Model.getPump()
.addModelEventListener(
(PropertyChangeListener)li, Object o,
String[] eventnames)

Register for
notification
on all mod-
el elements
of a certain
type Type:

Not possible! ((MDRChangeSource)ob
j .refClass())
.addChangeListener(???)

Model.getPump()
.addModelEventListener(
(PropertyChangeListener)li,
(Object)Model .getMetaTypes()
.getMODELELEMENTTYPE(),
String[] eventnames)

How do I
get the
model as
XMI on the
stream
Stream:

(new XMI-
Writer(MModel m,
Writer Stream)).gen()

new XMIWriter(???) Handled by the Persistence subsystem.

5.1.6. How do I...?

• ...add a new model element?

Make a parameterless build method for your NSUML model element in one of the UML Factories
(for instance CoreFactory). Stick to the UML 1.3 spec to choose the correct Factory. The pack-
age structure under org.argouml.model.uml follows the chapters in the UML spec so get it
and read it! In the build method, create a new model element using the appropriate create method in
the factory. The build method e.g. is a wrapper around the create method. For all elements there are
already create methods (thanks Thierry). For some elements there are already build methods. If you
need one of these elements, use the build method before you barge into building new ones. Initialize
all things you need in the build method as far as they don't need other model elements. In the UML
spec you can read which elements you need to initialize. See for example buildAttribute()
for an example.

If you need to attach other already existing model elements to your model element make a
buildXXXX(MModelelement toattach1, ...) method in the factory where you made
the build method. Don't ever call the create methods directly. If we use the build methods we will al-
ways have initialized model elements which will make a difference concerning save/load issues for
example.

Now you probably also need to create a Property Panel and a Fig object (See Section 5.3.3.5,
“Creating a new Fig (explanation 2)”).

• ...create a new create method?

Create it in the correct factory.

• ...create a new utility method?
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Create it in the correct helper.

5.2. Critics and other cognitive tools
Purpose - to provide cognitive help for the User. This help is based on the current model that the User
works with.

The Critics are located in org.argouml.cognitive.

The Critics is a Loadable subsystem. See Section 4.6, “Loadable subsystems”.

The Critics subsystem depends on the Model that it works against to take all decisions and the To Do
Items used to present the information.

This subsystem contains the following main class types:

• Critics provide help to find artifacts in the model that do not obey simple design "rules" or "best
practices".

• Checklists provide help for the user to suggest and keep track of considerations that the user should
make for each design element. Checklists are currently (0.9.5 and 0.9.6) turned off.

• ToDoItems provide a way for the Critics to communicate their knowledge to the User and let the
User start Wizards.

• Wizards are step by step instructions that fix problems found by the Critics.

5.2.1. Main classes
Here is an illustration of the main classes implementing critics
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Critics are currently located in:

• org.argouml.cognitive.critics

These are basic critics, which are very general in nature. For example ArgoUML keeps nagging
when Model elements overlap, which makes the Diagram hard to read.

This package also contains the base classes for the handling.

• org.argouml.uml.cognitive.critics

These are Critics which are directly related to UML issues (well, more or less). For example, it will
nag when a class has too many operations, because that makes it hard to maintain the particular
class.

This package also contains Wizards used by these Critiques.

• org.argouml.pattern.cognitive.critics

These are critics related to patterns. Currently they deal only with the Singleton pattern

• org.argouml.language.java.cognitive.critics

These are critics which deal with java specific issues. Currently this is only a warning against model-
ing multiple inheritance.

The Base class for Wizards is org.argouml.kernel.Wizard.

Checklists are located in the package org.argouml.cognitive.checklist.

Helper classes for To Do Items, To Do Pane, Wizards and the Knowledge Types are located in the pack-
age org.argouml.cognitive.ui.

5.2.2. How do I ...?

• ...create a new critique?

Currently the only way to add a new critique is to write a class that implements it so that is described
here. There have however been ideas on a possibility to build critics in some other way in the future,
as a set of rules instead of java code.

Create a new critic class, of the form CrXxxxYyyyZzzz , extending CrUML. Typically your new
class will go in the package org.argouml.uml.cognitive.critics, but it could go in one
of the other cognitive.critics packages.

Write a constructor, which takes no arguments and calls the following methods of CrUML:

• setHeadline(""); to set up the locale specific text for the critic headline (the one liner that ap-
pears in the to-do pane) and the critic description (the detailed explanation that appears in the to-
do tab of the details pane). The String parameter is ignored.

• addSupportedDecision(UMLDecision.decAAAA); where AAAA is the design issue category this
critic falls into (examples include STORAGE, PATTERN METHODS).

• setPriority(ToDoItem.BBB_PRIORITY); where BBB is one of LOW, MEDIUM or HIGH, to set
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the priority for the critic in the to-do pane.

• addTrigger("UML Meta-Class"); where UML Meta-Class is a UML Meta-Class, with
initial lower capital, e.g. "associationEnd". The intention is that critics should only trigger for
elements (or children) of particular UML meta-classes. I (Jeremy Bennett February 2002) be-
lieve this code is not yet working so you can probably leave it out. You can have multiple calls to
this method for different meta-classes.

After this add a method public boolean predicate2(Object dm, Designer dsgr);. This is the de-
cision routine for the critic. dm is the UML entity (an NSUML object) that is being checked. The
second argument, dsgr is for future development and can be ignored. The Critic class conveni-
ently defines two boolean constants NO_PROBLEM and PROBLEM_FOUND to be returned according
to whether the object is OK, or triggers the critic.

dm may be any UML object, so the first action is to see if it is an artifact of interest and if not return
NO_PROBLEM.

The remaining code should examine dm and return NO_PROBLEM or PROBLEM_FOUND as appro-
priate.

Having written the code you need to add the text for the headline and description to the cognitive re-
source bundles. These are in the package org.argouml.i18n, in the file crit-
ics.properties. You need to add two keys for the head and description, which will be named
respectively critics.CrXxxxxYyyyZzzz-head and criticsCrXxxxxYyyyZzzz-desc.
There are plenty of examples to look at there. The other files for British English, Spanish, ... respect-
ively) are the responsibility of the corresponding language team. Notify the language teams that
there is work to be done.

In method Init of the class org.argouml.uml.cognitive.critics.Init, add two
statements:

private static Critic crXxxxxYyyyZzzz = new CrXxxxxYyyyZzzz();
...
Agency.register(crXxxxxYyyyZzzz, DesignMaterialCls);

If you want to add a critic to a design material which is not already declared (for example the Extend
class), you will have to add a third statement to the Init method as well, which is:

java.lang.Class XxxYyyyZzCls = MXxxYyyyZzImpl.class;

where MXxxYyyyZzImpl.class should be part of the NovoSoft UML package.

Finally you should get a new section added to the user manual reference section on critics. The pur-
pose of this is to collect all the details and rationale around this critic to complement the short text in
the description. It should go in the ref_critics.xml file and have an id tag named
critics.CrXxxYyyyZzzz.

• ...write the test in a critique?

The critiques tests are essentially a combination of conditions that are to be fulfilled. The conditions
are often simple tests on simple model elements.

The class org.argouml.cognitive.critics.CriticUtils contains static routines that
are commonly needed when writing predicate2 (for example to test if a class has a constructor).
If you find you are writing code that may be of wider use than just your critic, you should add it to
CriticUtils rather than putting it in your critic.
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For commented examples to copy, look at
org.argouml.pattern.cognitive.critics.CrConsiderSingleton,
org.argouml.pattern.cognitive.critics.CrSingletonViolated and
org.argouml.uml.cognitive.critics.CrConstructorNeeded.

• ...fix a critique?

Locate the critique and insert some logging code. You should make sure that you understand all the
implications of changes, therefore it is a good idea to see what makes the critic nag in the first place.
But rest assured: some of the critics haven't been updated to reflect the latest changes in ArgoUML,
so this is a procedure which is well worth digging into, since it gives you also some exposure to re-
lated NSUML elements.

• ...change the text of a critique?

The texts of the critics should be in the according localization files and resource bundles. Be careful:
in some critics the text is still in the critic, but if you change that, you will notice that it doesn't have
any effect.

• ...get my critic to trigger?

This is a suggested way to troubleshoot if the critic doesn't trigger.

1. Check that the settings for critics are enabled (Toggle Auto Critique)

2. Check that your critic is registered in org.argouml.uml.cognitive.critics.Init
with the right class (e.g. check inheritance structure against UML spec)

3. Check that your particular critic is enabled in Browse Critics

4. (IMPORTANT) Check that the design material is actually found in
org.argouml.uml.cognitive.critics.ChildGenUML. This method is incomplete
and might not find all model elements!

5.2.3. org.argouml.cognitive.critics.* class diagram
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5.3. Diagrams
Purpose - To present the diagrams to the user and allow the user to manipulate the diagrams through the
view.

The Diagrams are be located in org.argouml.uml.diagram.

The Diagrams is a View subsystem. Section 4.5, “View and Control subsystems”.

The Diagrams are depending on the Model subsystem and the GUI.

The classes in this subsystem are extensions of the GEF base classes (GraphModels, Figs, Selections
etc) together with some supporting classes.

This subsystem has no direct access to a specific implementation of the OMG model repository.
However it does update such a repository via the interface of the Model Subsystem.

There is an intention (Bob Tarling) to split this subsystem into several smaller subsystems, one for each
diagram type. This is to allow for indiviual diagram reuse by other applications and to allow us to fast
track developers onto a specific subproject containing that subsystem (Michael MacDonald and se-
quence diagrams in mind).

5.3.1. Multi editor pane
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The multi editor pane is the pane with the diagram editor in it. Normally it is placed in the upper right
corner of the application. One of the feature requests is to make the pane dockable so maybe it won't be
there in the future.

The multi editor pane consists of tabs that hold editors as you can see in the class diagram.

At the moment there is only one editor tab in place. This is the TabDiagram that shows an UMLDia-
gram, the target.

The TabDiagram is spawn-able. This means that the user can double click the tab and the diagram will
spawn as a separate window.

The target of the MultiEditorPane is set via the setTarget method of the pane. This method is
called by the setTarget method of the ProjectBrowser. The pane's setTarget method will
call each setTarget method of each tab that is an instance of TabModelTarget. Besides setting
the target of the tabs, the setTarget method also calls MultiEditorPane.select(Object o). This
selects the new target on a tab. This probably belongs in the setTarget method of the individual tabs
and diagrams but that's how it's implemented at the moment.

5.3.1.1. How do I ...?

• ...add a new tab to the MultiEditorPane?

Create a new class that's a child of JPanel and put the following line in argo.ini:

multi: fully classified name of new tab class
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5.3.2. How do I add a new element to a diagram?
To add a new element to a diagram, two main things have to be done.

1. Create new Fig classes to represent the element on the diagram and add them to the graph model
(org.argouml.uml.diagram.xxxx.XxxxDiagramGraphModel.java) and renderer
(org.argouml.uml.diagram.xxxx.ui.XxxxDiagramRenderer.java).

2. Create a new property panel class that will be displayed in the property tab window on the details
pane. This is described in Section 5.4, “Property panels”.

Throughout we shall use the example of adding the UML Extend relationship to a use case diagram.
This allows two Use Cases to be joined by a dotted arrow labeled «extend» to show that one extends
the behavior of the other.

The classes involved in this particular example have all been well commented and have full Javadoc de-
scriptions, to help when examining the code. You will need to read the description here in conjunction
with looking at the code.

5.3.3. How to add a new Fig
The new item must be added to the tool-bar. Both the graph model and diagram renderer for the diagram
will need modifying for any new fig object.

5.3.3.1. Adding to the tool-bar

Find the diagram object in uml/diagram/XXXX/ui/UMLYYYYDiagram.java, where XXXX is
the diagram type (lower case) and YYYY the diagram type (bumpy caps). For example uml/dia-
gram/use_case/ui/UMLUseCaseDiagram.java. This will be a subclass of UMLDiagram (in
uml/diagram/ui/UMLDiagram.java).

Each tool-bar action is declared as a protected static field of class Action, initiated as a new Cmd-
CreateNode (for nodal UML elements) or a new CmdSetMode (for behavior, or creation of line
UML elements). These classes are part of the GEF library.

The common ones (select, broom, graphic annotations) are inherited from UMLDiagram, the diagram
specific ones in the class itself. For example in UMLUseCaseDiagram.java we have the following for
creating Use Case nodes.

protected static Action _actionUseCase =
new CmdCreateNode(ModelFacade.USE_CASE, "UseCase");

The first argument is the class of the node to create from NSUML, the second a textual tool tip.

For creating associations we have:

protected static Action _actionAssoc =
new CmdSetMode(ModeCreatePolyEdge.class,

"edgeClass", MAssociationImpl.class,
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"Association");

The first argument is a GEF class that defines the type of behavior wanted (in this case creating a poly-
edge). The second and third arguments are a named parameter used by ModeCreatePolyEdge
("edgeClass") and its value (MAssociationImpl.class). The final argument is a tooltip.

The tool-bar is actually created by defining a method, initToolBar() which adds the tools in turn to
the tool-bar (a protected member named _toolBar).

The default constructor for the diagram is declared private, since it must not be called directly. The de-
sired constructor takes a name-space as an argument, and sets up a graph model (UseCaseDiagram-
GraphModel), layer perspective and renderer (UseCaseDigramRenderer) for nodes and edges.

5.3.3.2. Changing the graph model

The graph model is the bridge between the UML meta-model representation of the design and the graph
model of GEF. They are found in the parent directory of the corresponding diagram class, and have the
general name YYYYDiagramGraphModel.java, where YYYY is the diagram name in bumpy caps.
For example the use case diagram graph model is in uml/dia-
gram/use_case/UseCaseDiagramGraphModel.java

The graph model is defined as UMLMutableGraphSupport, a child of the GEF class Mutable-
GraphSupport, and should implement MutableGraphModel (GEF).

5.3.3.3. Changing the renderer

The renderer is responsible for creating graphic figs as required on the diagram. It is found in the same
directory of the corresponding diagram class, and has the general name YYYYDiagramRender-
er.java, where YYYY is the diagram name in bumpy caps. For example the use case diagram graph
model is in uml/diagram/use_case/ui/UseCaseDiagramRenderer.java

This provides two routines, getFigNodeFor(), which provides a fig object to represent a given
NSUML node object and getFigEdgeFor(), which provides a fig object to represent a given
NSUML edge object.

In our example, we must extend getFigEdgeFor() so it can handle NSUML MExtend objects
(producing a FigExtend).

5.3.3.4. Creating a new Fig (explanation 1)

New objects that are to appear on a diagram will require new Fig classes to represent them. In our ex-
ample we have created FigExtend. They are placed in the same directory as the diagram that uses them.

The implementation must provide constructors for both a generic fig, and one representing a specific
NSUML object. It should provide a setFig() method to set a particular figure as the representation. It
should provide a method canEdit() to indicate whether the Fig can be edited. It should provide an event
handler modelChanged() to cope with advice that the model has changed.

5.3.3.5. Creating a new Fig (explanation 2)

Assuming you have your model element already defined in the model and your PropPanel for that model
element you should make the Fig class.

1. For nodes, that are Figs that are enclosed figures like FigClass, extend from FigNode-
ModelElement. For edges, that are lines like FigAssociation, extend from FigEdge-
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ModelElement. The name of the Fig has to start with (yes indeed) Fig. The rest of the name
should be equal to the model element name.

2. Create a default constructor in the Fig. In this default constructor the drawing of the actual figure is
done. Here you draw the lines and text fields. See FigClass and FigAssociation for an ex-
ample of this.

3. Create a constructor FigMyModelelement(Object owner). Set the owner in this method
by calling setOwner. Make a method setOwner that overrides it's super. Let the method call it's
super. Set all attributes of the Fig with data from it's owner in this setOwner method. See
setOwner of FigAssociation for an example.

4. Create an overridden method protected void modelChanged(). This method must be
called (and is if you implement the fig correctly) if the owner changes. In this method you update
the fig if the model is changed. See FigAssociation and FigClass for an example.

5. If you have text that can be edited, override the method textEdited(FigText text). In this
method the edited text is parsed. If the parsing is simple and not Notation specific, just do it in
textEdited. But for most cases: delegate to ParserDisplay. See the method parseAttribute in
ParserDisplay for an example. Stick to the Notation you are using to have the right parsing scheme.
There is work to be done here but please don't make it an even bigger mess :)

6. Make an Action that can be called from the GUI. If you are lucky, you just can use CmdCreateN-
ode. See for examples UMLClassDiagram of using CmdCreateNode.

7. Adapt the method canAddEdge(Object o) on subclasses of GraphModel if you are build-
ing an edge so it will return true if the edge may be added to the subclass. Subclasses are for ex-
ample ClassDiagramGraphModel and UseCaseDiagramGraphModel. If you are build-
ing a node, adapt canAddNode(Object o).

8. Adapt the method getFigEdgeFor on implementors of GraphEdgeRenderer if you are im-
plementing an edge so it will return the correct FigEdge for your object. If you are implementing
a node, adapt the method getFigNodeFor on implementors of GraphNodeRenderer. In
ArgoUML classes like ClassDiagramRenderer implement these interfaces.

9. Add an image file for the buttons to the resource directory org/argouml/Images. This image
file must be of GIF format and have a drawing of the button image to be used in itself. This image
is also used on the PropPanel. The name of the Image file should be model element.gif

10. Add buttons to the action you created on those places in the GUI that have a need for it. This
should be at least the button bar in each diagram where you can draw your model element. Prob-
ably the parent of your model element (e.g. class in case of operation) will want a button too, so
add it to the PropPanel of the parent. In case of the diagrams, add it in UMLdiagram.java, so in
UMLClassDiagram if it belongs there. In case of the PropPanels, most of them don't use ac-
tions, they implement them directly as methods in the PropPanel themselves. Please don't do that
but use an action so we have one place of definition.

5.4. Property panels
Purpose - to provide a form view of the diagrams and objects in the model. The contents of the model is
modifiable.

The Property panels will be located in org.argouml.uml.?.

The Property panels is a View subsystem. See Section 4.5, “View and Control subsystems”.

The PropPanels for the diagrams are in org.argouml.uml.diagram.ui and the property panels
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for UML objects are in org.argouml.uml.ui.UML path .

5.4.1. Adding the property panel
Property Panels for UML model elements are found as class PropPanelXXX.java, where XXX is the
UML meta-class. They are in sub-packages of org.argouml.uml.ui corresponding to the XXX NSUML
packages, which in turn correspond to their section in the chapter 2 of the UML 1.3 spec.

So for our example we create a new class PropPanelExtend in package
org.argouml.uml.ui.behavior.use_cases.

Any associated classes that do not fall into the UML classification are provided in org.argouml.uml.ui.

Typically the constructor for the new proppanel class invokes the parent constructor, and then builds the
fields required on the property tab. The parent constructor may need an icon. If you need a new icon, it
should be placed in org/argouml/Images and a call to lookupIcon() made (note that this is a
utility method of the parent PropPanel class). For our example we had to add Extend.gif.

Finally the property panel must be added to the list of property panels in the run() method of the
TabProps class, with a new call of panels.put(). If you don't do this, navigation listeners won't
know about it!

The content of the property panel is created as a grid with columns (1 column if there are only a few
fields, 2 or 3 if there are more). Each row of each column contains a caption (i.e. label) and its corres-
ponding field.

A caption and its field may be added with one of a small number of utility methods which shield you
from the layout stuff: addField() and addSeperator().

A button may be added to the toolbar with the utility method addButton().

Every field is built from Java Swing components. However these are extended by ArgoUML to help in
the provision of action methods for fields in the property tab. Several fields involve lists, and these re-
quire in addition list models to compute the members of the list.

The fields that you might add to a property panel include:

• Simple editable text. For example the Name field. Supported through the UMLTextField2 class.

• A drop down box (aka combobox) of options that can be selected. Supported by the UMLCom-
boBox2 class. Used e.g. for the type of a parameter.

• A check box. This one does not use a seperate model class, thanks to the simplicity of the represen-
ted boolean value. Supported by the UMLCheckBox2 class. Used e.g. for the concurrency checkbox
on a composite state.

• A radio button. These always come in a group. Supported by the UMLRadioButtonPanel class.
Used e.g. for selecting the visibility on the properties panel of a class.

