
by

Nick Gnedin and IFrIT

IFrIT Version 3.2.0

(Including Public Extensions)

Ifrits in common mythology are jinn spirits that embody fire. They consider themselves superior to all
races because they supposedly "came first," and they resent deeply that humans have found magical

ways to take control over them.
Even when tasked, they show an ironic and malicious attitude, tending to subvert their masters' orders

every time they can.

(Wikipedia.org)

Table of Contents
1 User Guide..1

1.1 Overview..1
1.1.1 What can IFrIT do?..1
1.1.2 General Structure of IFrIT..2
1.1.3 Components of the IFrIT core..3

1.2 Controlling IFrIT...4
1.2.1 Overview..4
1.2.2 Mouse and Keyboard Controls...4
1.2.3 Environment Variables...5
1.2.4 Command−line Options...6
1.2.5 State File...6

1.3 File Formats...7
1.3.1 Overview..7
1.3.2 Uniform Scalars Data...9
1.3.3 Uniform Vectors Data..10
1.3.4 Uniform Tensors Data..10
1.3.5 Basic Particles Data..10

1.4 IFrIT Palettes...12
1.4.1 Overview..12

1.5 Animation Support...13
1.5.1 Overview..13
1.5.2 Animatable Files...14

1.6 Animation and Control Scripts..15
1.6.1 Overview..15
1.6.2 Expressions...15
1.6.3 Common Statements for Animator and Control Scripts..16
1.6.4 Specific Control Script Statements...19
1.6.5 Specific Animator Script Statements...21
1.6.6 Pre−defined Animator Script Variables...22

2 Shell Reference...24
2.1 Command−line Shell Reference..24

2.1.1 Command−line Shell..24
2.2 GUI Shell Reference..25

2.2.1 Graphical User Interface (GUI) Shell..25
2.2.2 Animation Script Debugger..26
2.2.3 Array Calculator...26
2.2.4 Command Line...27
2.2.5 Data Explorer...27
2.2.6 Palette Editor..27
2.2.7 File Set Explorer...28
2.2.8 Image Composer...28
2.2.9 Picker Window...29
2.2.10 Parallel Controller..29
2.2.11 Event Recorder...29
2.2.12 Additional command−line options...30

3 Object Reference..31
3.1 Overview..31

3.1.1 Components of the IFrIT core..31

i

Table of Contents
3 Object Reference

3.1.2 ControlModule Requests..32
3.2 Available objects..32
3.3 Animator object...34
3.4 Camera object..37
3.5 ColorBars object..38
3.6 ControlModule object..39
3.7 CrossSection object..40
3.8 DataReader object..41
3.9 ImageComposer object..43
3.10 Marker object...46
3.11 ParticleGroup object..48
3.12 Particles object...51
3.13 Picker object...53
3.14 Surface object...54
3.15 TensorField object...57
3.16 VectorField object..59
3.17 ViewModule object..62
3.18 Volume object..67
3.19 Properties of Data Objects...69

A Appendices...72
A.1 Codes For Writing IFrIT Data Files..72

A.1.1 Code Examples..72
A.1.2 Fortran...72
A.1.3 C..74
A.1.4 IDL..78

A.2 License Agreement...80
A.2.1 Overview...80
A.2.2 GNU General Public License..81

ii

1 User Guide

1.1 Overview

1.1.1 What can IFrIT do?

IFrIT can visualize four different classes of data:

Scalar data: several scalar variables in 3D space.•
Vector field data: a 3D field of vectors.•
Tensor field data: a symmetric 3x3 tensor in 3D space.•
Particle data: a set of particles (points) with several optional attributes (numbers that distinguish
particles from each other) per particle.

•

For the scalar data the following visualization objects are available:

A two−dimensional surface (either an isosurface of a given variable, or a fixed geometric surface: a
plane or a sphere). Several instances (copies) of each surface may co−exist (for example, isosurfaces
at different levels of the same variable). Surfaces can be colored on the outside or inside by a value of
another scalar variable, translated into color through a palette.

•

An orthogonal cross section of a data cube, again several of them can be shown at a time.•
Volume rendering of one scalar variable.•

The vector field data can be represented either as

a "vector glyph" − a line that starts at each mesh point, points in the direction of the vector, and has a
length proportional to the vector magnitude (sorry, no arrows in 3D), or

•

a set of streamlines − lines along which the fluid would flow if the vector field is assumed to be a
velocity field of some imaginary fluid. Streamlines can be colored by vector field properties (like
magnitude, vorticity, etc), or by scalar variables, if the scalar data are loaded and have the same
dimensions as the vector field. Streamlines also can be represented as tubes, with the tube diameter
inversely proportional to the vector magnitude, or by ribbons with two neighborning streamlines
being the ribbon boundaries.

•

The tensor field data are hard to visualize. At the moment, the only supported visualization mode is the
"tensor glyphs" − ellipsiods with orientation and dimensions proportional to three tensor eigenvalues, placed
at some of the vertices of the uniform mesh.

The particle data can be split into individual groups, and particles in each group can have various
representations (dots, spheres, clouds of dots, etc), can be colored by the value of one of the attributes, and can
be sized with an arbittary sizing function by the value of another attribute. Particles belonging to one group
can be connected by a line − this is useful for, say, plotting trajectories.

© 2005−2007 by Nick Gnedin 1

Different modes of visualization are coexistent, they are activated/de−activated independently of each other.
Several visualization windows can exist at the same time, each one having a full set of visualization objects.
Some visualization windows can share the data between them, while other windows can be fully independent.
Images from several visualization windows can be combined into one image file on the disk, tiling some
windows together, and inserting reduced versions of some windows into larger other windows.

A large array of nifty features is also available, including highly advanced animation capabilities, a complex
set of lights, markers to label various points in space, a capability to "pick" a point in the scene and retrive
information about the data at this location, two scripting languages, etc.

1.1.2 General Structure of IFrIT

IFrIT consists of a set of components called Objects. Each object is designed to perform a certain function:
just like in a computer various components − a processor, memory, a video card, etc − are designed to
perform certain tasks. Various objects have diverse relations to each other: some objects are independent,
while other objects may belong to different objects. You can think of the general structure of IFrIT as a
directory hierarchy: objects may have "sub−objects" in them, these, in turn, may have "sub−sub−objects", etc.
The diagram below shows the main structure of IFrIT:

General structure of IFrIT

All the objects together form a core of IFrIT (blue parts in the chart − like a motherboard in a computer, or the
full file system in a directory analogy). The core can be manipulated by a user via a Shell (yellow block in the
chart). A shell acts like a keyboard in a computer analogy. Currently, IFrIT supports several shells. The
simplest one is a Command−line Shell, that uses a command prompt to take typed commands from the user
and forward them to the core. Because typing commands is slow, this shell is only useful for driving IFrIT
over a remote slow connection, when graphical user interface does not work well. Other shells use GUI
(Graphical User Interface) to provide a user with a fast way of forwarding requests to the core. Because of
licensing issues, several GUI shells are available.

Each invocation of the executable uses a specific shell, but more than one shell can be compiled into the
executable, so that different shells can be used without re−compiling IFrIT. A specific shell can be invoked
either by using Command−line Options, or if it specified as a default one. If the default shell is not specified,
and none is requested in the command line, and more than one shell is compiled into the code, IFrIT will ask a
user to choose a shell at start−up. Only shells that have been compiled into IFrIT during the installation will
be accessible, of course.

1 User Guide 1.1.1 What can IFrIT do?

© 2005−2007 by Nick Gnedin 2

1.1.3 Components of the IFrIT core

The core of IFrIT consists of objects. Depending on their use, objects are divided into two categories:
modules and View Objects. A hierarchy of IFrIT objects is shown in the figure below.

IFrIT object hierarchy

Modules form the highest level of object hierarchy. A Control Module object plays a role of the root of the
hierarchy, its main function is to provide coordination between various View Modules. A View Module
appears as an IFrIT visualization window on the screen. All View Objects belong to one of the View
Modules, with the single exception of ImageComposer module, which is responsible for composing a
snapshot or an animation image from several View Modules.