• A list. Used e.g. for the Generalizations field on the proppanel of a class. The non-editable list is
supported by the UMLList2 class and its child UMLLinkedList. The latter also exists in the
form of UMLMutableLinkedList, which allows adding, creation and deleting elements by
popup menu. Used e.g. for the subvertex list for a composite state.

The list model is usually provided by a sub-class of UMLModelElementListModel2. There is a
variant UMLModelElementOrderedListModel2 intended for ordered links, which adds a few
items to the pop-up menu, allowing sorting. This latter model is used e.g. for attributes of a class.
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• A drop down box of options that can be selected. This one exists in several versions, each having
different possibilities. The most simple version is the UMLComboBox2.

The UMLEditableComboBox allows editing the selected item.

The UMLSearchableComboBox allows editing the selected item. See e.g. the Operation com-
bobox on the callevent properties panel.

Then there is a variant with a seperate button for navigation to the property panel for the currently
selected item. This is supported by theUMLComboBoxNavigator class. Used e.g. for the stereo-
type field.

• An editable multiline text area. Supported by the UMLTextArea2 class. Used e.g. for the text field
of a UML Comment.

Examples of these fields in more detail follow below.

5.4.1.1. Adding a simple list field

For example we need to add a field to the use case property panel for the extends relationships that de-
rive from this use case.

This field consists of a label and a scrollable pane (JScrollPane) containing the list (JList), which
may be empty, or contain extend relationships from this use case.

Rather than a straight JList, we use its child, UMLLinkedList, which adds several features to the
standard JList specifically for ArgoUML's properties panels.

The constructor for UMLLinkedList requires two arguments, a list model and a flag to indicate
whether to show an icon.

The list model should be a subclass of UMLModelElementListModel2, a subclass of the Swing
DefaultListModel which implements AbstractListModel. The UMLModelElementList-
Model2 implements two interfaces: one that listens to target changes, and one that listens to UML
model changes.

5.4.1.1.1. The list model

In our example we create UMLUseCaseExtendListModel. Its constructor takes no arguments.
However, we need to provide the parent class with a NSUML event name by invokeing the constructor
of the parent class, with the event name as parameter.

A string naming an NSUML event that should force a refresh of the list model. A null value will cause
all events to trigger a refresh. The best way to identify the event you want to use is to look at the
NSUML source for the container object (MUseCaseImpl in our example) for calls to fireXXX().
The first argument is the name of the event (in our case extend). There is no definitive list, but from
the NSUML source, these are all the names of events that are used:

• action

• actionSequence

• activator

• activityGraph

• actualArgument
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• addition

• aggregation

• alias

• annotatedElement

• argument

• association

• associationEnd

• associationEndRole

• associationRole

• attribute

• attributeLink

• availableContents

• availableFeature

• availableQualifier

• base

• baseClass

• baseElement

• behavior

• behavioralFeature

• binding

• body

• bound

• callAction

• changeability

• changeExpression

• child

• classifier

• classifierInState

• classifierRole

• classifierRole1

Inside the subsystems

56



• client

• clientDependency

• collaboration

• collaboration1

• comment

• communicationConnection

• communicationLink

• componentInstance

• concurrency

• condition

• connection

• constrainedElement

• constrainedElement2

• constrainingElement

• constraint

• container

• contents

• context

• createAction

• defaultElement

• defaultValue

• deferrableEvent

• deploymentLocation

• discriminator

• dispatchAction

• doActivity

• dynamicArguments

• dynamicMultiplicity

• effect

• elementImport
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• elementImport2

• elementResidence

• entry

• event

• exit

• expression

• extend

• extend2

• extendedElement

• extender

• extenderID

• extension

• extensionPoint

• feature

• generalization

• guard

• icon

• implementationLocation

• include

• include2

• incoming

• initialValue

• instance

• instantiation

• inState

• interaction

• internalTransition

• isAbstarct

• isAbstract

• isActive
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• isAsynchronous

• isConcurent

• isDynamic

• isInstantiable

• isLeaf

• isNavigable

• isQuery

• isRoot

• isSpecification

• isSynch

• kind

• link

• linkEnd

• location

• mapping

• message

• message1

• message2

• message3

• message4

• method

• modelElement

• modelElement2

• multiplicity

• name

• namespace

• nodeInstance

• objectFlowState

• occurrence

• operation
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• ordering

• outgoing

• ownedElement

• owner

• ownerScope

• package

• parameter

• parent

• participant

• partition

• partition1

• powertype

• powertypeRange

• predecessor

• presentation

• qualifiedValue

• qualifier

• raisedSignal

• receiver

• reception

• recurrence

• referenceState

• representedClassifier

• representedOperation

• requiredTag

• resident

• residentElement

• script

• sendAction

• sender
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• signal

• slot

• source

• sourceFlow

• specialization

• specification

• state

• state1

• state2

• state3

• stateMachine

• stereotype

• stereotypeConstraint

• stimulus

• stimulus1

• stimulus2

• stimulus3

• structuralFeature

• subject

• submachine

• submachineState

• subvertex

• supplier

• supplierDependency

• tag

• taggedValue

• target

• targetFlow

• targetScope

• templateParameter
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• templateParameter2

• templateParameter3

• top

• transition

• trigger

• type

• useCase

• value

• visibility

• when

This list model should then be provided with a number of methods. The following are mandatory, since
they are declared abstract in the parent.

protected void buildMod-
elList()

(Re)Builds the list of elements. Called from targetChanged every
time the target of the proppanel is changed.

protected boolean isVal-
idEle-
ment(Object/*MBase*/ o)

Returns true if the given element is valid, i.e. it may be added to
the list of elements. This function is called for many UML ele-
ments, to determine if it fits in the list. Remark: The indication /
*MBase*/ is a remainder from the time that ArgoUML included
direct references to the NSUML model all over the code. Now it
is a practical reminder of what we are dealing with.

Warning

The following description is old and the property panels have undergone some fundament-
al changes since it was written. It would be good if someone that knows how it works now
could write a description on how it works now.

The following are sometimes provided as an override of the parent, although for many uses the default is
fine.

public void open(int in-
dex)

Perform the action associated with the “open” pop-up menu on
the element at the given index. The default provided in the parent
just navigates to that element.

public boolean build-
Popup(JPopupMenu popup,
int index)

Build a pop-up menu for the list and return whether it should be
displayed. Any actions will be associated with the item at the giv-
en index in the list. This is built using UMLListMenuItem,
which can record the index, rather than plain JListItem. The
default provides open, add, delete, move up and move down, with
add disabled if there are already as many elements as the upper
bound (if any) for the list, open and delete disabled if there are no
elements and move up and move down disabled if they cannot be
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invoked on the given element. The default implementation always
returns true.

The following should be declared as needed to support particular pop-up functions.

public void add(int in-
dex)

Perform the actions associated with the “add” pop-up menu on the
element at the given index. There is no default provided, so this
must be given if the “add” operation is supported. The ad-
dAtUtil() method (see below) may prove helpful.

In this routine you may create a new NSUML entity. There seem
to be three ways to do this, in order of preference 1) use a utility
from the MMUtil class, 2) use the NSUML Factory class to cre-
ate what you want 3) use new on a MXXXImpl class. Whilst 1) is
best, most of the MMUtil routines are not yet general enough.

Be sure to set it up (don't forget e.g namespace etc). Remember
also to change anything that references the newly created entity.

Warning

The NSUML routines generally set up the “other”
end of a relationship automatically if you set up one
end. If you try to do both (on a NxM relationship)
you will probably end up doing it twice. If you do
encounter this, the rule of thumb is to explicitly set
the ordered end (if you do it the other way round,
NSUML will assume you mean the "other" end to be
at the end of its ordered list).

public void delete(int
index)

Perform the actions associated with the “delete” pop-up menu on
the element at the given index. There is no default provided, so
this must be given if the “delete” operation is supported.

public void moveUp(int
index)

Perform the actions associated with the “move up” pop-up menu
on the element at the given index. There is no default provided, so
this must be given if the “move up” operation is supported.

public void moveDown(int
index)

Perform the actions associated with the “move down” pop-up
menu on the element at the given index. There is no default
provided, so this must be given if the “move down” operation is
supported.

The following normally use the default method, but may be declared to override methods in the parent

public void resetSize() Called when an external event may have changed the size of the
list. The default just sets a flag, which will ensure recal-
cModelElementSize (see above) is invoked as needed.

public Object formatEle-
ment(MModelElement ele-
ment)

Return an object (invariably a String) that represents an element.
The default provided in the parent defers this to the container,
which in turn defers it to the current profile. This is usually per-
fectly satisfactory.
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public void tar-
getChanged()

Called when the number of elements in the displayed list
(including “none”) may have changed. Default invokes the neces-
sary Swing operations to advise of a change in list size.

public void targetReas-
serted()

Called when the navigation history has been changed (and naviga-
tion buttons may need changing). Not clear why anything is
needed, but default recomputes the list size, and invokes the ne-
cessary Swing operations.

public void roleAd-
ded(final MElementEvent
event)

part of the NSUML EventListener interface. Called when an add
event happens, i.e. some NSUML object has been added. The de-
fault provided looks to see if the event is the role name we de-
clared, or we are listening to all events, and if so looks to see if it
relates to an element in our list. If so Swing is notified that the
element has been added.

public void roleRe-
moved(final MElemen-
tEvent event)

part of the NSUML EventListener interface. Called when a re-
move event happens, i.e. some NSUML object has been removed.
The default provided looks to see if the event is the role name we
declared, or we are listening to all events, and if so looks to see if
it relates to an element in our list. If so Swing is notified that the
element has been removed.

public void re-
covered(final MElemen-
tEvent p1) , public void
listRoleItemSet(final
MElementEvent p1) , pub-
lic void removed(final
MElementEvent p1) , pub-
lic void proper-
tySet(final MElemen-
tEvent p1)

these are all required as part of the NSUML EventListener inter-
face, which is not well documented. In each case the default im-
plementation recomputes the size, and advises Swing that the en-
tire list has changed. Needs more investigation.

public void navigat-
eTo(MModelElement
modelElement)

a request to navigate to the specified object as part of the Naviga-
tionListener interface. The default in the parent just invokes nav-
igateTo() on the container (ultimately PropPanel).

The following utility routines are also provided in the parent. They are not normally overridden.

public int getUpper-
Bound()

get any upper bound (-1 is used if there is none).

public void setUpper-
Bound(int newBound)

set the upper bound (-1 is used if there is none).

public final String get-
Property()

returns the NSUML event name being monitored (null if all are
being monitored).

protected final int get-
ModelElementSize()

returns the number of elements in the list. Invokes recal-
cModelElementSize() (see above) if necessary.

final Object getTarget() returns the NSUML object associated with the container (some
child of PropPanel usually) that holds this list model.

final UMLUserInterface-
Container getContainer()

returns the the container (some child of PropPanel usually) that
holds this list model.

public int getSize() returns the size of the list. Including if there are no elements in the
model, but the list has a default text when empty.

public Object getEle-
mentAt(int index)

returns the element at the given index in the list.
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dAtUtil(Collection old-
Collection, MModelEle-
ment newItem, int index)

helps in writing the “add” function. newItem is added at the spe-
cified index in the given oldCollection.

static protected
java.util.List
moveUpUtil(Collection
oldCollection, int in-
dex)

helps in writing the “move up” function. Swaps the elements at
offsets index and index-1. Not clear why it doesn't return a Col-
lection.

static protected
java.util.List move-
DownUtil(Collection old-
Collection, int index)

helps in writing the “move down” function. Swaps the elements at
offsets index and index-1. Not clear why it doesn't return a Col-
lection.

static protected
MModelElement elementAt-
Util(Collection collec-
tion, int index, Class
requiredClass)

helps in writing the getElementAt(). Finds the element at a
specific index. The last argument is ignored!

5.4.1.2. Building the field

By convention the background of the list is set to the same as the background of the PropPanel and the
foreground to Color.blue.

The list is then added to a JScrollPane. Although ArgoUML has historically not used scrollbars
(JScrollPane.VERTICAL_SCROLLBAR_NEVER and JScroll-
Pane.HORIZONTAL_SCROLLBAR_NEVER), it is more helpful to permit at least a vertical scrollbar
where needed (JScrollPane.VERTICAL_SCROLLBAR_AS_NEEDED and JScroll-
Pane.HORIZONTAL_SCROLLBAR_AS_NEEDED).

Finally the inherited method addCaption() is used to add the label for the field and addField()
to add the associated scroll pane.

The second argument of each of these identifies the index of the caption/field pair in the vertical column
of the grid for this property panel. The third argument identifies the column index. The final argument is
a vertical weighting to expand the field if there is room in the property tab. This is usually set to the
same non-zero value for all fields and corresponding captions that can have multiple entries, so they ex-
pand equally. If none of the fields should expand, the caption only of the last field in each column
should be given a non-zero value.

5.4.1.3. Adding Property Tab Tool-bar Buttons

These are added by creating new instances of PropPanelButton (you don't need to assign them to
anything - just creating will do). This has six arguments.

• The container, i.e this property panel (usually just use this).

• The panel for the buttons. Use buttonPanel which is inherited from PropPanel.

• The icon. Lots of these are already defined in PropPanel.

• The advisory text for the button. Use localize(string) to ensure international portability.

• The name of the method to invoke when this button is used. Some of the standard ones (e.g for nav-
igation) are provided, but you will need to write any specials.

• The name of the method (if any) to invoke to see if this button should be enabled. Use null if the
button should always be enabled.

In our example, the extend property panel has a “add extension point” button, with a method newEx-
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tensionPoint that we provide to create a new use case.

5.4.1.4. Support for stereotypes

The PropPanel should override the following (note the spelling of the method name).

protected boolean isAcceptibleBaseMetaClass(String baseClass). Returns
true if the given base class is a class of the target in the PropPanel.

This is used to determine what stereotypes may be shown for this property panel.

5.4.1.5. Other sorts of fields

Another sort of field that may be useful is the ComboBox. This is useful to allow users to select from a
pre-defined list of alongside a navigation arrow to go to the selected entry.

For example this is used to provide drop-down lists for the base and extension use cases of an Extend re-
lationship in PropPanelExtend.

The model behind the drop down is created by using UMLComboBoxModel: UMLComboBoxMod-
el(container, predicate, event, getter, setter, allowVoid, baseClass,
useModel).

The container is the PropPanel where we are setting up this ComboBox, the predicate is the name of
a public method in that PropPanel that, given a model element, determines if it should be in the drop
down, the event is the NSUML MElementEvent name we are looking for (see earlier for the list),
getter is the name of a public method in the PropPanel that yields the current entry in the combo Box
(of type baseClass), setter (with a single argument of type baseClass) sets that entry, allow-
Void if true will allow an empty entry for the box, baseClass is the NSUML meta-class from
which all entries must descend, useModel is true to consider all the elements in the standard profile
model for inclusion (so the Java types, standard stereotypes etc.).

For our PropPanelExtend, we provide a predicate routine the call for the “base” field is:

UMLComboBoxModel(this, "isAcceptableUseCase", "base", "getBase", "set-
Base", true, MUseCase.class, true);

and we define the methods isAcceptableUseCase, getBase and setBase in PropPanelEx-
tend.

5.4.1.6. How UMLTextField works

This information is provided by Jaap Branderhorst (September 2002).

UMLTextField implements several kinds of event listeners:

• MMelementListener

• DocumentListener

• FocusListener

Furthermore it is a UMLUserInterfaceComponent.

Since it is an UMLUserInterfaceComponent it must implement targetChanged and tar-
getReasserted. TargetChanged is called every time the UMLTextField is selected. tar-
getReasserted is of no interest for UMLTextField. It plays a role in keeping history but since
history is not really implemented at the moment in ArgoUML it is of no interest. targetChanged
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does two things:

• It calls the targetChanged method of the UMLTextProperty this UMLTextfield is show-
ing.

• It calls the update method. The update method is described further on.

Besides UMLUserInterfaceComponent there are several other interfaces of interest. One of them
is MMElementListener.

Every time a MModelElement is changed this will fire an MEvent to UMLChangeDispatch. UM-
LChangeDispatch will dispatch these events to all containers implementing UMLUserInter-
faceComponents interested in this event, including UMLTextField. It will also dispatch the event
to all children of an interested container implementing UMLUserInterfaceComponent. By this it
is only necessary to register a PropPanel which holds an UMLTextField at UMLChangeDis-
patch to dispatch the event to the UMLTextField too. MMelementListener knows several
methods of which only one is of interest to UMLTextFields:

• propertySet

Called every time a property in a MModelElement is set. This method calls update too if the
UMLTextProperty really is affected.

Furthermore UMLTextField implements DocumentListener. This is very typical for UMLText-
Field. At the moment it is not possible to change the style of the text in the UMLTextField. There-
fore the method changedUpdate does not have a body. This method is only called when a Docu-
mentEvent occurs that changes the style/layout of the text. The methods insertUpdate and re-
moveUpdate are respectively called when a character is added to the document UMLTextField con-
tains or removed. Since both methods are called when there is true user input and when the contents of
the document are changed programmatically, the methods distinguish between them. InsertUpdate
and removeUpdate are both handled via the protected method handleEvent. HandleEvent up-
dates the property in UMLTextProperty if it is really changed. If the update comes via user input, it
is checked if it is valid input. If it is not, a JOptionPane is shown with ' a warning and the change is
not committed into the model. If it is not via user input, the input is not checked and the property is set.
If the property is set, the update method is called.

The implementation of FocusListener makes sure that the checking of user input only happens
when focus is lost. Otherwise, it would not be possible to enter 'intermediate' values that are not legal.
For instance, say the value class is not legal. Without the implementation of FocusListener, it
would not be possible to enter class diagram since handleEvent would pop-up a warning message box.

The method update updates both the actual JTextfield as the diagram as soon as some property is
set. The updating of the diagram is done by calling the damage method of the figs that represent the
property on the diagram.

5.5. Persistence
Purpose - To package and unpackage the persistence data from different subsystems to and from some
storage medium.

The Persistence subsystem is located in org.argouml.persistence.

Currently the storage medium is a flat file (.uml - xml format) or a zipped file (.zargo - zip format)

During save the persistence subsystem requests each subsystem for its persistence data and adds that
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data to output it is collating.

During load the persistence subsystem unwraps the persistence data and passes these to the relevant sub-
systems for those subsystems to build themselves.

5.6. Reverse Engineering Subsystem
Purpose: Point where the different languages register that they know how to do reverse engineering and
common reverse engineering functions for all languages.

The Reverse Engineering is located in org.argouml.uml.reveng.

The Reverse Engineering Subsystem is a Control subsystem. See Section 4.5, “View and Control sub-
systems”.

5.7. Code Generation Subsystem
Purpose: Point where the different languages register that they know how to do code generation and
common functions for all languages.

The Code Generation is located in org.argouml.language.

The Code Generation subsystem is a Control subsystem. See Section 4.5, “View and Control subsys-
tems”.

Currently (up until April 2004) very much of this subsystem is located in
org.argouml.uml.generator and we have a need to modify the interfaces of the subsystem to
no longer include any NSUML types. This move will be carried out by creating new interfaces in
org.argouml.language and deprecating the old ones.

This is my (Linus Tolke) suggested way of how it is going to work:

The different languages or notations supplied with ArgoUML are found in sub-packages of {@link
org.argouml.language}.

Any definition or foundation interfaces are found in the directory org.argouml.language. Any
helper classes such as abstract implementation classes are also found in org.argouml.language.

At boot time, each language registers their interfaces in the org.argouml.language.Language
register.

• Languages that generates a Notation implement the NotationGenerator interface.

• Languages that edits or parses the Notation implement the NotationEditor interface.

• Languages that generates Code templates implement the CodeGenerator interface.

• Languages that reverse engineer Code implement the CodeReverseEngineer interface.

Full MDA implementations of languages is not currently discussed. I (Linus April 2004) does not under-
stand how it is supposed to work.

5.8. Java - Code generations and Reverse En-
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gineering
Purpose - two purposes: to allow the model to be converted into java code and updated either in java or
in the model; to allow some java code to be converted into a model.

The java things are located in org.argouml.language.java.

The Java subsystem is a Loadable subsystem. See Section 4.6, “Loadable subsystems”.