Each View Module is an independent part of IFrIT that has its own visualization window on the computer
screen, its own set of other objects and, often, its own data. Some of View Modules may share the data with
another View Module − in that case the owner of the data is called a "parent" View Module, and sharing
View Modules are called "clones". Irrespectively of whether a given View Module is a clone or a parent, it
has its own set of View Objects. View Modules are directly responsible for a general setup of the
visualization scene, such as lighting, camera properties, bounding box, clipping plane, and various accessories
(such as rulers, labels, measuring boxes, etc). They "outsource" operations on various components of the
visualization scene and manipulations on the data to their own View Objects.

Some View Objects are responsible for maintaining various parts of the visualization scene. For example the
Surface object represents a two−dimensional surface within the visualization scene that samples the
three−dimensional scalar data (either as an isosurface of a particular scalar variable, or a specified geometric
shape like a sphere or a plane), while the Particles object represents a set of particles (points).

Other View Objects (also called Helper Objects) perform various functions that are not directly represented
in the visualization scene. For example, the Data Reader object is responsible for loading data files into
IFrIT, while the Animator object creates animations of your visualization scene in a diverse variety of ways.

1 User Guide 1.1.3 Components of the IFrIT core

© 2005−2007 by Nick Gnedin 3

Object are manipulated by special requests, which invoke specialized parts of each object called properties.
You can think of a property as of a special variable: as soon as you assign a new value to the variable,
something happens. For example, if you assign a value 1 (which is equivalent to true) to the property
ViewModule:BoundingBox, the bounding box will appear in the visualization scene. Assign 0 (false) to
the same property, and the bounding box disappears. In the Command−line Shell these requests are typed
explicitly in the command prompt, but in GUI shells commands are issued by GUI widgets, and a user does
not need to know the specific form of every command.

1.2 Controlling IFrIT

1.2.1 Overview

The main method of controlling IFrIT is by using a shell to manipulate various objects. In addition, IFrIT can
be controlled by using

Mouse clicks and motions in the visualization window,•
Environment variables,•
Command−line options, and•
External files.•

1.2.2 Mouse and Keyboard Controls

IFrIT reaction to mouse clicks and movements depends on which of three major mouse interaction modes it is
in.

Display mode is the default mouse interaction mode. In this mode the following binding of mouse
and keyboard are available:

Left button: rotates the camera around its focal point by moving the mouse.
[Ctrl] key + Left button: rotates the camera around the Z−axis (axis perpendicular to
the screen).
Middle button: pans (moves in space) the camera.
Right button: zooms the scene in and out.
3 key: toggles into and out of stereo mode.
P key: performs a pick operation (i.e. selects a point in the scene the mouse cursor is
pointing to, and retrives information about the data at this location).
R key: resets the camera view along the current view direction.
S key: modifies the representation of all actors so that they are surfaces.
W key: modifies the representation of all actors so that they are wireframe.

•

Fly−by mode emulates flying an airplane through the current visualization scene.

Left button: moves forward.
Right button: moves backward.

•

1 User Guide 1.2 Controlling IFrIT

© 2005−2007 by Nick Gnedin 4

[Shift] key: accelerator in mouse and key modes.
[Ctrl]+[Shift] keys: causes sidestep instead of steering.
+/− keys: increases/deacreases normal speed.

Measuring box mode becomes active when a measuring box is shown in the current visualization
window. The box can be used to measure sizes of different features in the scene.

Left button: rotates the measuring box around its origin.
Middle button: translates the measuring box in/out of screen.
Right button: translates the measuring box along scene axes.
A/Z keys: scales the measuring box down/up.
S/X keys: adjusts box opacity.
C key: shifts the camera focal point to the box center.

•

Keyboard Interactor mode uses keyboard to emulate all mouse interactions. The keyboard mode is
slow, but precise and reproducible. In this mode the following keys are available:

Left/Right (or H/L) keys: rotates the camera horizontaly around its focal point.
Down/Up (or J/K) keys: rotates the camera vertically around its focal point.
+/− keys: zoom the scene in/out.
A/Z keys: slow down/speed up the interaction.
Other key binding are the same as in the Display mode.

•

Common to all modes:

F key: switches in and out of the full screen mode (will not work in all shells).
U key: dumps the current view of the scene into an image file on disk.

•

1.2.3 Environment Variables

IFrIT understands the following environment variables (all in capitals):

IFRIT_DIR: The main IFrIT directory where you keep the state file(s) ifrit.ini and possibly other
configuration files. If this variable is not set, IFrIT will check the environment variable HOME. If it
exists, it will make $HOME/.ifrit the main directory (and will create that directory if it does not exist).
If the environment variable HOME is not defined, IFrIT will try to create a main directory at /.ifrit. If
everything else fails, IFrIT assumes that current directory is the main directory.

•

IFRIT_SCRIPT_DIR: The directory where IFrIT keeps animation and control scripts. If not set,
IFrIT will put scripts into its main directory.

•

IFRIT_PALETTE_DIR: The directory where IFrIT keeps custom palettes. If not set, IFrIT will put
palettes into its main directory.

•

IFRIT_IMAGE_DIR: The directory where IFrIT keeps image and animation files. If not set, IFrIT
will put image files into the current directory.

•

IFRIT_DATA_DIR: The default directory for the data files. If not set, IFrIT will start searching for
the data files in the current directory.

•

IFRIT_SCALAR_FIELD_DATA_DIR: The default directory for the scalar data files. If not set,•

1 User Guide 1.2.2 Mouse and Keyboard Controls

© 2005−2007 by Nick Gnedin 5

IFrIT will start searching for the scalar data in the default data directory.
IFRIT_VECTOR_FIELD_DATA_DIR: The default directory for the vector field data files. If not
set, IFrIT will start searching for the fector field data in the default data directory.

•

IFRIT_TENSOR_FIELD_DATA_DIR: The default directory for the tensor field data files. If not
set, IFrIT will start searching for the tensor field data in the default data directory.

•

IFRIT_PARTICLE_SET_DATA_DIR: The default directory for the particle data files. If not set,
IFrIT will start searching for the particle data in the default data directory.

•

1.2.4 Command−line Options

Several options can be specified in the command line when invoking IFrIT. Options begin with the dash (−)
symbol, but the first option is special: it invokes IFrIT with a specific shell, as follows:

ifrit −<shell−specification>

where <shell−specification> is one of the following:

cl for a command−line shell,•
qt for a GUI shell based on the Qt Graphical User Interface toolkit, and•
fx for a GUI shell based on the FOX Graphical User Interface toolkit.•

Only shells that have been compiled into IFrIT during the installation will be accessible. If you do not specify
the shell in the command line, a default shell will be used. The default shell is the first compiled−in shell from
the folowing order: qt, fx, cl.

Different shells support different options, so for the full list of available options you need to refer to the
documentation on the specific shell. However, all shells support the basic subset of command−line options:

−h: shows the list of available command−line options, including those specific to a particular shell.•
−np number: sets the number of processors to number for parallel execution.•
−i filename: loads the full internal state from the previously saved state file filename.•
−b filename: executes a Control Script from file filename without actually showing any windows (a
"batch" or "off−screen" mode). Not all platform/shell combinations support this option. Under
Windows off−screen rendering works rather well. On Unix, an advanced VTK option
VTK_OPENGL_HAS_OSMESA has to be set for off−screen rendering to work in the command line
shell; a Qt−based GUI shell can render off−screen on all platforms. In general, off−screen rendering
under Unix does not render textures properly (for either shell), so some volume rendering methods
and cross section modes do not work.

•

If the last entry on the command line does not form any option, it is taken to be the name of directory; IFrIT
will use this directory as his default DATA directory, overwriting the environment variable.

1.2.5 State File

IFrIT can remember its exact state and save it into the ifrit.ini file, which is placed into main IFrIT directory
(see Environment Variables). This file is not intended to be modified by the user. When IFrIT starts, it looks
for the ifrit.ini file in its main directory. If the file is found, IFrIT will read its internal configuration from it.
Thus, if you spent a long time changing various settings and adjusting IFrIT to your needs, all you need to do
is to save the state, and the next time you start IFrIT, all your settings will be restored automatically, and your

1 User Guide 1.2.3 Environment Variables

© 2005−2007 by Nick Gnedin 6

http://www.trolltech.com/developer/download/qt-x11.html
http://www.fox-toolkit.org/

hard work will not be wasted.

You can keep several of state files and use the appropriate one by specifying its name after −i option on the
command line.

1.3 File Formats

1.3.1 Overview

IFrIT can visualize four different types of data:

Scalar data: several scalar variables in 3D space.•
Vector field data: a 3D field of vectors.•
Tensor field data: a symmetric 3x3 tensor in 3D space.•
Particle data: a set of particles (points) with several optional attributes (numbers that distinguish
particles from each other) per particle.