5.8.1. How do I ...?
...

5.8.2. Which sources are involved?
The package org.argouml.uml.reveng is supposed to hold those classes that are common to all RE pack-
ages. At the moment this is the Import class which is mainly responsible to recognize directories, get
their content and parse every known source file in them. These are only java files at the moment, but
there might be other languages like C++ in the future. With this concept you could mix several lan-
guages within a project. The DiagramInterface is used to visualize generated NSUML meta-model ob-
jects then.

The package org.argouml.uml.reveng.java holds the Java specific parts of the current RE code. C++ RE
might go to org.argouml.uml.reveng.cc, or so...

5.8.3. How is the grammar of the target language imple-
mented?

It's an Antlr ( http://www.antlr.org [http://www.antlr.org]) grammar, based on the Antlr Java parser ex-
ample. The main difference is the missing AST (Abstract Syntax Tree) generation and tree-parser. So
the original example generates an AST (a treelike data structure) and then traverses this tree, while the
ArgoUML code parses the source file and generates NSUML objects directly from the sources. This was
done to avoid the memory usage of an AST and the frequent GC while parsing many source files.

5.8.4. Which model/diagram elements are generated?
The *context classes hold the current context for a package, class etc. When the required information for
an object is available, the corresponding NSUML object is created and passed to the DiagramInterface
to visualize it.

5.8.5. Which layout algorithm is used?
The classes in org.argouml.uml.diagram.static_structure.layout.* hold the Class diagram layout code.
No layout for other diagram types yet. It's based on a ranking scheme for classes and interfaces. The
rank of a class/interface depends on the total number of (direct or indirect) super-classes. So if class B
extends A (with rank(A)=0), then rank(B)=1. If C extends B, then rank(C)=2 since it has 2 super-classes
A,B. An implemented interface is treated similar to a extended class. The objects are placed in rows
then, that depend on their rank. rank(0)=1st row. rank(1) =2nd row (below the 1st one) etc. Example:
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In the next diagram, a link goes to an object that is not in the row above:

In this case, insert virtual objects which are linked to the actual target and link to them:

Inside the subsystems

70



The objects are sorted within their row then to minimize crossing links between them. Compute the av-
erage value of the vertical positions of all linked objects in the row above. Example: we have 2 ranks, 0
and 1, with 3 classes each:

A B C : rank 0

D E F : rank 1

We give the super-classes an index in their rank (assuming that they are already sorted):

A:0, B:1, C:2

D, E, F have the following links (A, B, C could be interfaces, so I allow links to multiple super-classes
here):

D -> C

E -> A and C

F -> A and B

Compute the average value of the indexes:

D = 2 (C has index 2 / 1 link)

E = 0 + 2 / 2 = 1 (A=0, C=2 divide by 2 links)

F = 0 + 1 / 2 = 0.5 (A=0, B=1, 2 links)
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Then sort the subclasses by that value:

F(is 0.5), E(is 1), D(is 2)

So the placement is:

A B C

(here are the links, but I can hardly paint them as ASCIIs)

F E D

5.9. Other languages
Each other language supported by ArgoUML has its own subsystem. They are each different in level of
support and implementation language.

Currently C++ has no reverse engineering but only code generation (and a very simple one at that). Java
class files has only reverse engineering.

5.10. The GUI
Purpose - Provide an infrastructure with menus, tabs and panes available for the other subsystems to fill
with actions and contents.

This subsystem has no knowledge of UML, Critics, Diagrams, or Model.

The GUI Framework is located in org.argouml.???.

This is implemented directly on top of Swing and Java2.

The GUI framework provides the following options
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• The menu with actions

• The tool-bar with actions

• The Explorer (formerly called Navigator)

Located in org.argouml.ui.explorer. Contains the tree structure with configurable per-
spectives.

• Tabbed pane

Could contain several different panes.

• The TargetManager

Located in org.argouml.ui.targetmanager.

Thanks to the architecture of ArgoUML of Modelelements and Figs, one rule has been decided upon
(by mvw@tigris.org): The list of targets shall not contain any Fig that has an owner. Instead, the
owner is enlisted.

5.11. Application
Purpose - to provide the entry point when starting ArgoUML. Responsibility to start the ball rolling.

The Application is located in org.argouml.application.

The entry point is called org.argouml.application.Main.

5.11.1. What is loaded/initialized?
It all begins in org.argouml.application.Main: set up main application frame
(org.argouml.ui.ProjectBrowser), the project (org.argouml.kernel.Project), numerous classes, and finally
as a background thread: cognitive support (org.argouml.cognitive.Designer) and some more classes.

The ProjectBrowser initializes the menu, tool-bar, status bar and the four main areas: navigation pane
(org.argouml.ui.NavigatorPane), editor pane (org.argouml.ui.MultiEditorPane), to do pane
(org.argouml.cognitive.ui.ToDoPane), and details pane (org.argouml.ui.DetailsPane). Then, the actual
project is set to either a read from file project (see ArgoParser.SINGLETON.readProject(URL) and Ar-
goParser.SINGLETON.getProject() in org.argouml.xml.argo.ArgoParser) or a newly generated project
(see Project.makeEmptyProject()).

5.11.2. Details pane
Currently (May 2003) the Details pane contains several tabs: Property Panels (See Section 5.4,
“Property panels”, Critics explanations and wizards (belonging to the Critics subsystem) (See Sec-
tion 5.2, “Critics and other cognitive tools”), Documentation, Style, Source, Constraints (an OCL con-
straints of the current object) (See Section 5.19, “OCL”), and Tagged values.

Warning

It is not clear in what subsystem Documentation, Style, Source, and Tagged values belong.

5.11.2.1. How do I ...?
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• ...add a tab in the Details Panel?

Create your TabXXX class in org.argouml.uml.ui by copying from another TabYYY.java
(e.g. TabSrc, TabStyle). Then register your TabXXX in org/argouml/argo.ini by adding
a line giving the compass point to place the tab. Like -

south: TabXXX

• ...remove a tab from the Details Panel?

Remove the line for the tab from org/argouml/argo.ini.

5.12. Help System
Purpose - to provide the menu actions that start the help and other documentation. To provide infrastruc-
ture that makes context sensitive help possible.

The Help System is not yet implemented.

The Help System will be located in org.argouml.help.

The Help System is a Model subsystem. See Section 4.4, “Model subsystems”.

Javahelp or some other help function will probably be used.

5.13. Internationalization
Purpose - to provide the infrastructure that the other subsystems can use to translate strings; to provide
the infrastructure that makes it possible to plug in new languages; to administer the default language; to
administer all supported languages.

When ArgoUML starts it starts with the language given by the first decisive language information of

1. Command line argument

The prepared Java Web Start alternatives also uses this to override everything else.

2. The users' saved configuration

3. The default locale for the users' computer

4. ArgoUML default language (Enlish U.S.)

This is done independently of if ArgoUML has that language prepared or not.

Example 5.1. Starting with nonexisting language.

If ArgoUML is started with Swahili on the command line (that doesn't exist), while the user has French
(that does exist) configured, ArgoUML will work in Swahili and all languages will show up in English
U.S. i.e. the default language because Swahili doesn't exist.
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The Internationalization is located in org.argouml.i18n in the class path. In the checked out copy
of ArgoUML it is located partly in argouml/src_new/org/argouml/i18n - functionality, and
non-localized default language (US English), and partly in argouml-language/
src/org/argouml/i18n - all files for a specific language (one new tigris project for each lan-
guage).

For the time being, some languages are also placed in argouml/src/i18n/language/
src/org/argouml

The Internationalization is an Infrastructure subsystem. See Section 4.3, “Low-level subsystems”.

In ArgoUML internationalization (sometimes called i18n) is done using the property files that are loaded
into PropertyResourceBundles.

5.13.1. Organizing translators
The problems with internationalization are not so much the technical problems as to how it works but
more so the problems are with getting, keeping and coordinating the correct competences to do the job.
This comes from the fact that by necessity the different persons working with internationalization have
different native languages and that complicates the communications.

To handle this problem for GNU applications there is a community set up around “gettext” with one lan-
guage team per language working with all “gettext” applications. There are also tools to help the trans-
lator do his job delivered with “gettext” that are the same for all the applications. In each of these lan-
guage teams discussions are held that ensure a consistent use of words over all these applications.

It is for me (Linus Tolke, May 2002) unclear if and how such a community exists for Open Source Java
tools and ArgoUML cannot simply benefit from the “gettext” communities since we don't use “gettext”
and cannot use the same tools.

To get things done, we organize our own Language Teams for ArgoUML. Each language team is actu-
ally just one or several persons that know that language and are eager to work with translating
ArgoUML.

The language team has the following responsibilities:

1. Constitute the foundation of the ArgoUML community for that language.

2. Tranlate all localized strings and resources.

This is a constant work with keeping up with the changes that will be made to the ArgoUML code
and ArgoUML modules since ArgoUML is under fast development.

3. The terminology used shall be correct.

This requires work in keeping up with the current literature in the domain of ArgoUML.

4. Help with the improvements on ArgoUML by pin-pointing where ArgoUML needs to be modified
to allow for localization.

As ArgoUML is originally built without localization there may still have places in the GUI that is
not localizable just by modifying the resource bundles. Each such place is a Defect and shall be
corrected.

5. See that the used libraries also provide their part in that language.

This is mostly GEF since GEF is central both when it comes to the fact that it has localized strings
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of its own but also because it handles parts of the localization.

This means discussing with the teams developing the underlying package as to how best to provide
the localization for those parts. Either by providing localization for that team to include in the pack-
age or by having ArgoUML overriding that package in that respect.

5.13.2. Ambitions for localization
An ArgoUML subproject is created for each Language Team.

The subproject has the following that is used in building a community:

• A web site

Ideally the site should match the main ArgoUML site, page by page, with a footer on every page
with flags of all the languages that that specific page exist in so that it is easy to travel between lan-
guages. Missing pages should be linked to the main ArgoUML counterpart.

Alas there is no tool support on Tigris to help in this.

• Mailing lists

The users@argouml-language code.tigris.org should be for user and dev@argouml-language
code.tigris.org for persons discussing the building of the site or the translation. Discussions on both
lists should be carried out in the actual language.

5.13.3. How do I ...?

• ...fix an incorrect or missing translation?

This is the responsibility of the language team.

If you are a member of the language team, commit the new translation.

If you are not, send your corrections to the correct team by mail or enter an issue in issuezilla. Each
language team might want to handle this differently. Whatever way, it should is stated on the web
site for that team. The language team members are the ones with the Developer role in the language
project.

If the language team does not do its work quickly enough (or well enough in your opinion), please
volunteer to help them out by joining the team.

If the language team does not respond, contact the project leader of the ArgoUML project.

For historic reasons there are currently (June 2005) teams without projects of their own. Projects will
be created when something is to be done for these languages.

• ...verify that all translations are up to date?

There is a simple tool you can use that is developed in the argouml-gen project. Currently (June
2005) this tool is run regularly and a web page with the result published in the argouml-stats project.

Inside the subsystems

76



• ...start a new Language Team?

Contact the project leader of the ArgoUML project to discuss this. He will create the team and the
project and make you the first member of the team and project once he is convinced that you have
understood the responsibilities.

The Language Teams are listed on the web page of language teams on the Tigris site. The project are
argouml subprojects so they are listed at the bottom of the argouml web page.

• ...find the languages internationalization code for the language your instance of ArgoUML is at-
tempting to run with: en, es, en_GB,...

The one you are currently using is shown in the Versions information in the about box. Help Menu
=> About ArgoUML Menuitem => Version tab just after the Operating System information. Search
for the text looking like this:

Language: sh
Country: KR

This example means that you have your computer set to Swahili as spoken in Korea (I think). Notice
that the Language: and Country: are localized and could appear in your language.

• ...start the translation work?

This is only applicable for members of the language team.

Look at the files in org/argouml/i18n, under argouml/src_new (the argouml project).

Translate all the values in each of these files.

This is a lot of extremely qualified work including searching well-known literature on UML and
Software Engineering in order to get the correct terms for the domain. Discuss with other UML and
Software Engineering professionals with the same native language to get it right.

Create the files with the translations and store them in argouml-language code/
src/org/argouml/i18n. They will have names like: action_language
code.properties, button_language code.properties, checkbox_language
code.properties, combobox_language code.properties, ...

When this is done the first iteration of the Tool translation is completed. The work will probably be
more maintenance-like from here on.

• ...join an existing Language Team

Discuss with the Language Team in question by mailing the members. They will hopefully have
work prepared for you and greet you with open arms.

• ...add or modify code with localized things?

This is only applicable for developers working with the ArgoUML Java source or some argouml
module.

1. Everywhere the user would see a string in the GUI you should localize a key.

This means that instead of writing a string you write a call to a localizer method with a "key"
("label" or "tag") as argument and the localizer method finds the resolution of the "key" is in
one of the property files. You select one of the files for you key and name the key accordingly.

The key is a String. The key has a special syntax like this:
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word1.word2.word3

where word1 is the same as the first part of the filename that the key resides in. Example: The
key "action.about-argouml" resides in the files action.properties and action_lan-
guage code.properties.

You will have to call the class org.argouml.i18n.Translator to convert them to
wherever they are used.

This is how a real example would look like:

import org.argouml.i18n.Translator;
...

String localized = Translator.localize(key);

2. Add your "key" and resolution in English (U.S.) in the non-localized properties file in
argouml/src_new/org/argouml/i18n and test that the GUI looks good for the default
language.

Which property file ArgoUML will eventually use depends on the localization settings of the
running ArgoUML instance. While developing you should use en_US or some language that
does not have a translation so that you can work with the default language.

3. Contact all language-teams so that they can update their files.

Currently (November 2003) there is a great confusion as to where we stand on the different
translations. For this reason we can't say if any language team is up to date with the changes
and served by such a contact.

4. If you have strings that are sentences where you have dynamic values like a file name, a class
name, or some property to enter at a certain place, remember that all languages would not write
it exactly like that. Use MessageFormat to build every such sentence! There is a conveni-
ence function for this in Translator called messageFormat.

Notice that if you somewhere change the meaning of a specific localized string it would be a good
idea to use a new "key" for the new meaning. This will make it easier for the translation team to spot
the modification.

There allegedly are tools in the java world to spot this kind of changes. Until we have the tools and
processes in place to handle them it is better to rely on this simpler mechanism to guarantee correct-
ness.

Notice also that you shouldn't localize log entries, comments, exception names, names of environ-
ment variables, and tags and tokens used in save files. This is because the development project of
ArgoUML is a one-language community (en_US) and the users of ArgoUML would want to be able
to run an ArgoUML localized differently with otherwise the exact same settings, loading and saving
the same files, ... Also a user, changing the language, should not have his files or configuration cor-
rupted by this change.

5.14. Logging
Purpose - to provide an api for debug log and trace messages.
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The purpose of debug log and trace messages is: To provide a mechanism that allows the developer to
enable output of minor events focused on a specific problem area and to follow what is going on inside
ArgoUML.

The Logging is located in org.argouml.???

The Logging is a Layer 0 subsystem.

Logging is currently implemented using log4j.

ArgoUML uses the standard log4j [http://jakarta.apache.org/log4j/] logging facility. The following sec-
tions deal with the current implementation in ArgoUML. By default, logging is turned off and only the
version information of all used libraries are shown on the console.

5.14.1. What to Log in ArgoUML
Logging entries in log4j belong to exactly one level.

• The FATAL level designates very severe error events that will presumably lead the application to
abort. Everything known about the reasons for the abortion of the application shall be logged.

• The ERROR level designates error events that might still allow the application to continue running.
Everything known about the reasons for this error condition shall be logged.

• The WARN level designates potentially harmful situations. This is if CG can't find all the informa-
tion required and has to make something up.

• The INFO level designates informational messages that highlight the progress of the application at
coarse-grained level. This typically involves creating modules, subsystems, and singletons, loading
and saving of files, imported files, opening and closing files.

• The DEBUG Level designates fine-grained informational events that are most useful to debug an ap-
plication. This could be everything happening within the application.

This list is ordered according to the priority of these logging entries i.e. if logging on level WARN is en-
abled for a particular class/package, all logging entries that belong to the above levels ERROR and
FATAL are logged as well.

For performance reasons, it is advised to do a check before frequently passed DEBUG and INFO log4j
messages (see Example 5.3, “Improving on speed/performance”). The purpose of this test is to avoid the
creation of the argument.

5.14.2. How to Create Log Entries...
You should not use System.out.println in ArgoUML Java Code. The only exception of this rule
is for output in non-GUI mode like to print the usage message in Main.java.

To make log entries from within your own classes, you just need to follow the three steps below:

1. Import the org.apache.log4j.Logger class

2. Get a Logger

3. Start Logging...
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Example 5.2. For log4j version 1.2.x

import org.apache.log4j.Logger;
...
public class theClass {
...

private static final Logger LOG =
Logger.getLogger(theClass.class);

...

public void anExample() {
LOG.debug("This is a debug message.");
LOG.info("This is a info message.");
LOG.warn("This is a warning.");
LOG.error("This is an error.");
LOG.fatal("This is fatal. The program stops now working...");

}

Notice that we in the ArgoUML project have decided to have all loggers private static final with a static
initializer. The reason for making them private is that this reduces the coupling between classes i.e. there
is no risk that one class uses some other class' Logger to do logging. The reason for making them static
is that our classes are more or less all either lightweight, like a representation of an object in the model,
or a singleton. For the lightweight classes, having a reference to a logger object per object is a burden
and for the singleton objects it doesn't care if the logger is static or not. The reason for making this final
is that it shall never be modified by the class. The reason for having a static initializer is that then all
classes can do this in the same way and we don't ever risk to forgot to create the Logger.

For performance reasons, a check before the actual logging statement saves the overhead of all the con-
catenations, data conversions and temporary objects that would be created otherwise. Even if logging is
turned off for DEBUG and/or INFO level.

Example 5.3. Improving on speed/performance

if (LOG.isDebugEnabled()) {
LOG.debug("Entry number: " + i + " is " + entry[i]);

}
if (LOG.isInfoEnabled()) {

LOG.info("Entry number: " + i + " is " + entry[i]);
}

Warning

Since this has a big impact also on the readability, only use it where it is really needed (like
places passed several times per second or hundreds of times for every key the user
presses).

For more information go to the log4j homepage at http://jakarta.apache.org/log4j
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[http://jakarta.apache.org/log4j/].

5.14.2.1. Reasoning around the performance issues

Most of the log statements passed in ArgoUML are passed with logging turned off. This means that the
only thing log4j should do is to determine that logging is off and return. Log4j has a really quick al-
gorithm to determine if logging is on for a certain level so that is not a problem.

The problem is instead explained by noticing the following log statement:

int i;
...

LOG.debug("Entry number: " + i + " is " + entry[i]);

It is quite innocent looking isn't it? Well that is because the java compiler is very helpful when it comes
to handling strings and will convert it to the equivalent of:

StringBuffer sb = new StringBuffer();
sb.append("Entry number: ");
sb.append(i);
sb.append(" is ");
sb.append(entry[i].toString());
LOG.debug(sb.toString());

If the entry[i] is some object with a lot of calculations when toString() is called and the logging state-
ment is passed often some action needs to be taken. If the toString() methods are simple you are still
stuck with the overhead of creating a StringBuffer (and a String from the
sb.toString()-statement.

5.14.3. How to Enable Logging...
log4j uses the command line parameter -Dlog4j.configuration = URL to configure itself
where URL points to the location of your log4j configuration file.

Example 5.4. Various URLs

org/argouml/resource/filename.lcf

http://localhost/shared/argouml/filename.lcf

file://home/username/filename.lcf

Reference to a configuration file filename.lcf within argouml.jar.
Reference to a configuration file filename.lcf on a remote server/localhost.
Reference to a configuration file filename.lcf on your localmachine.
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5.14.3.1. ...when running ArgoUML from the command line

There are currently two possibilities of running ArgoUML from the command line:

1. Run ArgoUML using argouml.jar

2. Run ArgoUML using the ant script

In the first case, the configuration file is specified directly on the command line, whereas in the latter
case this parameter is specified in the build.xml (which in that case needs to be modified).
ArgoUML is then started as usual with ./build run.