•

Each class of data may contain more than one specific type of data. We use the word "type" here in the same
sense as it is used to describe different data types in computer language (integer, boolean, real, etc). Thus,
each data type is a unique representation of a specific layout of data in space, and is associated with a specific
format of a data file. For example, Uniform Scalars data type describes several scalar variables on a uniform
rectangular mesh in space, loaded with a specific file format. What data types available for each class depends
on what extensions of IFrIT are included in your installation.

Each data type has one−to−one correspondence with a data object. The corresponding data object is named
"Data−DataType", where DataType is the name of the data type. For example, the data object that
corresponds to the Uniform Scalars data type is named Data−UniformScalars.

The standard edition of IFrIT includes four basic data types:

Uniform Scalars data file: uniformly spaced 3−dimensional mesh of data values with several scalar
variables per file.

•

Uniform Vectors data file: a 3D vector field specified on a uniformly spaced mesh.•
Uniform Tensors data file: a symmetric 3x3 tensor field specified on a uniformly spaced mesh.•
Basic Particles data file: three positions and several optional attributes for a set of particles (or
points).

•

Extensions of IFrIT also include other data types, as listed in the Object Reference.

Binary Files

IFrIT can load both the plain text (ASCII) and binary data files. The binary files use Fortran unformatted
file formats − these files can be created in many programming languages, including Fortran, C, and IDL (code
examples are given in Appendix A). Fortran writes binary data into a file in records. Each record contains a
4−byte header, a body of the record, and a 4−byte footer, as shown in the image below:

1 User Guide 1.2.5 State File

© 2005−2007 by Nick Gnedin 7

Structure of a Fortran record

The header and the footer are identical, and each contains a 4−byte integer number with the number of bytes
in the body of the record. The body can contain any data. Because the length of the header and the footer are 4
bytes, one record cannot contain more bytes that can be described by a 4−byte signed integer number
(2147483647). It is important that the header and the footer of the record be correct (i.e. contain the number of
bytes in the body). IFrIT uses the header and the footer to verify the integrity of the data file and to deduce the
endiness of the data.

File Sets

IFrIT can load several data files of different formats simultaneously as a "set". For example, if you are
visualizing the Uniform Scalars data and the Basic Particles data from a series of outputs from the same
simulation, you can load files in pairs (or triplets if you add, for example, a Uniform Vectors file, etc). Only
Animatable Files can be loaded as sets. For example, if you load a Basic Particles file named part_1234.bin,
and then load a Uniform Scalars file named scal_1234.bin (the same 4−digit record label), IFrIT will
recognize these files as a set. The Basic Particles file becomes a set leader, and you will be able to load files
in sets: if you load a new leader (another Basic Particles file, say, part_5678.bin), then the corresponding
Uniform Scalars file (scal_5678.bin) will be loaded automatically. Sets can, of course, include data files of all
4 formats.

If one of the files in a set does not exist, or you load an individual file rather than a set, the set will be broken
and IFrIT will treat files as unrelated.

Subdirectory docs of IFrIT source distribution contains three files: writeIFRIT.f, writeIFRIT.c, and
writeIFRIT.pro that contain Fortran, C, and IDL code respectively for writing all four types of IFrIT
data files. These files are also listed in Appendix A.

Cell vs Point Data

In order to understand the placement of the data in the scene, you need to know the difference between the
cell and point data. Data can be specified on a uniform mesh in two distinct ways. If every cell of a mesh is
represented as a cube, the data can be specified either at the center of a cube (cell data), or at the vertices of a
cube (point data). Most of VTK classes can only handle point data, while most simulation codes place the
data at cell centers. To handle this inconsistency, IFrIT allows to specify the placement of the data and
converts the cell data into the point data automatically by appropriately shifting the data relative to the
bounding box.

If the data in the data file is the point data, then nothing needs to be done and IFrIT can use it directly. In that
case, though, you have to make sure that the data descriptions in IFrIT and in the file are consistent. For
example, if you specify periodic boundary conditions, the data values on the opposite sides of the data cube
should be identical. If they are not, then extending data periodically beyond the bounding box will create
visualization artifacts.

If your file contains the cell data, IFrIT treats cell centers as vertices of a new uniform mesh; corners of this
new mesh would not, in general, coincide with corners of the bounding box, but all viualization methods

1 User Guide 1.3.1 Overview

© 2005−2007 by Nick Gnedin 8

would work properly with your data.

You can thing about cell data as filling the space completely, so cell data provides a value for every spatial
point, even those points that do not lie on the grid. Point data is, instead, sampling the data on a et of discreet
point; interpolation is inevitable when using the point data.

1.3.2 Uniform Scalars Data

IFrIT Uniform Scalars data file contains uniformly spaced 3−dimensional mesh of data values. Both, plain
text (ASCII) and binary (Fortran−type binary of any endiness) files are accepted.

Plain text file. This file should have an extension "txt" (as in "myfile.txt", lower−case or upper−case does not
matter) and should contain in its first line three integer numbers: the sizes of the mesh in X, Y, and Z
directions. These dimensions do not have to be the same. Each line after the first one should contain up to 10
floating point numbers as values for the physical variables at each cell of the mesh. The first dimension
changes the fastest. For example, the following file:

12 33 55
1.0456 4.56768 2.45e−30
0.9866 5.45890 3.07e−20
 ...
(12*33*55+1 lines altogether)

defines a 12 by 33 by 55 data mesh with three physical variables.

Binary file. This file should have an extension "bin" (as in "myfile.bin") and should be a Fortran
unformatted binary file. The data in the file must be in single precision (Fortran real*4, C float). The
file should contain at least 2 records. The first record should contain 12 bytes of data as 3 integer numbers:
mesh sizes in three dimensions (n1, n2, and n3). The remaining records should contain n1*n2*n3 floating
point numbers each: one scalar variable per record.

1 User Guide 1.3.2 Uniform Scalars Data

© 2005−2007 by Nick Gnedin 9

Structure of the IFrIT Uniform Scalars data binary file

Examples of the code that can write such files is given in Appendix A.

1.3.3 Uniform Vectors Data

IFrIT Uniform Vectors file format is identical to the Uniform Scalars data file format with three vector
components stored as three scalar variables.

1.3.4 Uniform Tensors Data

IFrIT (symmetric) Uniform Tensors data file format is identical to the Uniform Scalars data file format with 6
tensor components stored as 6 scalar variables in the following order: 11, 12, 13, 22, 23, 33.

1.3.5 Basic Particles Data

IFrIT Basic Particles data file contains three positions and, optionally, several attributes for a set of particles.
Both, plain text (ASCII) and binary (Fortran−type binary of any endiness) files are accepted.

Plain ASCII file. This file should have an extension "txt" (as in "myfile.txt", lower−case or upper−case does
not matter) and should contain in its first line one integer number: the total number of particles in the file. The
second line should contain 6 numbers that determine how the particle positions relate to the bounding box.
The first three numbers are X, Y, and Z coordinates of the lower−left−back corner of the bounding box in the
units in which particle coordinates are given. The last three numbers are X, Y, and Z coordinates of the
upper−right−front corner. For example, if you ran a simulation with a cubic box of 5 meters in size, and your
particle positions are given in meters, and the left−lower−back corner of your box has coordinates of (0,0,0)
meters, then the second line should be: 0.0 0.0 0.0 5.0 5.0 5.0 X−label Y−label Z−label.
Optionally, three strings are allowed at the end of the line to use as axis labels if the bounding box is
displayed as 3−dimensional axes. This is useful for making 3D scatter plots.

1 User Guide 1.3.3 Uniform Vectors Data

© 2005−2007 by Nick Gnedin 10

Each line after the second one should contain three floating point numbers as values for the three coordinates
for each particle and, optionally, up to 10 more numbers as values of attributes. The attributes can be used to
distinguish particles in a set. For example, the following file:

120
0.0 0.0 0.0 5.0 5.0 5.0
1.0456 4.56768 3.05678 2.45e−30 1.11e+10 0.555
0.9866 5.45890 −2.0568 3.07e−20 2.44e+11 −0.34
 ...
(120+2 lines altogether)

defines a set of 120 particles with three attribute fields defined. Notice that the second particle is located
outside the bounding box − there is nothing wrong with that.