Example 5.5. Command Line for argouml.jar

[localhost:~] billy% java -Dlog4j.configuration=URL -jar argouml.jar

Example 5.6. Modification of build.xml

<!-- =================================================================== -->
<!-- Run ArgoUML from compiled sources -->
<!-- =================================================================== -->
<target name="run" depends="compile">

<echo message="--- Executing ${Name} ---"/>
<!-- Uncomment the sysproperty and change the value if you want -->
<java classname="org.argouml.application.Main"

fork="yes"
classpath="${build.dest};${classpath}">
< sysproperty key="log4j.configuration"

value="org/argouml/resource/filename.lcf"></sysproperty>
</java>

</target>

5.14.3.2. ...when running ArgoUML from WebStart

To view the console output, the WebStart user has to set Enable Java Console in the Java Web-
Start preferences. In the same dialog, there is also an option to save the Console Output to a file.

As you cannot provide any userspecific parameters to a WebStart Application from within WebStart, it
is currently not possible to choose log4j configuration when running ArgoUML from Java Web Start.

5.14.3.3. ...when running ArgoUML from NetBeans

At the time of writing this paragraph, it is not possible to set the logging configuration file on a per
project basis in NetBeans. Instead, the Global Options of [Debbuging and Execution/Execution Types/
External Execution/External Process] need to be changed.
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Example 5.7. External Execution Property (Arguments)

-cp {filesystems}{:}{classpath}{:}{library} -Dlog4j.configuration=URL
{classname} {arguments}

5.14.4. How to Customize Logging...
There are some sample configuration files provided in org.argouml.resource. Modify these ac-
cording to your needs. Or alternatively, you can try configLog4j [http://www.japhy.de/configLog4j] to
assist yourself in creating a log4j configuration file.

5.14.5. References

• The log4j project homepage at http://jakarta.apache.org/log4j [http://jakarta.apache.org/log4j/]

• The configlog4j homepage at http://www.japhy.de/configLog4j [http://www.japhy.de/configLog4j/]

5.15. JRE with utils
Purpose - to provide the infrastructure to run everything.

The JRE is an infrastructure subsystem. See Section 4.4, “Model subsystems”. It is not distributed with
ArgoUML but considered to be a precondition in the same respect as the user's host.

This is a Java3 JRE so swing and awt can be used together with reflection.

5.16. To do items
Purpose - To keep track of the To do items. Items are generated and removed automatically by the crit-
ics. They could also be created by other means.

The To do items are located in org.argouml.?

The To do items is a Model subsystem. See Section 4.4, “Model subsystems”.

5.17. Explorer
Purpose - to provide tree views of the model elements, diagrams and other objects. Note: the Explorer
used to be called the Navigator.

The Explorer is located in org.argouml.ui.explorer and sub-packages.

The Explorer is a Layer 2 subsystem. See Section 4.5, “View and Control subsystems”.

5.17.1. Requirements
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The Explorer must react to user and application events.

User events include

• R1: selection of a node, which must notify the other views to make the same selection.
• R2: right click on a node, which brings up a pop-up menu.
• R3: selection of another perspective in the Combo box, which must change the explorer to that per-

spective. A perspective provides a different view of the model that will focus on one or other part of
the model.

• R4: node expansion and collapse.
• R5: It is possible to drag name-space nodes on to other name-space nodes. Dropping a name-space

node onto another, will, if the destination name-space is a valid one, update the explorer and model.
• R6: sorting of nodes with a particular Ordering. [an ordering is a comparator that orders child nodes

in the explorer, e.g. by name and/or type].
• R7: copy diagram to clipboard functionality for windows/java 1.4 users.
• R8: tool-tip showing node name and type.
• R9: standard multiple discontinuous selection with mouse and keyboard.
• R10: the user can configure the perspectives using a dialog. Perspectives can be added, deleted, re-

named, reordered and duplicated. Perspective rules can be added and removed from a perspective.
The changes are saved to the user properties. If there are user perspectives when ArgoUML starts, it
loads these, otherwise it loads a default set of perspectives.

Application events include

• R11: change in selection in another view, any relevant rows to be highlighted.
• R12: the UML model changes, the tree must update to reflect additions/deletions and name changes

in the model.
• R13: change of project, the tree must update. the root node should be expanded with the default dia-

gram selected.

5.17.2. Public APIs and SPIs
The Explorer Subsystem provides/will provide the following APIs:

• API1: Addition / Removal of a Perspective from the PerspectiveManager. Status: implemented
• API2: Addition / Removal of a Perspective Rule from a Perspective. Status: implemented
• API3: Selection of the Perspective to be displayed by the Explorer. Status: not implemented
• API4: Selection of Ordering for Explorer nodes. [an Ordering is a comparator that orders child nodes

in the Explorer] Status: not implemented

The Explorer Subsystem provides/will provide the following SPIs:

• SPI1: Configurable Node pop-up menu. Status: not implemented
• SPI2: New PerspectiveRules can be defined and registered with the 'library' of available rules.

Status: not implemented
• SPI3: New Orderings can be defined and registered with the available orderings. [an ordering is a

comparator that orders child nodes in the explorer] Status: not implemented

The APIs collectively represent the Explorer subsystem facade and the SPIs represent plug-ins.

5.17.3. Details of the Explorer Implementation
The Explorer is currently shown in the Explorer Pane (org.argouml.ui.NavigatorPane) - the
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upper left hand pane of ArgoUML.

Except for the Explorer Pane, The Explorer is located in org.argouml.ui.explorer.*. The explorer has
been refactored since version 0.15.2 so that it has a slightly more standard Java Swing implementation.

The explorer perspectives provide the different views of the project. They are implemented by sets of
PerspectiveRules that get the child nodes for any parent node in the tree.

The Explorer has 3 main subcomponents: a customized JTree, a customized TreeModel and an interface
for generating child nodes in the tree which forms the tree Perspective.

1. The JTree (org.argouml.ui.explorer.ExplorerTree) has been customized to maintain consistent se-
lection state with the other model views. It provides a pop up menu (ExplorerPopup) for perform-
ing actions on specific model elements. There is specific functionality in DnDExplorerTree for
Drag and drop, and in ExportExplorer for copy diagram to clipboard.

2. The TreeModel is a customized DefaultTreeModel that listens to changes in the UML model. The
JTree builds the tree model as the user expands nodes, this minimizes the size of the model to those
part that the user is interested in. The TreeModel contains custom DefaultMutableTreeNodes, Ex-
plorerTreeNodes, that maintain their own order on child nodes; this will typically be an alphabetic-
al order on the model element names. However, it could be enhanced to include more powerful or-
ders like total subtree size.

3. The model uses the third part of the Explorer design, PerspectiveRules, to add child nodes to the
leaves of the tree. The structure of the tree is wholly dependent on the collection of PerspectiveR-
ules that together provide a specialized view of the UML model. This is very flexible and extens-
ible. The org.argouml.ui.explorer.rules package contains a default set of PerspectiveRules.

Each node is displayed with a name and an Icon, representing the type of node it is in the UML model.
This is done using the org.argouml.uml.ui.UMLTreeRenderer (for the Icon), and the text is
produced in the convertValueToText(...) method in
org.argouml.ui.explorer.ExplorerTree.

5.17.4. How do I ...?

• ...add another perspective?

• The perspectives can be configured using the
org.argouml.ui.explorer.PerspectiveConfigurator by the User. The changes
to the pre-defined built-in defaults are stored in the argo.user.properties file.
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• If you want to do this as part of an extension to ArgoUML then you should use (see above) APIs
1,2 and 3, and SPI 2. The functions needed are present in the PerspectiveManager.

• ...improve the PopUp menu?

There is no way of doing this currently without modifying the core of ArgoUML. You could use
SPI1 when it gets implemented.

• ...extend the Explorer in other ways?

The best way is to use the above APIs/SPIs; if they are not implemented then it would be best to im-
plement them and feedback your improvements to the ArgoUML project so that your code works on
a recognized public API that will be maintained in the future.

• ...add new rules for new model elements?

You should create a GoRule/PerspectiveRule in

org/argouml/ui/explorer/rules

. There are plenty of examples to look at. The important things to get right is of course that:

• you return the right children

• return the objects that the TreeModel must listen to to know when to update the node (and the list
of immediate children) After that you must register your GoRule in org/
argouml/ui/explorer/PerspectiveManager

• add it to the list in loadRules()

• perhaps add it to some of the default perspectives in oldLoadDefaultPerspectives(), I guess And
then I think it should just be a matter of recompiling and possibly switching to the perspective
you added your rule to.

• ...tell the explorer to refresh?

You are not supposed to. The TreeModel is supposed to listen to events and refresh affected parts.
And this is where the lack of events for adding diagrams creates a problem.

Obviously it would be possible to add an operation somewhere to revalidate the expanded parts of
the Explorer, but I'm not aware of the existence of such an operation today.

• ...navigate programmatically to a certain explorer element so that its path is exploded?

In general you can't. The Explorer tree is lazy in that it only explores the parts of the tree that the
user has opened. And since the GoRules are general navigating to them would require a complete
tree search. Which is also complicated by the fact that the answer is not unique and there can be
branches with infinite depth.

In reality it would be possible to create an algorithm to search out one occurrence of an element
(since the model only contains finitely many elements and I assume that no-one will add go rules
that add branches of infinite length that does not infinitely often contain elements from the model),
but I don't think anyone has don't it. Obviously finding all occurrences cannot be done.

5.18. Module loader
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Purpose - to provide the mechanisms to load (and unload) the auxiliary modules.

The Module loader is located in org.argouml.moduleloader.

An old module loader is located in org.argouml.application.modules.ModuleLoader
with interfaces (Pluggable) in org.argouml.application.api. Eventually this will be removed.

It is the modules' responsibility to connect and register to the subsystem or subsystems it is going to
work with using that subsystem's API, Facade, or Plug-in interface.

For details on how to build a module see Section 6.2, “Modules and PlugIns”.

5.18.1. What the ModuleLoader does
The ModuleLoader is looking for module jars. It actually scans through all jars available in the ext dir-
ectory. See Edit Settings Environment tab. If you turn on logging on the debug level while running
ArgoUML you should be able to see what jar files it finds and what it does with them.

A module jar contains the classes, resources and a manifest file. The manifest file points out the class to
be loaded. Also notice that the Specification-Title and Vendor must be specified correctly for this to
work.

5.18.2. Design of the new Module Loader
The plan is to implement this new Module Loader, then have them both working side by side for several
releases (two stable releases), and if we all are happy with it, then remove the old module loader.

Design:

• We use a Loadable Proxy Pattern(?) for the modules.

• Each module can be enabled and disabled individually. Dependencies between modules is allowed
although not yet handled gracefully.

• Each module is required to have one (1) class that implements ModuleInterface. That class
(and all other classes that constitute the module) needs to be made available for some class loader,
either by including it in the classpath or by letting the module loader hunt for it.

• The modules are allowed to use all the APIs available from all the subsystems within ArgoUML and
from other modules.

This is a big improvement over the old module loader in that:

• We use the same APIs for the modules that we use within ArgoUML meaning that we implement
at document it only once. This replaces the Pluggable class at every point where ArgoUML can
be augmented.

• We can have the module have different classes to register at different parts of ArgoUML.

• We can have dynamic registrations that the module add and remove over time depending on
some criteria that the module decides.

• We don't need to search through all modules at every possible point where ArgoUML can be
augmented.

Just as in the old solution, whenever a module needs to do something to ArgoUML, there needs to be
implemented an API, possibly with registration/deregistration and callbacks.
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• All modules that can be found are examined at startup. They can be enabled and disabled individu-
ally from a special available modules window but have a default state that applies if the user hasn't
taken action. Currently the default state is "enabled".

• Dependency between modules!

If a module cannot be enabled because some other module needs to be enabled first or because some
part of ArgoUML needs to be initialized first this is a problem. This is because the initial implement-
ation is such that we have no register of dependencies.

The solution suggested is that the module loader persists in it's attempts to enable a module so that
the order among the modules is not important. For this to work the modules needs to signal when
they fail. This is done by returning false or throwing a Exception from the module enabling method.

The module loader also provides an API that the well-behaving modules can use to test if the mod-
ules they depend on are enabled. The less well-behaving module can just throw an exception when
they fail to enable themselves properly.

If a module cannot be disabled, because some other module depends on it then this is signaled by re-
turning false from the disabling method.

• Where modules are loaded from?

The modules are loaded from the same places as in the old module loader. They can be internally i.e.
available in the core jar file of ArgoUML, from the ext directory, or if running from JavaWebStart,
they can be downloaded from the site.

To reduce the complexity of the downloads, let's use it in the simplest possible way: organize each
module in a package and a jar file, have the jnlp-file list that jar file as a part and a package entry
listing the classes, have a file listing optional classes and a GUI that allows the user to download
them. Once a class is selected in the GUI it is loaded and, the JavaWebStart class loader will guaran-
tee that it is available.

• The scope of the modules.

Modules are always enabled and disabled on a per-application (per jvm) basis and not on a per-
project or per-frame basis.

5.19. OCL
Purpose - To allow for editing of strings in the OCL language.

The OCL is located in org.argouml.ocl.

The OCL is a Layer 3 subsystem. See Section 4.6, “Loadable subsystems”.

The OCL editor GUI interface is org.argouml.uml.ui.TabConstraints (shown in the bottom
right hand panel - details panel).

org.argouml.ocl.ArgoFacade adapts the tudresden.ocl.gui.OCLEditor for
ArgoUML. There are some other helper classes in org.argouml.ocl, with names beginning with
OCL but they are used for other purposes. Historically GEF uses OCL as a kind of template language to
convert the UML diagrams to pgml(and back again), it doesn't have anything to do with OCL constraints
in your UML model.

ArgoFacade is reused by GeneratorJava and TabConstraints.
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Currently this subsystem is more or less only Dresden OCL Toolkit and adaptation.

Because of a problem with the interpretation of the UML specification and the OCL specification, the
implementation of constraints in ArgoUML is only possible for Classes, Interfaces and Features
(Attributes and Operations). See Issue 1805 [http://argouml.tigris.org/issues/show_bug.cgi?id=1805].
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Chapter 6. Extending ArgoUML
This section explains some general concepts which come in handy, when developing additions to
ArgoUML.

Warning

There are two module loading mechanisms, "the old one", and "the new one". This is so
because we have made a change of the design used for this in order to simplify the writing
of modules.

Eventually "the old module loader" will be removed so for all new additions, the new mod-
ule loader shall be used.

6.1. How do I ...?

• ...get the according NS-UML element for a given FigXXX class?

Each FigXXX implements the method getOwner() which returns the appropriate owner element
which is responsible for this Fig element.

• ...get the according Fig element for a given MModelElement?

for this one needs to iterate through all fig elements and invoke getOwner. Compare the result with
the given MModelElement. Beware that there might be more than one Fig Element per
MModelElement.

6.2. Modules and PlugIns
The ArgoUML tool provides a basis for UML design and potentially an executable architecture environ-
ment for more specialized applications. This is solved by a clear interfaces between the ArgoUML core
and the extensions. Extensions are called modules.

6.2.1. Differences between modules and plugins

Note

This description is only relevant for the old moduleloader since the plugins concept is not
used in the new one.

In the old moduleloader implementation the classes within the modules that attach to ArgoUML core are
called plugins. In the new moduleloader implementation they don't have any special name.

• Modules

A module is a collection of classes and resource files that can be enabled and disabled in ArgoUML.
Currently this is decided by the modules' availability when ArgoUML starts but in the future it could
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be made possible to enable modules from within a running ArgoUML.

This module system is the extension capability to the ArgoUML tool. It will give developers of
ArgoUML and developers of applications running within the ArgoUML architecture the ability to
add additional functionality to the ArgoUML environment without modifying the basic ArgoUML
tool. This flexibility should encourage additional open source and/or commercial involvement with
the open source UML tool.

The module extensions will load when ArgoUML starts. When the modules are loaded they have the
capability of attaching to internal ArgoUML architectural elements. Once the plugins are attached,
the plugins will receive calls at the right moment and can perform the correct action at that point.

Modules can be internal and external. The only difference is that the internal modules are part of the
argouml.jar and the external are delivered as separate jar-files.

• Plugins

Note

This description is for the old moduleloader.

A plug-in in ArgoUML is a module that implements the
org.argouml.application.api.Pluggable interface.

The Pluggable interface acts as a passive dynamic component, i.e. it provides methods to simpli-
fy the attaching of calls at the correct places. There are several Pluggable interfaces that each
simplify the addition of one kind of object. Examples PluggableMenu, PluggableNotation.

One Module can implement several Pluggable interfaces.

This is essentially and implementation of the Dynamic Linkage pattern as described in Patterns in Java
Volume 1 by Mark Grand ISBN 0-471-25839-3. The whole of ArgoUML Core is the Environment, the
classes inheriting Pluggable are the AbstractLoadableClass.

6.2.2. Modules

6.2.2.1. Module Architecture for the old implementation

The controlling class of the module/plugin extension is
org.argouml.application.modules.ModuleLoader. ModuleLoader is a singleton cre-
ated in the ArgoUML main initialization routine.

ModuleLoader will:

• read in the property file

• for each of the classes found

1. create the specified classes

2. call initializeModule on this class

3. place the class object into the internal list of modules
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6.2.2.2. The ArgoModule interface - used in the old implementation

Each class must derive from the ArgoModule interface. This interface provides the following meth-
ods:

•
String getModuleName (void);

String getModuleDescription (void);

String getModuleVersion (void);

String getModuleAuthor (void);

provides information about the ArgoUML module.

•
boolean initializeModule (void);

initializeModule is called when the class loader has created the module, and before it is ad-
ded into the modules list. initializeModule should initialize any required data and/or attach it-
self as a listener to ArgoUML actions. initializeModule for all modules is invoked after the
rest of ArgoUML has been initialized and loaded. Any menu modifications or system level resources
should already be available when the module initialization process is called.

initializeModule should return true if the initialization is successful (or if no initialization is
necessary).

The only available mechanism for handling dependencies between modules is the order in which
they are read from the file.

•
void shutdownModule (void);

The shutdownModule method is called when the module is removed. It provides each module the
capability to clean up or save any required information before being cleared from memory.

•
void setModuleEnabled (boolean tf );

boolean isModuleEnabled (void);

Reserved for future implementation.

•
Vector getModulePopUpActions (void);

Reserved for future implementation.

The plan is to have this called for each module when the module should add its entries in PopUpAc-
tions.
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•
String getModuleKey (void);

Returns a string that identifies the module.

6.2.2.3. Module Architecture for the new implementation

The controlling class for the new implementation is
org.argouml.moduleloader.ModuleLoader2. It is a singleton created when first used. It is
first used in the main initialization routine.

When created it searches through all available modules and creates a list of their main objects
(implementing ModuleInterface). Currently (September 2004) this also means that the found mod-
ules are by default selected i.e. they are marked to be enabled.

At the end of the main initialization routine the selected modules are enabled. (The original idea was to
do this several times during the main routine to allow for modules to add command line arguments, add
languages, and make functions available for batch command, but the example used for testing loaded the
ProjectBrowser "too early" and the result wasn't so good. I (Linus) hopes this can be eventually fixed.)

6.2.2.4. The ModuleInterface interface - in the new implementation

Each class used by the ModuleLoader2 must implement the ModuleInterface interface.

This interface has methods for enabling, disabling and identifying the module.

When a module is enabled it is expected to register some class wherever it affects ArgoUML using the
interfaces provided there. Since the same interfaces and registration mechanism is used internally within
ArgoUML there is a small likelyhood that there already is an interface and a possibility to register. If
there isn't, ArgoUML cannot currently be extended at that point. If you still need ArgoUML to be exten-
ded at that point you will have to work in getting this interface or registration mechanism implemented
within ArgoUML. (This could also be another module that has to be amended.)

Classes administered by the module that registers to whatever place of ArgoUML they are interested in,
does not need to have any connection to the module loader. They are written exactly as if they would
have been if they were part of the core ArgoUML.

6.2.2.5. Using Modules

When modules are used they can't be distinguished from the rest of the ArgoUML environment.

6.2.2.6. How do I ...?

• ...tell when a module is enabled?

The method isEnabled in ModuleLoader2 returns true if the module with that name is enabled
and false otherwise.

Note

This only works for modules enabled in the new module loader. For modules loaded
using the old module loader, it is not possible to determine if they are enabled.
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6.2.3. Plugins

Note

This description is for the old moduleloader.

6.2.3.1. Plugin Architecture

Each class must derive from the Pluggable interface. In addition to the methods declared in Argo-
Module, which Pluggable extends (see Section 6.2.2.2, “The ArgoModule interface - used in the old
implementation”), the interface provides the following method:

•
boolean inContext (Object[] context );

inContext allows a plug-in to decide if it is available under a specific context.

One example of a plugin with multiple criteria is the PluggableMenu. PluggableMenu requires the first
context to be a JMenuItem which wants the PluggableMenu attached to as the context, so that it can de-
termine that it would attach to a menu. The second context is an internal (non-localized) description of
the menu such as "File" or "View" so that the plugin can further decide.

6.2.3.2. How do I ...?

• ...create a pluggable settings tab?

...

• ...create a pluggable menu item?

Look at the modules junit and menutest for examples of how to add to menus using the Pluggable-
Menu interface.

The implementation of inContext() that you provide should be similar to:

public boolean inContext(Object[] o) {
if (o.length < 2) return false;
if ((o[0] instanceof JMenuItem) &&

("Create Diagrams".equals(o[1]))) {
return true;

}
return false;

}

The string "Create Diagrams" is a non-localized key string passed in ProjectLoader at about line 440
in the statement

appendPluggableMenus(_createDiagrams, "Create Diagrams");

There is no restriction on a single class implementing multiple plugins - quite the contrary, that is
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one of the reasons for providing the generic Pluggable interface that PluggableThings extend.

• ...create a pluggable notation?

...

• ...create a pluggable diagram?

Let's say we want to enable a new diagram type as a plug-in. We use the interface PluggableDiagram
that uses a method that returns an JMenuItem object:

public JMenuItem getDiagramMenuItem();

The returned menu item will be added to the diagrams menu to allow to open a new diagram of this
type.

In this example we do this by creating a helper class in the package org.argouml.application.helpers
that implements the created plug-in interface PluggableDiagram, and call it DiagramHelper:

public abstract class DiagramHelper extends ArgoDiagram
implements PluggableDiagram {

/** Default localization key for diagrams
*/
public final static String DIAGRAM_BUNDLE = "DiagramType";

/** String naming the resource bundle to use for localization.
*/
protected String _bundle = "";

public DiagramHelper() {
_bundle = getDiagramResourceBundleKey();

}

public void setModuleEnabled(boolean v) { }

public boolean initializeModule() { return true; }

public boolean inContext(Object[] o) { return true; }

public boolean isModuleEnabled() { return true; }

public Vector getModulePopUpActions(Vector v, Object o) { return null; }

public boolean shutdownModule() { return true; }

public JMenuItem getDiagramMenuItem()
{

return new JMenuItem(Argo.localize(_bundle,"diagram_type"));
}

public String getDiagramResourceBundleKey() {
return DIAGRAM_BUNDLE;

}
}

The extension of ArgoDiagram is specific to this example; the plug-in will provide a new ArgoUML
diagram.
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Important

Don't forget to do the localization stuff, because the plug-in might be used in all lan-
guages ArgoUML offers!

• ...do the localization stuff (not plug-in specific, but important)?

...

• ...create a pluggable resource bundle?

...

• ...create a new pluggable type?

1. Create the plug-ins interface

In the package org.argouml.application.api, create an interface that extends Pluggable (in
the same package). The class name must begin with 'Pluggable'.

Note

One of the main purposes of a plugin is to provide the capability to add an extern-
ally defined class that will be used by ArgoUML in the same way as a similar in-
ternal class. This means that modifications are needed all over ArgoUML in order
to call the pluggable interface. Therefore this must be done in ArgoUML itself
and cannot be done in any module.

It now inherits from ArgoModule the methods

public boolean initializeModule();

public boolean shutdownModule();

public void setModuleEnabled(boolean tf);

public boolean isModuleEnabled();

public String getModuleName();

public String getModuleDescription();

public String getModuleVersion();

public String getModuleAuthor();

public Vector getModulePopUpActions(Vector popUpActions, Object context);

public String getModuleKey();

and from Pluggable the methods

public boolean inContext(Object[] context);
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and thus provides the basic mechanism that plug-ins need.

2. Decide in what context this is to be enabled and add calls there

It is useful for those plugins which actually use context to provide a helper method

Object[] buildContext (classtype1 parameter1 , classtype2 para-
meter2 );

which will serve two purposes.

First, it will provide a simple way of creating the Object[] parameter.

Second, it helps to document the context parameters within the class itself.

Again using PluggableMenu as an example, it contains the function

public Object[] buildContext(JMenuItem parentMenuItem, String menuType);

which is used as follows:

if (module.inContext(module.buildContext(_help, "Help"))) {
_help.add(module.getMenuItem(_help, "Help"));

}

6.2.4. Tip for creating new modules (from Florent de
Lamotte)

Note

This description is for the old moduleloader.

Florent wrote a small tutorial for creating modules. It can be found on the ArgoPNO website
[http://argopno.tigris.org/documentation/argouml.html].

6.3. How are modules organized in the java
code

The previous section describes how modules and plug-ins are connected on the java level totally inde-
pendent of how they are actually linked into ArgoUML.

Within the ArgoUML project some parts of the code are for different reasons developed and kept separ-
ate from the main ArgoUML source code. These parts can be modules or plug-ins on the java level but
on the source code level they are called modules. This section describes how they are organized and how
you create such source-code modules.

6.3.1. Requirements on modules
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New modules that are added to ArgoUML shall reside in whole new packages. Either you put your mod-
ule classes in your.own.domain .your.package.name or if you want to emphasize the con-
nection to ArgoUML you can use org.argouml.your.package.name where
your.package.name is the name of your addition.

6.3.2. How do I ...?

• ...create a new source-code module.

Suggestion, copy from the menutest module as described here.

Make a copy of argouml/modules/menutest into argouml/modules/your name .

Add any jar you need to argouml/modules/your name /lib and add references to each of
the jars in argouml/modules/your name/build.xml.

Edit argouml/modules/your name /module.properties

Edit argouml/modules/your name/src/org/manifest.mf.

Reorganize the source files as necessary. Remove the directory argouml/modules/your name
/src/org/argouml/ui and create your own classes like org.argouml.your package name
in argouml/modules/your name /src/org/argouml/your package name .

• ...get Argo to use a plug-in?

Note

This description is for the old module loader.

Once you've created a jar file with a plug-in in it, you need to make sure that Argo can find the jar to
be able to execute it.

If you are using a "standard" ArgoUML source structure, then you should be able to execute build
install or ant install in the source directory of the plug-in. This will copy the jar file to the proper
directory in the main ArgoUML build target. You can test your plug-in by running build run in the
src_new directory.

If you need to install the jar "the hard way", try the following steps.

• Start up ArgoUML.

• Go to the menu Edit->Settings and look at the Environment tab. Find the entry labeled
${argo.ext.dir}. Create that directory if it does not already exist.

• Copy the plug-in jar and any other jars required by it into that directory.

• Start up ArgoUML again, and you should see the plug-in's startup banner (if it has one, of
course).
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Chapter 7. Organization of ArgoUML
documentation
Linus Tolke

This chapter describes what goes into which part of the documentation. These ideas are formulated by
Linus Tolke.

7.1. Overview
There are seven significantly different bits of documentation in the ArgoUML project. By documenta-
tion I mean some information of the product that is developed alongside the product and that has a per-
sistent value.

1. The code, variable names, class names

2. The javadoc

3. The cookbook

4. The web site in CVS

5. The manual and quick-guide

6. Help texts within the running ArgoUML

7. The FAQ

These different bits have all different purpose and audience and the purpose of this chapter is to try to
define that.

Table 7.1. Bits of documentation

Bit Audience Main purpose Contains

Source
Code

1. Other developers
that will main-
tain and improve
on the code.

2. The compiler.

Implement ArgoUML in a main-
tainable and understandable way.

See Chapter 9, Standards for cod-
ing in ArgoUML for details on
how to write the code.

Javadoc Developers writing
code that communic-
ates or in other ways
interact with this
class.

Make it easy to see what the func-
tions of every class are and how
to use them.

Description of the functions of all
classes, all public and protected
methods, variables, and constants.

Cookbook Developers writing
code, maintaining the

Make it easy to learn how
ArgoUML works and how to ex-

Instructions on how to add new
functions and behavior. Instruc-
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Bit Audience Main purpose Contains

documentation or the
web site.

tend it. Be a collection of know-
ledge around how everything is
set up. Be a store of the agreed
solution around fundamental
design decisions i.e. design de-
cisions that are so big that it is
meaningless to store them in the
javadoc. Be a collection of know-
ledge around how and why the
project makes certain decisions.

tions on how to do the chores
around maintenance (build a re-
lease, publish a release, build the
documentation part of the release,
test ArgoUML, test the docu-
mentation, ...). Agreed project
rules like what level of quality is
aimed for and description of pro-
cesses that achieves that level.

Web site
in CVS

Everyone, i.e. de-
velopers in the
project, users of the
product, people
searching for UML
tools for the purpose
of trying, testing,
evaluating, and using
the tools.

Be an entry point for the other
parts of the documentation. Be
the main download area for the
ArgoUML product. Be the central
point of the ArgoUML user com-
munity. Be the central point of
the ArgoUML development
project.

References to all the other parts
of the documentation. Current
project information like the con-
tents of the upcoming releases
and the plan for the nearest future.
Easy access illustration for users
to be. Some illustrations that do
not work well in the other parts of
the documentation. This is done
as a complement to the other
parts. Examples, tours.

Manual
and quick-
guide

Users of ArgoUML.
Persons that want to
evaluate ArgoUML
for the purpose of
starting to use it. Per-
sons that are training
to use UML and
ArgoUML.

Describe how ArgoUML is in-
stalled and used. Describe how
UML is used with ArgoUML.

Complete installation instructions
for all supported installation
schemes. Complete description on
how to use ArgoUML in your
project. Complete reference on
how to use ArgoUML.

Help text
in
ArgoUML

Users of ArgoUML. Give a quick help with a specific
feature or button. Give short ex-
planations of all commands and
actions.

A complete set of quick help and
explanations.

FAQ Users of ArgoUML.
Members of the users
mailing list.

Cope for shortcomings in
ArgoUML, the help text, the
Manual and quick-guide and the
web site.

A list of issues that are not ad-
dressed in the other part of the
documentation. It is written in
questions-answers-format and the
contents is governed by the issues
discussed recently in the user
community.

The Cookbook, the User Manual, and the Quick Guide, are all written in docbook and generated into
HTML and PDF during deployment. See Chapter 10, Standards For Documentation Writing for details
on how to write these.

7.2. User Manual Plans
The User Manual is a very separate part of the ArgoUML project. It is independent of the rest of the
project w.r.t. updates, deliveries, ambition and plans. The development of the User Manual is more or
less a project of its own. Since autumn 2003 we also have an appointed sub project leader for this. This
Responsibility is called Editor for the User Manual and Quick Guide and is held by Michiel van der
Wulp.
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This section describes the ambition and plans for the User Manual.

7.2.1. Target Audiences for the User Manual
Target audiences are the following:

• Experienced users of UML in OOA&D (perhaps with other tools) who wish to transfer to
ArgoUML.

• Designers who know OOA&D, and wish to adopt a UML based process.

In the longer term it would be desirable to also target the following.

• Those who are learning design and wish to start with a UML based OOA&D process.

• People interested in modularized code design with a GUI.

7.2.2. Goals for the User Manual
The goals are (in priority order):

1. A tutorial style explanation of ArgoUML in the context of an OOA&D process.

2. Descriptive reference material on all components of ArgoUML

3. Keep boundaries clearly defined, to avoid duplication with the Cookbook, FAQ, Quick Guide, on-
line help etc.

I (probably Jeremy Bennet in 2002?) think the existing User Manual is a good start particularly towards
the second of these goals.

7.2.2.1. What the User Manual is not (currently)

To keep the effort feasible the user manual should avoid the following (at least initially).

• Providing a quick overview—the Quick Guide already does this.

• Listing all the errors and what they mean. The help system does this—one day the manual will link
to that.

• Explaining the internal workings of ArgoUML. The cookbook, combined with Jason Robbins disser-
tation is already a good start for this.

7.2.3. Suggested Manual Structure
Here are my (Jeremy Bennet, 2002?) thoughts. I think the user manual is really a set of two books, the
tutorial manual (corresponding to Part I of the current manual), and the reference manual (Part II of the
current manual)
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I (Jeremy Bennet, 2002?) suggest that the tutorial book be based around an OOA&D process (any pref-
erences), and that each UML concept is introduced with each step of the process, followed by an explan-
ation of how to do it under ArgoUML. A simplecase study will be needed throughout.

7.2.3.1. Tutorial Manual Structure

1. Introduction

a. Origins and overview of ArgoUML

b. Scope of the User Manual. Include cross-reference to other documentation (Cookbook, FAQ,
Quick Guide, on-line help, ArgoUML website etc).

c. Overview of the User Manual. Explains that ArgoUML will be explained in the context of an
OOA&D process, and with an example running through.

d. Assumptions. At this stage assume the user knows OOA&D, but not UML.

2. UML Based OOA&D

a. Background to UML—what it is, history etc.

b. UML based processes for OOA&D

c. ArgoUML Basics—projects, drawing, exploring, details

d. What ArgoUML has that other tools are missing (critics, to-do list, based in cognitive psycho-
logy theory).

e. The Case Study

3. Requirements Capture

a. Use Case Diagrams (this section will be relatively large, because its the first time we use
ArgoUML to create something).

4. Analysis

a. Concept Class Diagrams

b. System Sequence Charts and Collaboration Diagrams

c. System State-chart Diagrams

5. Design

a. Class Diagrams for Realization

b. Sequence Charts and Collaboration Diagrams for Realization

c. State-chart Diagrams for realization

d. Package Diagrams

6. Build

a. Deployment Diagrams
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b. Code Generation in ArgoUML

7.2.3.2. Reference Manual Structure

1. Material on each of the diagram types, each of the artifacts that can appear on the diagrams and de-
tails of the features of each artifact type.

2. An Index

7.2.4. Actions, Priorities and Questions
This section has two serious problems. Firstly, I (Linus Tolke, 2004) think Jeremy Bennet wrote this and
then started and has completed a lot of the items so they could be checked off. Secondly, keeping this
list in a docbook document is not a good idea. It is better to make issues in Issuezilla of it that can be in-
dividually closed. I (Linus Tolke 2004) will make issues of the things I think are left to be done and re-
move this section (unless someone beats me to it).

7.2.4.1. Actions and priorities

Here's my first call for what needs to be done in priority order. From the comments made over the last
few days I think the first 5 items won't take very long, meaning effort can concentrate on the main stuff.

1. Get buy-in for the approach. (Completed)

2. Agree document structure (broadly). (Completed)

3. Choose a suitable example to run throughout.

4. Break into several files (XML entities) to make the manual more manageable. (Completed)

5. Identify all existing sources of material to be reused

6. Get writing! I (Jeremy Bennet 2002?) suggest the priorities here are:

a. User Manual sections relating to ArgoUML diagrams and artifacts (assume the reader knows
UML already, and allows a quick advance by pulling together a lot of existing material).

b. User Manual examples

c. User Manual sections relating to additional ArgoUML cognitive design features.

d. User Manual sections relating to UML (for readers who don't know UML).

e. Completion of Reference Manual material.

7. Create an index. (Completed)

7.2.4.2. Remaining Questions

1. The current manual shows copyright held by Phillipe, and no legal notice. What is the position of
this material? (Solved)
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Chapter 8. CVS in the ArgoUML project
The CVS repository is a shared resource in the project. This means that once you commit your stuff it
has the potential of getting in the way of everybody else's work in the project. For this reason special
considerations are needed. This chapter describes the how you should do to limit the risk of causing
someone else problems.

8.1. How to work against the CVS repository
When you have done all the work, and all the testing and are about to commit something please do:

1. Compile ArgoUML (build run or build package).

This goes for all changes, even changes in comments.

2. If your changes include removing files make a clean compile. (build clean followed by build run
or build package).

3. If your changes include removing public or protected operations and attributes make a clean com-
pile (build clean followed by build run or build package).

The build mechanism does not yet have reliable dependency checker enabled so this is the best way
to make sure.

4. If your changes include adding abstract operations make a clean compile (build clean followed by
build run or build package).

The build mechanism does not yet have reliable dependency checker enabled so this is the best way
to make sure.

5. If you have changed anything that has the potential of affecting something in a totally different part
of the code like internal data structure, handling of exceptions, run all JUnit test cases and start the
tool and do some more testing.

If in doubt, run all JUnit test cases.

6. Do a cvs update in src_new to make sure that you do not forget to commit any file and to make
sure that no one else has committed anything in the mean time.

Remember that if you do not commit all the files from src_new that cvs update found (marked A,
R, and M) in the same commit then you would better remove those file from the checked out copy,
update to get the original version from the repository and start over with the compilation.

If someone else have updated a file (cvs update shown U, or no longer pertinent) please compile
again.

7. Commit all files that are included in a change at the same time.

This reduces the chance of anyone getting an inconsistent set of files by updating in the middle of
your commit.

8. Commit often.

Remember that the repository is also a backup copy of your work.

If your change is so big and involves so many files that you would like to commit it for backup
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reasons but it doesn't compile or doesn't work or for some other reason should not confuse the main
branch in CVS, create a branch to work in. Then when your work is complete, you merge the
branch into the main branch.

Rationale: These ground rules is for the purpose of not stopping or hindering the work for anyone. Re-
member that there might be several developers working with different agendas and different efficiency
(slower or faster) and the commits is the melting point of this.

Perspective: If this will take you an extra two minutes before every commit remember that if you com-
mit something that will not work this will take everyone else (guess 10 persons) the extra time of look-
ing at the compilation error or see the tool crash (1 minute), wonder why (1 minute), search for the error
in his own changes (3 minutes), search for the error somewhere else (1 minute), glance at the mailing list
to see if someone else has noticed this and send a mail (1 minute), wait for some response (1 hour wait),
update (1 minute), compile (1 minute). This amounts to 10 hours wait and 1.5 hours extra work for all
developers in the project.

8.2. Creating and using branches
We use the following standards in ArgoUML:

• Released versions get the tag VERSION_X_X_X

• Developers working on code, with an unspecified due date are requested to put the code into a
branch if it is deemed useful that the code can be shared. Developer branches follow the scheme:
work_explanation_owner , where

• work is a literal

• explanation is something like javahelp, propertypanel, cppcodegeneration

• owner is a self explaining code for the owner of the branch, e.g. tlach (Thierry Lach) or mkl
(Markus Klink).

Merging branches together is causing some work. So please use them sparingly and announce your in-
tentions before on the mailing list.

1. How do I ...?

• ...commit stuff?

You have made, the change, tested it and are satisfied with it.

Do a cvs update -d and see that only the files you have changed are marked as modified. If files are
updated or patched by this command, please recompile and test again.

Do a cvs diff on each of the files and verify that only the lines you have changed are modified.

Do a single cvs commit for all the files included in the change. This reduces the risk that someone
else updates in the middle of your work and also reduces the amount of notifications of commits sent
out. Include changes to documentation and JUnit tests if applicable.
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Don't forget to update the corresponding issue (if any) in Issuezilla i.e. set it to RESOLVED/FIXED.

• ...get my update or patch into CVS if I don't have CVS write rights?

Contact any of the active developers on the list and send them your updates. They're very nice about
it the first few times.

Supposing that you have checked out CVS as guest, then after you have mailed a diff or file to an
active developer, and he has entered it in CVS your checked out copy contains the change but is not
in sync and the next cvs update will result in an merge error. The simplest way to solve this is to do
remove all files modified by you before doing the cvs update. The cvs update will restore all the
files from the CVS repository and you can start with the next update.

• ...get a list of the currently active working branches?

You can't from CVS. You need to follow the announcements of created and discontinued branches
on the mailing list to know what branches are interesting.

• ...create a branch for my work on xxxyyy and start work on that branch?

This assumes that you have a checked out copy of ArgoUML

1. Change directory to the directory where ArgoUML is checked out.

2. Enter the argouml directory: cd argouml or chdir argouml

3. Create your branch: cvs tag -b work_xxxyyy_myname

myname is is a self explaining code for you (your Tigris login).

4. Change your checked out copy to be on the branch: cvs update -r work_xxxyyy_myname

5. Do your work!

6. Check in your changes in the branch: cvs commit -m'Blablabla' [file]

7. Continue working and checking in!

• ...move my work from my working branch into the release?