Binary file. This file should have an extension "bin" (as in "myfile.bin") and should be a Fortran
unformatted binary file. The file should contain at least 5 records. The first record should contain 4 bytes of
data as 1 integer number: the number of particles n. The second record should contain 24 bytes as 6 floating
point numbers for 6 values of the bounding box. Records from 3 to 5 contain n single or double precision
floating point numbers (4*n or 8*n bytes) each, which are x, y, and z coordinates of particles (i.e. all x
coordinates are stored in record 3, all y coordinates are stored in record 4, etc). Optional remaining records
contain n single precision floating point numbers with particle attributes (scalar values that characterize
individual particles).

1 User Guide 1.3.5 Basic Particles Data

© 2005−2007 by Nick Gnedin 11

Structure of the IFrIT Basic Particles data binary file

Examples of code that can write such files is given in Appendix A.

1.4 IFrIT Palettes

1.4.1 Overview

IFrIT includes a set of pre−defined palettes (or color−maps), i.e. a one−dimensional sequences of colors that
are used to map scalar values to a color of a point in the scene. Palettes identified by their numbers:

1: Rainbow

1 User Guide 1.4 IFrIT Palettes

© 2005−2007 by Nick Gnedin 12

2: Temperature

3: Blue−white

4: Prizm

5: Starlight

6: Green−white

7: Blue−red

8: Haze

9: Stern

10: Greyscale

11: 3 color

12: 4 color

Each palette can be used in its original form or "reversed", i.e. with colors changing from right to left. In
addition, new palettes can be created and loaded in GUI shells.

Some of View Objects also use a special palette called "brightness", which includes shades of different
intensity for the current object color. For example, if you the color of the object is red, then using the
brightness palette will color the object with shades of red of varied brightness. This palette can be useful, for
example, for coloring particles with varied intensity of yellow color, to represent stars of different magnitudes.

1.5 Animation Support

1.5.1 Overview

In the Animation mode IFrIT works automatically to generate an animation of your scene. You cannot control
IFrIT interactively in this mode and you cannot change the scene − although IFrIT can change the scene for
you automatically. By default, the output of an animation is a series of image files that show consequitive
snapshots of the visualization scene. Animation images have ifrit−an as the root of their names and they are
distinguished by a 4−digit sequential number, i.e. the results of an animation will be called:

1 User Guide 1.4.1 Overview

© 2005−2007 by Nick Gnedin 13

ifrit−an−00001.jpg
ifrit−an−00002.jpg
ifrit−an−00003.jpg
...

(up to 99999 images can be created). In this case it remains your task to convert the set of images into an
animation format of your choice (many image viewers will also have a slide show feature, so you can simply
display the set of images as a slide show too). In VTK versions 5.0 and above a capability has been added to
create MPEG and AVI (on some platforms) movies − the choice is controlled by the
ViewModule:AnimationOutput property.

Animation mode is only available if the data file name has a specific form. Even if you are going to use just
one file for your animation (for example, for a fly−by through a fixed scene), you still need to name your data
file in a standard way so that IFrIT can understand it as belonging to the animation series − i.e. as an
animatable file.

1.5.2 Animatable Files

Animations are normally made from a series of files. IFrIT will automatically read new files in order to create
an animation. The file names must be in the following format for IFrIT to find them:

[any_string_as_prefix]NNNN.suf

where suf is txt for plain text files or bin for binary files (see Supported Files Formats), NNNN is a
4−digit number (from 0000 to 9999) called record number, and the file name can contain any string before
that as a prefix. For example, the following file names will be recognized by IFrIT as series:

myfile0345.bin
var_9988.bin
0564.txt

whereas the following file names are valid names for a single data file, but cannot be used in making an
animation:

myfile345.bin
var_9988a.bin
0564var.txt.

Files that belong to a series are called animatable.

If IFrIT recognizes the data file as a member of a series, it will first complete all the operations requested for
the current file, and then will automatically load the next file in the series. The files in the series do not have
to be numbered sequentially. For example, if the series contains only two files, myfile0345.bin and
myfile0817.bin, IFrIT will load myfile0817.bin right after myfile0345.bin, even if many
numbers in between are missing. IFrIT will not leave the Animation mode until all the files in the series are
visualized.