This is done when your work with the feature xxxyyy is finished and you have decided/received
clearance to enter it in the main branch.

1. Change directory to the directory where ArgoUML is checked out.

If you are just working on one feature at a time this is the place where you have a checked out
copy on the branch in question. If not, this could be any checked out copy of the source that
does not contain any uncommitted changes.

2. Enter the argouml directory: cd argouml or chdir argouml

3. Move the checked out copy that you are working on to the main branch: cvs update -A

4. Merge the changes from the branch into your checked out copy: cvs update -j
work_xxxyyy_myname

5. Compile and run all your tests again.

This is to verify that the merge was all right, no one else had done any changes that in the
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meantime that has in any way modified the work made in the branch.

6. Commit your changes in the main branch: cvs commit -m'xxxyyy entered in the
main branch

7. Discontinue your branch!

From this point on it is important that you do not reuse your branch for any work. Only check it
out for the purpose of examining how things were in the branch. Make sure that all other de-
velopers that have been looking at your branch also knows that it is discontinued.

• ...look at someone else's work in a branch?

You need the name of the branch, i.e. the work_xxxyyy_hisname.

There are two alternatives:

• Check out ArgoUML or part of it on that branch: cvs co -r work_xxxyyy_hisname argouml

• Update your copy of ArgoUML to be on that branch: cvs update -r work_xxxyyy_hisname

Make sure that your copy does not have any uncommitted code or else your uncommitted code
will be present in your checked out copy on the branch. This could, on the other hand, be useful
if you want to test if your uncommitted code works also with the additions on that branch.

8.3. Other CVS comments
This is included in the cookbook because it seems that there are persons within the project that don't
have the in-depth knowledge of CVS nor the interest or need to acquire it. For that reason some simple
questions are answered here for use of CVS in the project.

• Why do I get double lines? Why do I get ^M at the end of each line? Why do I get the whole
checked out file on a single line?

CVS is line oriented. It stores in the repository the concept of a new line after each line. It is the
CVS clients (the program you have installed on you machine) responsibility to convert the conceptu-
al new line to the correct new line character on your system.

Note

This is only so for normal files (not marked with -kb in CVS).

If files are moved from one system to another or for that matter checked out on one system and used
and edited on another (NFS, SMB, ...) this is not done correctly. There could also be CVS clients out
there, not doing this correctly.

Systems known to the author (Linus Tolke) are Unix uses LF, DOS/Windows uses CR-LF, Mac uses
CR.

Most of the time this really doesn't matter because the editors and java compiler on all systems are
very forgiving.

There are however some cases when this is cumbersome.
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1. When an editor (or developer) decides to "fix-it".

This means that the editor (or the developer) goes through the file and removes ^M on every
line or something else that touches every line in the file.

This is a problem because the subsequent commit will also touch every line in the file making
that file unmergeable. This means that every developer that had it modified in a branch or in a
checked out copy will have no help from CVS when doing his merging.

Remember that you never know what other developers are working with.

This is fixed by not doing any such fixes and doing a cvs diff before each check in so that your
editor has not done this for you.

2. When CVS clients and file systems are not in sync

This could result in one of several things. Either each line gets an extra empty line when com-
mitted, or the whole file turns out to be on the same line.

This is the case on several files in the repository at the moment (August 2002, Linus) and can
be cumbersome for the developers.

These cases should be fixed because the files are no longer readable. For the first case, remov-
ing every other line (the empty ones) can in some cases be done without CVS having problems
with merging later on. For the second case, with a single long line, this will be very problematic
so even though it might cause problems for other developers it is better to do this as soon as
possible.

When this is fixed, let the fix be the only thing done in that commit.

To avoid this in the future, always do a cvs diff before doing your change to make sure that
only the lines that you have actually modified will be changed by CVS and not the whole file.

Files that are binary that shall be stored in CVS shall be marked as binary. They are marked with the
admin flag -kb. This means that the line ending conversion mechanism will not be applied on those
files and they will be exactly the same on all systems. This is good for jars, GIFs, and other such
files.

8.4. CVS repository contents
This chapter describes what parts of the CVS repository is used for what purpose. This is a rather terse
collection. Further details on specific parts can sometimes be found elsewhere in this document.

This chapter is organized as the CVS repository itself and everything is in alphabetical order.

This is what the main argouml project looks like:

• build

Directory where the built things end up.

There is actually no real need to keep this in CVS. It is there just as a place holder.

• conf
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Not used. Empty.

• documentation

Directory where the source of the documentation is.

• cookbook

XML-source code for this cookbook.

• docbook-setup

XML Tools and configuration files used for the formatting of the documentation from the XML-
source to HTML and PDF.

• images

Pictures for all documents are collected here.

• javahelp

Not used. Empty.

• manual

XML-source code for the User Manual.

• quick-guide

XML-source code for the Quick Guide.

• extra

Not used. Empty.

• lib

A set of jar files.

This directory contains the jar files of products shipped with ArgoUML (such as log4j, NSUML).

These are distributed with ArgoUML and have licenses that allow this. For clarity the README
files and licenses and other distribution details of each used jar will also be stored in this directory.
(Quick summary: BSD License, Apache License, LGPL are OK, GPL is not.) Don't forget to arrange
for the modules version and license information to appear when starting ArgoUML and in the About
box.

Take care also to make the versions of these libraries explicit, so as to allow people building from
sources to figure out exact dependencies. Easiest way is to rename the files to include version in-
formations, the same way as shared libraries in Unix world: foo-x.y.z.jar, bar-x.y.z.jar, etc...

When separating ArgoUML into modules, the jar files connected to a specific module is instead
stored together with the module.

• modules

Contains source level modules of ArgoUML.

Source level modules are modules that can be compiled and deployed independently (after) the rest
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of ArgoUML. Each module is located in its own subdirectory. This is the list as it looks now (March
2003).

• jscheme

Module that allows to extend ArgoUML using scheme.

• junit

Old directory with JUnit tests. These should be migrated to and all new JUnit tests should be cre-
ated in the directory tests.

• menutest

Test module that tests the plug-in interface for the menus.

• php

Language generating, Notation and reverse engineering for PHP.

• cpp

Code generation for C++.

• csharp

Code generation for C#.

This is now moved to a subproject so this will eventually be removed.

• src

Source code.

This contains one directory for each subsystem within ArgoUML.

Each subsystem will have a subdirectory with the same structure:

• lib - optional

jar files with products shipped with ArgoUML.

• build.xml

The file controlling the build of that subsystem.

• src

The source code.

• tests - optional

The JUnit test cases for that subsystem.

• src_new

All source code for ArgoUML including pictures of icons.

• tests

CVS in the ArgoUML project

110



Source code for JUnit tests of everything that is in the src_new directory. See Section 2.5, “The JU-
nit test cases”.

• tools

All tools used during the build process.

Tools also have the readme files, licenses and other distribution files stored in this directory in much
the same way as the libraries in lib. However the requirement on the license is different. The tools
are never distributed with ArgoUML but merely used in the development of ArgoUML so it is
enough to have a license that does not allow distribution. (Quick summary: BSD License, Apache li-
cense, LGPL, GPL, Freeware are OK.)

• www

This is all the static contents of the web site. See Section 2.7.1, “How the ArgoUML web site
works”.

The ArgoUML subprojects are projects on Tigris that belong to the ArgoUML project. To simplify the
administration, they are all set up in a similar way and also similar to the src and modules directories.

This is what their cvs repository looks like:

• build.xml

The file controlling the build of that subsystem.

When built, the result end up in a newly created build directory.

• lib - optional

jar files with products shipped with the module in that subproject.

• src

The source code.

• tests - optional

The JUnit test cases for that subproject.

• tools - optional

Any special tools needed to build that subproject. The tools from the argouml tools directory can
also be used so this is just the new ones.

• www

The web pages for that subproject.

CVS in the ArgoUML project
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Chapter 9. Standards for coding in
ArgoUML
9.1. Rules for writing Java code

The coding style for ArgoUML is the following

• Each file starts with some header info: file, version info, copyright notice. Like this:

// $Id$
// Copyright (c) 2005 The Regents of the University of California. All
// Rights Reserved. Permission to use, copy, modify, and distribute this
// software and its documentation without fee, and without a written
// agreement is hereby granted, provided that the above copyright notice
// and this paragraph appear in all copies. This software program and
// documentation are copyrighted by The Regents of the University of
// California. The software program and documentation are supplied "AS
// IS", without any accompanying services from The Regents. The Regents
// does not warrant that the operation of the program will be
// uninterrupted or error-free. The end-user understands that the program
// was developed for research purposes and is advised not to rely
// exclusively on the program for any reason. IN NO EVENT SHALL THE
// UNIVERSITY OF CALIFORNIA BE LIABLE TO ANY PARTY FOR DIRECT, INDIRECT,
// SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING LOST PROFITS,
// ARISING OUT OF THE USE OF THIS SOFTWARE AND ITS DOCUMENTATION, EVEN IF
// THE UNIVERSITY OF CALIFORNIA HAS BEEN ADVISED OF THE POSSIBILITY OF
// SUCH DAMAGE. THE UNIVERSITY OF CALIFORNIA SPECIFICALLY DISCLAIMS ANY
// WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
// MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE SOFTWARE
// PROVIDED HEREUNDER IS ON AN "AS IS" BASIS, AND THE UNIVERSITY OF
// CALIFORNIA HAS NO OBLIGATIONS TO PROVIDE MAINTENANCE, SUPPORT,
// UPDATES, ENHANCEMENTS, OR MODIFICATIONS.

package whatever;
...

The file and version is maintained by CVS using keyword substitution. The year in the copyright no-
tice is maintained manually.

This differs from the Sun Code Conventions that requires the initial comment to be a C-style com-
ment.

This is checked by Checkstyle.

• All instance variables are private.

This is not required by the Sun Code Conventions but an additional requirement for ArgoUML.

This is checked by Checkstyle.

• Use Javadoc for each class, instance variable, and method. In general do not put comments in the
body of a method. If you are doing something complex enough to need a comment, consider break-
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ing it out into its own private commented method.

This is not required by the Sun Code Conventions but an additional requirement for ArgoUML.

This is partly checked by Checkstyle. Checkstyle does currently only warn if a Javadoc comment is
omitted for a public, protected or default visibility variable or method.

• Indicate places of future modifications with

// TODO: reason

This differs from the Sun Code Conventions that uses either XXX or FIXME depending on if it
works or not.

• Four spaces should be used as the unit of indentation. Tabs must be set exactly every 8 spaces (not 4)
and represent 2 indents.

This is exactly as it is stated in the Sun Code Conventions. It is here just for the emphasis.

This is checked by Checkstyle.

• If possible use lines shorter than 80 characters wide.

This is exactly as it is stated in the Sun Code Conventions. It is here just for the emphasis.

This is checked by Checkstyle. Checkstyle ignores three kinds of lines in this check because of the
historical use of long class names and package names. These are lines that contain
"// $Id:whatever$", import statements, and Javadoc comments with @see-tags.

• Open brace on same line (at end). Both for if/while/for and for class and functions definitions.

This is exactly as it is stated in the Sun Code Conventions. It is here just for the emphasis.

• Use deprecation when removing public and protected classes, methods and attributes.

Whenever you have a public or protected method or attribute in a class or a public class that you
want to remove, change the signature in an incompatible way, or make change visibility for you shall
always deprecate it first. After the next stable release you (or someone else) can remove it.

In the future, when the subsystems are well defined and it is clear what public or protected methods,
attributes or classes that are part of a certain subsystem's exported interface we can allow an excep-
tion to this rule for methods, attributes and classes that are not. (See Section 4.2, “Relationship of the
subsystems”.)

Write deprecation statements like this:

* @deprecated by your name in the upcoming release. Use {@link whatever}
* a complete explanation on what to do instead

This is not checked by Checkstyle.

Rationale: This is part of the "Do Simple Things"-development approach that we use in ArgoUML.
ArgoUML is a big project with lots of legacy code that we do not know exactly how it works. De-
precation shows the intent between decision to remove a method and the point where it is actually
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removed and this without breaking anything of the old code. There are also modules or plug ins that
we might know nothing about that could be loaded by some user to run within ArgoUML to add
functionality. It is for the modules and plug ins that we always save deprecated methods to the next
stable release. It makes it possible for the module developers to do work during the unstable releases
and release at the same time as ArgoUML releases its stable release.

• Don't use deprecated methods or classes.

Rationale: Deprecation is an indication that a class is to be removed. We always want to build
ArgoUML in a way that allows for future updates of everything. Using things that are on the way out
already when doing the implementation is for this reason not allowed.

Rationale 2: If you feel like you really want to use a method that is deprecated instead of the replace-
ment you should first convince the person responsible for doing the deprecation that he has made a
mistake and upgrade ArgoUML to a version of that library without that method or class deprecated.
If it is within ArgoUML discuss it with the person who actually did the deprecation or in the devel-
opment team.

Comment: There is an ongoing work (probably perpetually) to change the calls to deprecated meth-
ods and classes that has been deprecated after used in ArgoUML. This is a normal part of improving
ArgoUML. If this work is too slow it makes it impossible to upgrade to new versions of different
sub-tools. This problem is seen by "the person responsible for sourcing of the sub-tool" when actu-
ally trying to upgrade the sub-tool. (See Section 12.8, “How to relate issues to problems in sub-
products”.)

• Don't use very long package and class names.

To make the code readable, keep class names shorter than 25 chars, and have at most four levels of
packages.

Historically in the ArgoUML design, a deep package structure has been used. There are several
places in the code where the package structure is mimicking the UML hierarchy of objects resulting
in impossibly long package names like
org.argouml.model.uml.behavioralelements.collaborations.class name ,
and org.argouml.uml.ui.behavior.common_behavior.class name .

While establishing the subsystems we use a two-level approach much like the rest of the Java world.
For the subsystem API we always use: org.argouml.subsystem package name i.e. the
classes are in the subsystem's directory and all subsystems have package names that is a single level
below org.argouml. If a subsystem is really complex or will be complex w.r.t. the amount of
classes (meaning more than 50 files with classes), we create new packages with internal classes on a
single level below the subsystem package.

This is the plan for the subsystems and new classes. Don't move old classes just yet! That would cre-
ate more confusion that it would help.

• For everything else follow Code Conventions for the Java Programming Language
[http://java.sun.com/docs/codeconv/html/CodeConvTOC.doc.html] (called Sun Code Conventions)!

Some of these rules are marked with a comment that they are checked by a Checkstyle. Checkstyle is a
tool available with the ArgoUML development environment preconfigured for these rules. The current
configuration can be found in argouml/tools/checkstyle/checkstyle_argouml.xml.

To run Checkstyle run the command build checkstyle from the argouml/src_new directory. This
requires you to have checked out the directories argouml/tools, argouml/tests, and
argouml/src_new.
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The last couple of Checkstyle result are also available in the Xenofarm result.

Checkstyle will also check some of the rules from the Sun Code Conventions that are not stated here.
Furthermore Checkstyle nags about when the order of modifiers does not conform to the suggestions in
the Java Language Specification, Section 8.1.1, 8.3.1, 8.4.3.

9.2. Rules for the building process
For the build.xml files we use the following rules.

• Be careful when downloading stuff.

ArgoUML is supposed to be a self-contains development environment. Some times it is better to
have things downloaded from the ant script instead of from the CVS repository. In that case separate
the download-targets from the target that does building so that it is easy for everyone to know when
their development machine is working against the Internet and when it is not.

• Public targets shall have description. Non-public targets shall not have description (write xml com-
ments or echos instead).

• Use ant-built-ins for everything.

ArgoUML is supposed to be a self-contains development environment. If you feel tempted to use
other tools (perl, sed, nsgmls), don't! They are probably not present in all environments where we
want to run a development environment.

9.3. Checklist for using sub-products
Linus Tolke

In the ArgoUML project we use several sub-products to solve parts of the problem for us. These sub-
products are an important part of the ArgoUML tool and must be handled in a good way if ArgoUML is
going to be successful.

When this is written (March 2004) we have had problems with the discontinuance of one of the sub-
products (NSUML) and will continue to have it for well some time in the future, until we have managed
to replace it. The problem with NSUML could probably not have been foreseen or avoided if this check-
list would have been in place when NSUML was taken into the project but some more apparent risks
with sub-product candidates might be.

Here is the list of things to check in the sub-product and to discuss with yourself and maybe with the
ArgoUML development team before considering to use it in the ArgoUML project.

• License

We must be allowed to develop against, release with, distribute, and use the sub-product indefinitely
without monetary or other compensation.

Rationale: We have no money in the ArgoUML project, we don't want to have money in the
ArgoUML project. We have no organization that can enter agreements and live up to them. We don't
want to require our users to enter agreements to use ArgoUML.

• Java version

The sub-product must have a policy that matches the ArgoUML project policy on Java version re-
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quirements.

Rationale: The ambition for ArgoUML is to be a working tool for as many people as possible. Java
is still under development and there are nice features available in future releases. In ArgoUML we
have a plan for how to handle this. It is to always support two major releases of Java (currently JDK
1.3 and 1.4). We cannot have a sub-product that restricts us in this aspect.

• Distribution

We require the sub-products to make it possible for us to take the distribution, enter it in our CVS re-
pository and write rules to automate the use of the sub-product while developing, releasing and run-
ning ArgoUML. This automated use must be able to run without relying on access to some server
and without user intervention.

The API documentation of the sub-product (assumed to be Javadoc) we can use from some web site
belonging to that sub-product.

Rationale: In the ArgoUML project we want to make it as easy as possible for our users to install
ArgoUML. We also want to make it as easy as possible for our developers to get their development
environment working and for the release manager to prepare the releases.

• Road map

The project developing the sub-product must have a plan that fits the ArgoUML plan for the future.

Rationale: If a sub-product will soon go somewhere else i.e. stop doing what we require or stop sup-
porting what we require, then we will soon have troubles with that sub-product.

• Working project

The project that develops the sub-product should be a working project. Check that there is some per-
son responsible for it, preferably with a team or organization backing him. Check that there is a plan
for upcoming releases. Check that there is a way to report bugs and enhancement requests.

Rationale: We don't want to rely on a sub-product where there is no chance of ever getting a bug that
we encounter fixed. We are also part of an ever-evolving world. Soon we want the tool to do more
for us. We should then be able to wish that and eventually get an updated sub-product.

Notice that we should not and don't need to do this in a passive way. We should explain to the sub-
product team what we want and why. Especially for sub-products that we have already in ArgoUML but
also for project that we consider taking in. This is to increase the likelihood that they will have us in
mind when planning and evolving.

Here are the steps to go through and the recommended order once the decision is taken to use the sub-
product in ArgoUML:

• Documentation

Describe in the Cookbook in the appropriate subsystem section what part of the problem that the
sub-product solves and how it is used in ArgoUML.

• Javadoc

Enter the package list file in a special directory under argouml/lib/javadocs. Update the list
of links used when building the Javadocs. One place in default.properties, One or two
places in build.xml (targets javadocs and javadocs-api).
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Test by referencing some class from the sub-product, building the Javadoc, and check that the link is
working.

• Repository

Assuming that the sub-product is distributed in a set of jar files, add the jar files to the lib directory
in a versioned way together with the license file. Use filenames like:
subproduct-version.jar, and subproduct.LICENSE.txt.

A future plan is to have each subsystem in their own directory. If the sub-product in question be-
longs to a subsystem that is moved to a separate directory you should put it in the lib directory for
that subsystem. For the time being, there is only one lib directory.

• Building

Assuming that the sub-product is distributed in a set of jar files, add the jar files to the list of files
that are to be included when building ArgoUML. One place in default.properties, Four
places in build.xml (targets init (tree places), prerequisites, package (two places), new target
check.subproduct), and One possibly place in AboutBox.java (Constructor). Notice espe-
cially that build.xml shall not contain any version information. Notice also that the text in
AboutBox.java shall not contain anything that needs to be localized but just the sub-product
name, reference and possibly version.

Check by having some class from the sub-product loaded immediately when starting ArgoUML and
start using build run.

• Running from modules

With the current modules set up (in argouml/modules) the idea is that we are supposed to be
able to start ArgoUML from any of the modules directory. This means that whenever changing the
list of modules you will have to update the classpaths in all these modules. Go through the list of
files argouml/modules/*/build.xml and update.

Check by having some class from the sub-product loaded immediately when starting ArgoUML and
start in each of these directories.

• Distribution

Assuming that the sub-product is distributed in a set of jar files, add the jar files to the list of files
that are to be included when releasing ArgoUML. One place in build.xml (target dist-
javawebstart), One place in manifest.template (Class-Path), In each of the Java Web Start
files (resources), In the Info.plist (ClassPath).

Check by having some class from the sub-product loaded immediately when starting ArgoUML and
start with java -jar argouml.jar, using each of the Java Web Start files, and from the Appbund (on
a Mac).

See Section 12.8, “How to relate issues to problems in subproducts” for a discussion on how to handle
bugs found in sub-products and updates of the version of a sub-product.

9.4. Settings for Eclipse 2
Linus Tolke

These style guides correspond to the following settings in Eclipse 2:
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• In Preferences => Java => Code Formatter => New Lines

None of the boxes "Insert a new line before opening brace", "Insert new lines in control statements",
"Clear all blank lines", "Insert new line between 'else if'", or "Insert a new line inside an empty
block" are checked.

• In Preferences => Java => Code Formatter => Line Splitting

Maximum line length is 80.

• In Preferences => Java => Code Formatter => Style

None of the boxes "Compact assignment" or "Indentation is represented by a tab" are checked.

Number of spaces representing a tab: 4. This should probably be read as Number of spaces repres-
enting a level of indentation.

• In Preferences => Java => Java Editor => Appearance

Displayed tab width: 8

"Insert space for tabs (see Formatting preferences)" checked. There seems to be no way of having
tabs set at width 8 and the indentation level set at 4 at the same time so we must let Eclipse generate
code without tabs to obey the Sun Coding standard.

9.5. Settings for NetBeans
Linus Tolke

These style guides correspond to the following settings in NetBeans:

• In (Tools =>) Options => Editing => Editor Settings => Java Editor

Tab Size = 8

• In (Tools =>) Options => Editing => Indentation Engines => Java Indentation Engine

Add Newline Before Brace: False, Add Space Before Parenthesis: False, Expand Tabs to Spaces:
False, Number of Spaces per Tab: 4 (Should probably be read as Number of Spaces per indentation
level).

9.6. Settings for Emacs
Linus Tolke

These style guides correspond to the default Java settings in Emacs:

("java"
(c-basic-offset . 4)
(c-comment-only-line-offset 0 . 0)
(c-offsets-alist
(inline-open . 0)
(topmost-intro-cont . +)
(statement-block-intro . +)
(knr-argdecl-intro . 5)
(substatement-open . +)
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(label . +)
(statement-case-open . +)
(statement-cont . +)
(arglist-intro . c-lineup-arglist-intro-after-paren)
(arglist-close . c-lineup-arglist)
(access-label . 0)
(inher-cont . c-lineup-java-inher)
(func-decl-cont . c-lineup-java-throws)))

9.7. How to work with Eclipse 3
Linus Tolke

If you are running Eclipse 3 you can find information on how to set the development environment fitting
ArgoUML. There are several sets of instructions here depending that you can apply separately depend-
ing on how much of the ArgoUML knowledge you would want to include in your Eclipse.

If any of these instructions don't work or could be improved in some way, please help in making them
better.

9.7.1. Checking out through Eclipse
This instruction is if you want to use Eclipse to download the source and it takes you up to where you
can start ArgoUML from the source.

1. Set up the CVS Repository.

Change to the CVS Repository perspective and select Add CVS Repository. Then enter the follow-
ing information.

• Host: cvs.tigris.org

• Repository path: /cvs

• User: Your Tigris user name.

• Password: Your Tigris password.

• Connection type: pserver (default)

• Use Default Port. (default)

2. Check out.

In the CVS Repository Exploring perspective, unfold the newly created repository (called
something like :pserver:your user name@cvs.tigris.org:/cvs) and within it, HEAD.

Select the argouml project, right-click on it, and do Check Out As. Check out as a project con-
figured using the New Project Wizard. Press the button Finish. Select Java Project, and press Next.
Type the new project name: argouml, and press Next. Ignore the build path settings. We will come
back to them later. Press Finish, which starts the checking out process. You are probably directed to
the Java Perspective with a question if you want or not. At this point it doesn't matter. Just press
Yes or No!

The download takes a while, since the download is around 60Meg.

Remark: If you are on a modem or other low bandwidth connection, this is not recommended since
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you will download all of the web site, the source for the documentation, and all modules, things
that you could do without unless you would want to work on them. If you find a way to do this with
less bandwidth use, please help improving this description. Theoretically we can come down to
around 16Meg which would take around two hours on a 56K modem.

3. Build using ant.

Browse to argouml/src_new/build.xml, select the build.xml-file, right-click on it, and
do Run Ant... This pops up the External Tools... pop up with the Targets tab already selected. Se-
lect compile (default target in the Targets tab), deselect all other targets and finally press Run.

There are some files that are built using rules in the build.xml file. This is the antlr files and the
file containing a version.

4. Refresh the project.

This must be done after having built using ant to find the newly created Java files.

Select the top resource of the argouml project in the Navigator (on the left), right click and select
Refresh.

5. Set build path.

In the Java perspective, select the project argouml, i.e. the icon at the top of the Package Explorer.
Then, in the menu, select Project => Properties).

Enter Java Build Path

Under Source: Remove everything. Add argouml/src_new and argouml/src/model/src
(simply add a check mark in front of these folders). Also add argouml/tests, argouml/
modules/classfile/src, and the src directories of all other modules. The purpose of this is
to have Eclipse recompile these and find compilation errors as soon as your changes to any API has
affected them.

Under Libraries: Press the Add JARs... button and add all files in argouml/lib. Press the Add
JARs... button and add the file argouml/tools/junit-3.7/junit.jar. Every time any of
these jars is updated in the project you will have to update this in your environment by entering this
dialog, removing the old ones, and adding the new ones.

Set the Default output folder to argouml/bin. This will not confuse it with any of the ant-built
things.

Press OK. You will be asked to accept that all resources previously built can be removed. Press
Yes. Eclipse shall rebuild.

Verify that there are no errors, just warnings left among the problems. If there are errors in some of
the modules you will be able to continue your work in spite of that but it is better if you stop here
and investigate the problem.

Some of the modules (cpp, idl, classfile, ???), contain ANTLR-generated code. The rules to build
these are in the ant files for each module. Run the ant targets "generate" or "generateparser" in each
of these modules and then reload the source trees.

6. Select the class with the main method.

In the Java perspective, select the project argouml, i.e. the icon at the top of the Package Explorer.
Then, in the menu, select Run => Run...). This will open the dialog for creating, managing and run-
ning Run Configurations.
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Select Java Application on the left and press the New button. Name the configuration "Run
ArgoUML", and press the Search... button in the Main class box. In the new dialog that appears
(Choose Main Type), simply press OK.

This sets the Main class to: org.argouml.application.Main.

Press the Run button. This will start ArgoUML. From now on, you can start ArgoUML by a single
press on the Run icon in the toolbar.

7. Verify that you can start ArgoUML from the debugger within Eclipse. You can do this by clicking
on the Debug icon in the toolbar.

9.7.2. Eclipse to help with the ArgoUML coding style
This instruction is to set up Eclipse to work according to the ArgoUML Coding standards. If this is not
done correctly you will most likely find that you will have to do a lot of manual edits every time Eclipse
has touched the code. You have your tool working against you instead of for you. On the other hand,
these settings affect your Eclipse Workspace rather than the ArgoUML project settings so if you have
other projects in the same Eclipse Workspace there might be conflicts. For this reason, it might be a
good idea to do the ArgoUML work in an Eclipse Workspace separate from your other projects.

• Code conventions.

See in the menu Window => Preferences. Then select Java => Code Style => Code Formatter. Set
the Code Formatter to "Java conventions [built-in]".

• TAB character width is 8.

Solution for Eclipse 3.0: See in the menu Window => Preferences. Then select Java => Editor. Then
select the tab Appearance. Set the Displayed tab width to 8.

Solution for Eclipse 3.1: In Eclipse 3.1 the Tab size is part of the profile that the Code Formatter
uses. Alas, the "Java conventions [built-in]"-profile contains a bug at this point (ht-
tps://bugs.eclipse.org/bugs/show_bug.cgi?id=104765) so the best solution is to create and use a new
profile with the fix. In Window => Preferences => Java => Code Style => Code Formatter, set the
Code Formatter to "Java conventions [built-in]" (as above), press "Show", select the "Indenta-
tion"-tab, change "Tab size" to 8, press "Apply", and give the name Fixed Java
conventions.

• New file templates.

See in the menu Window => Preferences. Then select Java => Code Style => Code Templates. At
the right hand side, open the tree for Comments, and set the Code Templates for Overriding methods
to

/**
* ${see_to_overridden}
*/

In the same tree for Code Templates, open the Code node and select New Java Files. Set it to

// $$Id$$
// Copyright (c) 2005 The Regents of the University of California. All
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// Rights Reserved. Permission to use, copy, modify, and distribute this
// software and its documentation without fee, and without a written
// agreement is hereby granted, provided that the above copyright notice
// and this paragraph appear in all copies. This software program and
// documentation are copyrighted by The Regents of the University of
// California. The software program and documentation are supplied "AS
// IS", without any accompanying services from The Regents. The Regents
// does not warrant that the operation of the program will be
// uninterrupted or error-free. The end-user understands that the program
// was developed for research purposes and is advised not to rely
// exclusively on the program for any reason. IN NO EVENT SHALL THE
// UNIVERSITY OF CALIFORNIA BE LIABLE TO ANY PARTY FOR DIRECT, INDIRECT,
// SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING LOST PROFITS,
// ARISING OUT OF THE USE OF THIS SOFTWARE AND ITS DOCUMENTATION, EVEN IF
// THE UNIVERSITY OF CALIFORNIA HAS BEEN ADVISED OF THE POSSIBILITY OF
// SUCH DAMAGE. THE UNIVERSITY OF CALIFORNIA SPECIFICALLY DISCLAIMS ANY
// WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
// MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE SOFTWARE
// PROVIDED HEREUNDER IS ON AN "AS IS" BASIS, AND THE UNIVERSITY OF
// CALIFORNIA HAS NO OBLIGATIONS TO PROVIDE MAINTENANCE, SUPPORT,
// UPDATES, ENHANCEMENTS, OR MODIFICATIONS.

${package_declaration}

${typecomment}
${type_declaration}

9.7.3. Eclipse to automatically find problems in the code
This instruction is to set up Eclipse to automatically find what, in the ArgoUML project, could be con-
sidered problems in the code.

You can apply these individually depending on what level of help you need in your coding. I (Linus
Tolke) recommend that you set them all on the Warning level. This makes them visible for you. You can
then decide to fix them or not depending on how you feel about the code you are working with.

• Compiler compliance level.

See in the menu Window => Preferences. Then select Java => Compiler. At the right hand side, se-
lect the tab Compliance and classfiles => Compiler compliance level: 1.4.

In the ArgoUML project we have decided to keep source compliance to JDK 1.4. (See Section 3.3.1,
“Choice of JRE: ArgoUML will support any JRE compatible with a Sun specification of any JRE
from Sun that has not begun the Sun End of Life (EOL) process. ”). This setting enables Eclipse to
tell you where some JDK 1.5 features have crept in.

• Find forgotten and incorrect Javadoc comments.

In the menu select Window => Preferences. Then select Java => Compiler. Suggested settings for
these tabs (Only things diverting from the Eclipse defaults are listed):

• Javadoc => Malformed javadoc comments: Warning, Private, Report errors in tags.

• Javadoc => Missing javadoc tags: Warning, Protected, Check overriding and implementing
methods.

These problems are also found by Checkstyle so if you are running checkclipse (See Sec-
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tion 9.7.4, “Settings for checkclipse”) put this in Ignore instead.

• Code that hides other code.

In the menu select Window => Preferences. Then select Java => Compiler. Suggested settings for
these tabs (Only things diverting from the Eclipse defaults are listed):

• Style => Possible accidental boolean assignment: Warning.

• Advanced => Local variable declaration hides another field or variable: Warning.

• Advanced => Field declaration hides another field or variable: Warning.

• Find Code that shall be removed.

In the menu select Window => Preferences. Then select Java => Compiler. Suggested settings for
these tabs (Only things diverting from the Eclipse defaults are listed):

• Unused code => Local variable is never read: Warning.

• Unused code => Parameter is never read: Warning.

• Unused code => Unused or unread private members: Warning.

• Unused code => Unnecessary semicolon: Warning.

• Unused code => Unnecessary cast or 'instanceof' operation: Warning.

• Unused code => Unnecessary declaration of thrown checked exception: Warning.

9.7.4. Settings for checkclipse
Checkclipse is a plug in for Eclipse which needs to be installed separately. It enables style checking ac-
cording the rules set for the ArgoUML project.

In the Java perspective, select the project argouml, i.e. the icon at the top of the Package Explorer. Then,
in the menu, select Project => Properties, select Checkclipse (appears only if Checkclipse is correctly in-
stalled) and then fill the fields like this:

• Enable Checkstyle Checked.

• Checkstyle Configuration File: /
argouml/tools/checkstyle/checkstyle_argouml.xml

• Checkstyle Properties File: /argouml/tools/checkstyle/checkstyle.properties

• File Filter Definition: /argouml/tools/checkstyle/checkclipse.filefilters

Leave the two other fields empty.

9.7.5. Run the JUnit tests
There is perhaps some fancy way of doing this but while we figure that out this "revert to ant"-way can
be used to run the tests:
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1. In the menu select Window => Preferences. Select Ant => Runtime at the left hand side. Select the
tab Classpath. Select Ant Home Entries.

2. Press the Add Jars... button and add optional.jar from argouml/tools/ant-1.4.1.

3. Press the Add Jars... button and add all jars from argouml/tools/ant-1.4.1/lib.

4. Press the Add Jars... button and add jdepend.jar from argouml/tools/jdepend-2.2/
lib.

5. Press the Add Jars... button and add junit.jar from argouml/tools/junit-3.8.1 .

6. Press OK to store the new Ant classpath entries.

These first items need only be done once as a set up.

7. Run ant with the alltests target.

This is done by selecting in the menu: Run => External Tools => External Tools... This will open
the "Create, manage, and run configurations" dialog.

Select the Ant Build at the left and press the New button. Rename to ArgoUML AllTests. Then, in
the Targets tab, select the alltests target, deselect all other targets, press the Apply button, and fi-
nally press Run.

This run configuration is remembered by Eclipse so after this the drop-down next to the Run tool
can be used. In the same way, you can make other run configurations for the other ant targets in the
build.xml file.

Once you have found a failing test case and would like to investigate that further, you can run it as a JU-
nit test case from within Eclipse, making full use of the Eclipse debugger. This is done by browsing to
the test case (in the package explorer you browse to argouml => tests => whatever package =>
whatever class), right-click on it and select Run => Debug JUnit Test.
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Chapter 10. Standards For
Documentation Writing
10.1. Introduction

The documentation (currently manual, cookbook, and quickguide) is written using DocBook
XML V4.1.2 [http://www.oasis-open.org/docbook]. This section covers some conventions for use of
DocBook and for the documentation in general. It also includes some information for tooling configura-
tion, e.g. for Emacs with the psgml package.

10.2. Style

• "We" in the documents means the persons reading the document. For the Quick-guide and User
Manual this means the user using ArgoUML. For the Cookbook this means the developer working
with improving ArgoUML.

• "I" in the document refers to the author and is only used to denote the authors personal opinion.
Avoid using it!

• Use the active voice.

• Use plain rather than elegant language.

• Use specific and concrete terms rather than vague generalities.

• Break up your writing in short sections. Each section dealing with one topic.

• Use the present tense.

• Opt for an informal rather than a formal style.

10.3. Document Conventions

• All titles of chapters, sections etc. are capitalized throughout.

• All titles of figures, tables etc. have the first word only capitalized.

• Spelling is US English. (According to The Webster's Second Unabridged.)

• Use full URLs throughout all documents! Rationale: These documents may also be published in oth-
er formats then html on the ArgoUML web site.

• Do not include lists of what changes have been done to the files. This information is kept by CVS,
the version control tool. This is changed since Jeremy Bennet did the work for the 0.9/0.10 User
Manual and there might still exist such lists. Remove them while changing the files!

The Cookbook has a Change Log (See Change Log) that is updated for every significant change but
that is for the purpose of making it easier for the readers.

• When problems in the current implementation of ArgoUML are mentioned or perhaps even emphas-
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ized using the warning tag, include the issue number in a sgml-comment in the source so that it is
easy to know if this problem has been fixed when revising the document. The issue should be men-
tioned in the format “issue xxx”, i.e. there should only be a space between the word “issue” and the
issue number. This allows the tigris web site to generate links when viewing the manual source.

• Do not write "currently". Better write either "in version 0.14" if you mean in the stable version 0.14
of ArgoUML or "in version &argoversion;" if you mean in the current version of the document as
defined in default.properties when the document is deployed. There are some old refer-
ences to "current" or "currently" also. If you encounter them, try to remove them!

• For documents that contain an “index”, Add indexterms while doing changes. Creating the index is a
good idea and we eventually should have indexterms all over. Initially, the manual was written
without useing indexterms at all. They have been added generously on certain parts but that makes
the index strangely biased.

Capitalize the part of the indexterms that are terms.

Don't use the tertiary level of the index terms but use only two alternatives: Only primary, and
primary/secondary. If you are unsure when to use primary or primary/secondary use the small word
approach. I.e. if the indexterm contains a small word (typically to, of, for, in) and normally not capit-
alized, let the secondary start with that small word.

When using primary/secondary, see that you get the same kind of word as used before in the index
(especially when it comes to differences in singular/plural-form). Also create other indexterm by
turning the phrase to as many permutations that you can think of.

10.4. DocBook Conventions

• The top level document of the document is in documentname.xml. Each chapter (or preface,
glossary, appendix etc) is a separate file, defined as a system entity and included from this top level
file.

• There are some useful entities defined for common terms in the beginning of this top level docu-
ment.

E.g. use of &argouml; will ensure consistent naming of the product (ArgoUML) and allow us to
change it later (to Argo/UML, Argouml or whatever).

In the build script there is some magic that translates @tagname@ to a real value. E.g.
@VERSION@ in the documentname.xml file into 0.16.

• XML comments are used throughout to explain what various sections are trying to achieve.

• Cross-referencing requires use of id. attributes. Many of these used in the manual are of the fol-
lowing format, but the use of this format is not obligatory any more.

To avoid confusion, use a prefix of ch. for chapter, app. for appendix, s. for sect1
through sect5, fig. for figure, tab. for table and gl for glossentry.

A second prefix of tut. or ref. is allowed to distinguish tutorial and reference material. The re-
mainder of the tag should be descriptive, but concise with words separate by underscore. Where a
graphic is involved this remainder should correspond to the file name. For example
fig.ref.navigation_pane for a figure showing the explorer, with the diagram in naviga-
tion_pane.gif

There is one exception to this and that is the description of the critics in the manual. Each paragraph
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about a critic is instead marked with critics. followed by the classname implementing that crit-
ic. The reason for this is that the intention is to have the manual accessable when pressing the Help
button on that critic. Generating a link to the correct place in the manual is easier if the classname
need not undergo some kind of textual transformation and the implementation doesn't care if a a spe-
cific critic is described in a sect1, sect2, sect3, or sect4. Reorganizing the manual would
otherwise affect also the java code. The conversion to the correct tagname or really the correct URL
is currently implemented in the defaultMoreInfoURL() method in the
org.argouml.cognitive.critics.Critic class.

• Only use glossterm (for the term or its abbreviation/acronym), glossdef and
glossseealso within glossentry. Other entries are not implemented in the style sheets and
so do not appear in the glossary!

• Use spaces rather than tabs. Tabs are generally set so large the text moves over to the right of the
page, and are not set the same everywhere (emacs uses 8 spaces, some MS editors use 6 spaces),
making documents unreadable between users.

• The indentation size is 2.

• Make a new line after each sentence or before expressions. The Docbook source is source that is
handled by CVS. When structuring the text the parts are paragraphs, sentences and words. By having
each sentence on a line of its own it is easier to see what sentences has been changed and what has
not in the diff reports from CVS. The contributions that Jeremy Bennet did for the 0.10 User
Manual are not written like this. Change it while changing the paragraphs.

• All block graphics should be encapsulated within figure, allowing reference from around the text.
Set attribute float to 1 to allow the figure to float (makes life easier for printed version).

• All block graphics should be provided through mediaobject and provided with both an im-
ageobject and comprehensive description in a textobject. This gives the potential of mean-
ingful content where a diagram cannot be displayed for any reason. Where appropriate the me-
diaobject should be wrapped by screenshot.

• Inline graphics can be done through inlinegraphic, rather inlinemediaobject. A textual
alternative is of little value in these circumstances. Where appropriate the mediaobject should be
wrapped by guiicon

10.5. For Emacs Users
If you use the psgml library within emacs, then editing and verifying XML gets easier. Information on
using this facility is inluded with psgml.

• Emacs' local variables appear in a few lines of comment at the bottom of each XML file. Please don't
delete these!

• Adding (setq sgml-set-face t) to your .emacs file will cause all tags and entities to ap-
pear in boldface.

• Adding (setq sgml-auto-activate-dtd t) to your .emacs file will ensure the Doc-
Book DTD is parsed as soon as the file is loaded.
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Chapter 11. Further Reading
11.1. Jason Robbins Dissertation

Cognitive Support Features for Software Development Tools

The dissertation of Jason Robbins is a MUST READ for everyone concerned about ArgoUML. Be care-
ful though, since it is based on an old version of ArgoUML, but many of the concepts remain intact.

11.1.1. Abstract
Software design is a cognitively challenging task. Most software design tools provide support for edit-
ing, viewing, storing, sharing, and transforming designs, but lack support for the essential and difficult
cognitive tasks facing designers. These cognitive tasks include decision making, decision ordering, and
task-specific design understanding. To date, software design tools have not included features that spe-
cifically address key cognitive needs of designers, in part, because there has been no practical method
for developing and evaluating these features.

This dissertation contributes a practical description of several cognitive theories relevant to software
design, a method for devising cognitive support features based on these theories, a basket of cognitive
support features that are demonstrated in the context of a usable software design tool called ArgoUML,
and a reusable infrastructure for building similar features into other design tools. ArgoUML is an object-
oriented design tool that includes several novel features that address the identified cognitive needs of
software designers. Each feature is explained with respect to the cognitive theories that inspired it and
the set of features is evaluated with a combination of heuristic and empirical techniques.

11.1.2. Where to find it
LINK: Robbins Dissertation [http://argouml.tigris.org/docs/robbins_dissertation/]

11.2. Martin Skinners Dissertation
Enhancing an UML Modeling Tool with Context-Based Constraints for Components

11.2.1. Abstract
Noch vor der Erstellung eines detaillierten Entwurfs hilft ein Spezifikationsmodell eines komponenten-
basierten Systems dabei, Probleme so früh im Entwicklungsprozess wie möglich zu entdecken. Die
Sprache CCL ('Component Constraint Language') wurde bei CIS entwickelt und erlaubt den Entwickler
'Contextbased Constraints' dem Spezifikationsmodell hinzuzufügen. Dadurch entsteht ein Modell, das
über die Beschreibung der statische Struktur des Systems hinausgeht. Zur Zeit existiert allerdings kein
Werkzeug, dass das Komponentenspezifikationsmodell in den Entwicklungsprozess integriert. Ziel
dieser Diplomarbeit war der Entwurf eines solchen Werkzeugs, um die Philosophie des Continuous
Software Engineering (CSE) zu unterstützten.

Before starting a detailed design, a specification model of the component-based system assists the soft-
ware developer in early problem detection as soon as possible in the development process. The Compon-
ent Constraint Language (CCL) developed at CIS enables the developer to add context-based constraints
(CoCons) to a component specification model. This produces a model which goes beyond the simple de-
scription of the system's static structure. At this time, there is no tool to integrate the component spe-
cification model into the development process. The goal of this master's thesis was to design such a tool,
thereby supporting the Continuous Software Engineering (CSE) philosophy.
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11.2.2. Where to find it
LINK: Martin Skinners dissertation
[http://www.cocons.org/publications/CCL_plugin_for_ArgoUML.pdf]
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Chapter 12. Processes for the
ArgoUML project

This chapter contains processes used when working with the ArgoUML project.

These processes are provided with the hope of being helpful for the members of the project and if they
feel too complicated, ambitious or overworked, please raise the issue of simplifying them on the de-
velopers' mailing list [mailto:dev@argouml.tigris.org].

12.1. The big picture for Issues
Here is the big picture of the life of an Issue.
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12.2. Attributes of an issue
This is what the different attributes mean and how they are used in the ArgoUML project. This is to be
read as an addendum to the Tigris definition of the resolutions
[http://argouml.tigris.org/project/www/docs/issue_lifecycle.html] and for that reason it is not a complete
list.

12.2.1. Priorities
The priorities are used in the following manner in ArgoUML:

• P1 - Fatal error

These issues are blockers for all releases.

Examples: ArgoUML cannot start; Crashes program, jvm or computer; and Significant loss of user
data.

• P2 - Serious error

These issues are blockers for stable releases.

Examples: Information lost.

• P3 - Not so serious error

Examples: Functions not working; Strange behavior; and Exceptions logged.

• P4 - Confusing behavior

Examples: Incorrect help texts and documentation; Inconsistant behavior; UI not updated; and Incor-
rect javadoc.

• P5 - Small problems

Examples: Spelling errors. Ugly icons. Excessive logging. Missing javadoc.

12.2.2. Resolutions

• LATER

Used to denote that a certain issue cannot be resolved until some special upcoming and planned-for
event has happened. The event in question is noted in the target milestone.

Events can be things like, dropping support for a jdk version, changing the version of UML that we
support, or replacing some central mechanism within ArgoUML. Once they have a target milestone
registered, they are considered events.

• REMIND

Not used.
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Rationale: Each issue have basically four states:

1. NEW/STARTED/REOPENED - To be resolved

2. RESOLVED - To be verified

3. VERIFIED - To be closed

4. CLOSED - Finished.
The statistics is based on this and persons looking for issues to resolve look among the "To be re-
solved"-group (the web pages to help in this are set up in this way). This is also in synch with our re-
lease process.

Looking at it from a single persons perspective an issue is either a "I could work with this issue but I
currently don't", "I work with this one", or "I am now done with my work on this issue". For a re-
solver this is corresponds to NEW/REOPEN for the first group, STARTED for the second and RE-
SOLVED for the third. For a verifier this corresponds to RESOLVED for the first group and VERI-
FIED for the third group.

The RESOLVED/REMIND does not fit this. They risk to be verified because the rest of our process
urges people to resolve issues that are RESOLVED in which case they are probably lost. They risk
to be hanging in the RESOLVED state because nobody understands where they should go from
there. It is not clear who is responsible to move them forward. The person that "resolved" them or
someone else. Someone risk to think that there is nothing left to do since it is resolved and if so his
options of doing work are reduced which could lead to that he actually does less with ArgoUML
than he else would.

To amend this we have made two things:

1. Decided that we don't use the RESOLVED/REMIND states.

2. At every release, as part of the release process, clean up issues that for some mysterious reason
ended up in these states (See Section 2.8, “Making a release”, 10, f)

If you plan to solve an issue now, assign it to you, start it, and set the target milestone to the release
you plan to have it solved. This will signal to everyone that you have the responsibility, will pursue
it, and your time plan.

If you don't plan to solve this now, leave it in the "up for grabs"-pile (as not resolved). Somebody
else might want to work with it.

If you know that an issue cannot be resolved now because it requires that another issue is solved be-
fore, register the other issue as "depends on" and leave the issue in the "up for grabs"-pile (as not re-
solved).

If you know that an issue cannot be resolved now because it requires some big event to take place,
put the milestone for that event in the target milestone and resolve the issue as RESOLVED/LATER.

• WORKSFORME

This means that it works in a released version of ArgoUML. State the version in the comment.

If the version stated by the reporter in the issue is not the same as the version in the comment then
this probably means that problem was fixed in some release without anyone noticing that this prob-
lem was fixed.
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12.3. Roles Of The Workers
The roles described below are per issue, i.e. for every issue, there is at least a reporter, a resolver and a
verifier. Hence, each person involved in issues for the ArgoUML project can - at the same time - have
different roles, and consequently, has issues to report, issues to close, issues to resolve, and issues to
verify.

12.3.1. The Reporter
The Reporter is the person who enters the issue in Issuezilla.

Skills: The reporter is an ArgoUML user, should not need any knowledge of what the ArgoUML project
is actually doing.

Responsibilities:

• Report an issue

The address to enter new issues is: http://argouml.tigris.org/issues/enter_bug.cgi
[http://argouml.tigris.org/issues/enter_bug.cgi]. For entering new issues, registering (as described in
1.3) is not required.

• Answer clarification requests

Occasionally, the developers of ArgoUML need to request the Reporter more information, to be able
to solve the issue correctly. Another way of putting it is to say that if the issue was reported without
some vital information the Reporter has some more work to do.

• Close the issue

This applies to an issue that is in verified state only. At the end of processing the issue, the reporter
has the final word: he can check the result, and if he agrees with the solution, close the issue himself.
Closing an issue requires at least "observer" role in the ArgoUML project.

• Reopen the issue

This applies to an issue that is in verified state only. The reporter has the final word: he can check
the result, and when he does not agree that the solution is correct, he can reopen the issue himself.
Reopening an issue requires at least "observer" role in the ArgoUML project.

12.3.2. The Resolver
The Resolver is the software developer who attempts to resolve the issue. Doing so requires at least "ob-
server" role. The "developer" role is only needed to commit things into CVS (e.g. submit changed Java
code, scripts or documentation).

Remark: Someone who does not have the developer role, but solves the issue and convinces someone
else to commit the solution, is still the Resolver even though he cannot commit things into CVS.

The goal of the Resolver is to progress the issue to the status of "Resolved". The resolver may be the
same person as the reporter.

Responsibilities:
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• Decide usefulness (if this issue is really a bug or enhancement and if it is worth solving)

The Resolver has to decide if solving the issue is really a useful improvement for ArgoUML. The
Reporter of the issue may very well be mistaken in entering a bug-issue for what is in fact a feature,
or entering an enhancement-issue which is not really an enhancement. Another thing that could be is
a bug that appears in very exceptional circumstances and that may have large impact on ArgoUML
architecture. If the Resolver decides after the investigation that this bug is really not that important
or that he is not the right person to solve it he enters his findings as a comment and assigns the issue
back to anyone (issues@argouml) and moves along to work on another issue instead.

• If applicable, program and test a solution

As this might take considerable time it might be a good idea of the Resolver to assign the issue to
himself to reserve the issue. He can also signal progress by setting the issue to the state Started.

• If applicable, write test cases

• Set the issue in the end on "Resolved".

When the resolver is finished with the issue, he puts it in "Resolved" status, and indicates the "resolu-
tion" is Fixed, Worksforme, Invalid, Wontfix, or Duplicate.

Skills: The resolver needs to know a lot of the insides of the ArgoUML code, Java, coding standards,
and also the current status of the project with goals, requirements and release plans.

12.3.3. The Verifier
The Verifier may be neither the Reporter, nor the Resolver of the issue. The task of the Verifier is to
check the quality of the solution by confirming that the solution is complete, to the point, bug-free, etc.
This is an important part of the quality assurance work we do in the ArgoUML project and the object is
to make sure that a resolved issue is in fact resolved.

The test must be done on the "Target Milestone" version of the issue, or any later version released to the
public.

Responsibilities:

• Check that the issue is solved in the stated version of ArgoUML

• Mark the issue as "verified"

If the Verifier can conclude that the problem does not exist or the feature/enhancement is now
present the issue is marked as verified.

• Reopen the issue if the solution is not fully correct

If the solution is not correct or the feature/enhancement does not work, it is the duty of the Verifier
to reopen the issue.

Skills: The verifier needs only to focus on that issue, how the problem in it is formulated. He doesn't
need to know how it is actually solved.

12.4. How to resolve an Issue
This can be performed by any member of the project (any role). Persons without the Developer role need
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a person with the Developer role to actually commit the work if the resolution involves changing some
artefact. There might be special skills involved but it differs widely depending on the nature of the Issue.

Do the following:

1. Pick any Issue that is NEW or REOPENED that you from the description think that you are able to
solve. Best result if you also find some Issue that you really feel needs to be solved. The list of all
of them
[http://argouml.tigris.org/issues/buglist.cgi?component=argouml&issue_status=NEW&issue_status
=REOPENED].

2. Look at your personal schedule and how much time you have during the next couple of weeks and
compare that to the amount of time you think you will need to spend for solving the issue. Compare
this to the release plan to see what release your contribution will fit in.

3. Accept the Issue and reserve it by assigning it to yourself. Set the Target Milestone to the release
you have chosen.

4. Make sure you have a checked out copy of ArgoUML or else check out a new one.

How this is done is described in Chapter 2, Building from source.

5. Mark the issue as Started (this could be done while assigning also).

6. Change the code to solve the problem.

7. Compile and test your new code.

This should include developing a JUnit test case to verify that the problem is solved. You could
also develop the JUnit test case before actually solving the problem.

If your solution did not work as intended, continue changing it until it does.

If you feel that your estimation of the complexity of the problem and your own abilities and time
available was incorrect, then change the Target Milestone of the Issue to another one that fits your
new estimation. This is just a change of plan.

If you, at this point, feel that your personal plans have changed so that you won't have time to pur-
sue the work, change the Issue back to "NEW" with your experiences sofar stated in the comment.
This means that you are giving up and giving the Issue back to anyone. You should also assign it
back to issues@argouml or if you know someone else in the ArgoUML team that will continue the
work, assign it to him. Remember not to commit your changes in the main branch but please com-
mit your changes (if any) into a work branch and state the name of the branch in the issue. That will
make it possible for someone to make use of your work so far.

8. Commit your changes and the JUnit test cases stating the number of the Issue in the comment.

If you don't have a developer role in the project, this involves sending your changes to someone
who has and then convincing him to commit them for you.

9. "Resolve" the Issue with the resolution "FIXED".

10. Sit back and feel the personal satisfaction of having completed a something that will be part of the
ArgoUML product.

11. If you during this, have discovered other problems, create new Issues stating those new problems
according to the rule for creating Issues.

Processes for the ArgoUML project

135

http://argouml.tigris.org/issues/buglist.cgi?component=argouml&issue_status=NEW&issue_status=REOPENED
http://argouml.tigris.org/issues/buglist.cgi?component=argouml&issue_status=NEW&issue_status=REOPENED


12.5. How to verify an Issue that is FIXED
This can be performed by any member of the project (any role). There might be special skills involved
but it differs widely depending on the nature of the Issue.

Do the following:

1. Pick any Issue that is RESOLVED/FIXED or WORKSFORME and that you have not raised, nor
solved and that is included in a release (Target milestone set to a release available on the site). The
list of all RESOLVED/FIXED and RESOLVED/WORKSFORME issues
[http://argouml.tigris.org/issues/buglist.cgi?component=argouml&issue_status=RESOLVED&resol
ution=FIXED&resolution=WORKSFORME].

2. Run the specified release of ArgoUML. You can also use any later release. Use ArgoUML
provided for downloads or through Java Web Start.

3. Test the problem in the issue and verify that the problem is no longer there or the feature is
provided.

4. Do one of the following:

• If the problem is gone, the feature is present put the Issue in Status VERIFIED and add the ver-
sion of the ArgoUML used for the test in in the comment.

Remark: As an additional activity, the verifier may check if the manual needs to be adapted,
and if so, may REOPEN the issue with an explanation text, and setting the correct subcompon-
ent (Documentation & Help).

• If the problem is still there, the feature does not work, put the Issue in Status REOPENED with
a description of what is still there, is still missing. Also state what version of ArgoUML used
for the test in the comment.

5. If you during this, have discovered other problems than the one stated in the Issue, create new Is-
sues for those new problems according to the rule for creating Issues.

6. Do this as many times as you like until there are no Issues left.

12.6. How to verify an Issue that is rejected
This can be performed by any member of the project (any role). There might be special skills involved
but it differs widely depending on the nature of the Issue.

Do the following:

1. Pick any issue that is RESOLVED/(INVALID, WONTFIX, or DUPLICATE) that you have not
raised nor solved. The chosen issue need not be connected to an available release. The list of all
RESOLVED/INVALID, RESOLVED/WONTFIX and RESOLVED/DUPLICATED issues
[http://argouml.tigris.org/issues/buglist.cgi?component=argouml&issue_status=RESOLVED&resol
ution=INVALID&resolution=WONTFIX&resolution=DUPLICATE].

2. Read through the description provided.

3. Do one of the following:

• If you agree with the statement and feel that the rejection is done for correct reasons, put the Is-
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sue in Status VERIFIED.

• If you don't agree, put the Issue in status REOPENED and give a description as to why you
don't agree.

4. Do this as many times as you like until there are no Issues left.

12.7. How to Close an Issue
This is performed by the person that originally raised the Issue or by the QA responsible for that area.
You need to be a member of the project (any role). This can also be done by someone who would raise
the issue but did not because it was already present in Issuesilla.

1. Pick any Issue that is Verified and that you have raised or that you have found and refrained from
raising because somebody else already had written it. The list of all VERIFIED issues
[http://argouml.tigris.org/issues/buglist.cgi?component=argouml&issue_status=VERIFIED].

2. See that you are satisfied with the solution. This could involve reading through the resolution and
starting the tool to verify it.

3. Do one of the following:

• If you are satisfied, put the Issue in Status CLOSED.

• If you are not satisfied but the problem is solved as it is written in the Issue, put the Issue in
Status CLOSED and open a new Issue with the rest of the problem.

• If you are not satisfied and the problem is not solved, put the Issue in status REOPENED with a
description on what you are not satisfied with.

12.8. How to relate issues to problems in sub-
products

ArgoUML uses products internally and is very dependant on that these products are functioning well.
This are products like GEF, NS-UML, ocl, log4j, xerces, jre, ...

Occasionally a problem found in ArgoUML is found to be a problem in one of these subproducts and
cannot or is extremely complicated to fix within ArgoUML.

If this happens this is the way to handle this problem.

This can be performed by any member of the project (any role). There might be special skills involved
depending on the nature of the problem. In this description "issue" means a issue in issuezilla, "bug re-
port" means a bug report in some other project, and "problem" denotes the conceptual problem.

Do the following:

1. During your examination of an issue you find that the problem is in one of the ArgoUML sub-
products (GEF, NS-UML, ocl, jre, ...).

2. Make sure that the issue is assigned to you.

Processes for the ArgoUML project

137

http://argouml.tigris.org/issues/buglist.cgi?component=argouml&issue_status=VERIFIED


3. Write a comment in the issue stating which one of the subproducts that has the problem (and what
the problem is within that subproduct).

4. Post a bug report in that subproducts bug reporting tool (or find that a bug report already re-
gistered).

I am assuming that there is such a tool for the subproduct in question. If there isn't, then make the
bug report to the person responsible for this product so that we are sure that the problem is commu-
nicated.

5. Accept the issue (set it to STARTED) and enter the reference from the subproducts bug reporting
tool and if possible the URL to the bug reporting tool or to the bug report in question.

I am assuming that there is a bug reporting tool for the subproducts. If there isn't for the product in
question, then include all communications (both ways) in the issue.

You are now responsible to follow up on the upcoming releases of the subproduct. If you don't think that
you are the best person for this (you should be since it was you that found that this problem is in the sub-
product), assign the issue to "the right person". To follow up you should do the following.

1. Look at each new release of that subproduct to see if the bug report is in fact stated as fixed in that
release.

2. If the bug report is fixed, then you weight together the importance of the problem, other bug reports
that are also problems in ArgoUML that are solved in that release, the amount of work needed to fit
the new version of the subproduct instead of the old one, the planned releases of the subproduct
with promises to solve other bug reports, and the current release plan of ArgoUML. From this you
decide wether it is time to do the update of the subproduct within ArgoUML or to wait.

3. If you decide that it is time to update, you assign all issues against that subproduct to you (if not
already), then you do the work. The work is to add the new version of the subproduct to ArgoUML,
do all the needed work within ArgoUML to fit the new version, test and commit everything, put the
issues indeed fixed in RESOLVED/FIXED, and close the bugs registered in the subproducts bug
reporting tool.
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