1 User Guide 1.5.1 Overview

© 2005−2007 by Nick Gnedin 14

1.6 Animation and Control Scripts

1.6.1 Overview

IFrIT can understand two specialized script languages: an Animator Script and a Control Script. These two
scripts are similar, but not identical, since they are used for different goals. The Animator Script enhances
the capabilities of the Animator object, while the Control Script is used to operate IFrIT in the
Command−line Shell. Two scripts, however, "know" about each other: a piece of the Control Script can be
embedded into the Animator Script, and vice versa. The two scripts do share a set of common statements.

1.6.2 Expressions

Both IFrIT scripts understand variables of four primary types: integer (int in C, integer in Fortran),
logical (bool in C, logical in Fortran), single precision floating point number (float in C, real*4 in
Fortran), and double precision floating point number (double in C, real*8 in Fortran). The primary data
types are referred by their C−style names. However, all calculations are done internally in double numbers,
and only converted to specific types on assignment. Thus, an expression (1/2+1/2) evaluates, as is
naturally expected, to 1 and not to 0 (which would be a result of this expression in a programming language
like C or Fortran). Scripts also understand strings (which must be enclosed in double quotes). Both scripts
accept standard C−style expressions on the right hand side of an assignment operator, or as loop count or if
statement clause. In addition, x^y means "x in power y". Square brackets can be used in a usual way to select
one component of an array (a[1] means the first component of an array a). The only notable exception from
C is that components of script arrays start with 1, not with 0, as in usual C−style arrays − again, I feel it is a
more natural choice. The following functions can be used in the expressions for integer and floating point
types:

sin, cos, tan, asin, acos, atan, sinh, cosh, tanh, asinh, acosh, atanh,
pow10 (power of 10), exp, log (natural log), log10 (log in base 10), sqrt, fabs
(absolute value), ceil (nearest integer from above), floor (nearest integer from below),
sign, min, max, sum, dim (size of the array)

In addition to standard scalar values, one−dimensional arrays (vectors) can also be used in the expressions.
For true spatial vectors (3−dimensional arrays) a dot symbol "." is used to denote the scalar product of two
vectors and a special symbol "%" is used to represent the vector product. A vector can be assigned a
vector−valued construct in the form (c1,c2,...) (no spaces), where c1, c2, ... are scalar expressions. All
calculations are done transparently on arrays, but, of course, array dimensions must be compatible. Scalars
can be added to arrays and arrays can be multiplied by a scalar. If two arrays are added/substracted or
multiplied/divided, the operations are performed on the respective pairs of the elements. For example, let's
suppose that the variable a is a scalar, variables v1 and v2 are 3−component arrays, and variables u1 and u2
are 5−component arrays. Then the following expressions are perfectly valid:

v1.v2 (result: scalar)
v1%v2+2*a (result: 3−component array)
u1*u2+2−(1,2,3,4,2*a) (result: 5−component array)
3*u1+5*a^2*u2+10*a+1 (result: 5−component array)
cos(v1) % sin(v2) (result: 3−component array)
v1[1]*u1 + a*u2 + u2[4] (result: 5−component array)
sin(v1)/cos((v1.v2,0,0))+exp(v2) (result: 3−component array)

1 User Guide 1.6 Animation and Control Scripts

© 2005−2007 by Nick Gnedin 15

Notice that in the last expression the double parenthesis after cos are required: the outer set of parenthesis
enclose the single argument to cos, while the inner set makes a single vector−valued argument from 3
separate scalars. The following expressions are invalid:

v1+u1 (adding two vectors of different dimensions)
u1%u2 (vector product of arrays with other than 3 components is not defined)
u1.u2 (scalar product of arrays with other than 3 components is not defined)

For logical (boolean) expressions the usual C−style relational operators between numbers are defined (<, >,
>=, <=, ==, !=) as well as C−style and (&&) and or (||) and logical not (!). It is illegal to mix boolean and
either integer or float values, but integers and float numbers can be mixed together. For example, the
following expressions are all usage errors:

2 + (a < 3)
1 && (3 != 8)
sin(a>=b)

Three special functions max, min, and sum can be used in two different ways: when they are called with a
single argument, they compute the maximum, the minimum, and the sum of all elements of the array
argument, but if they are called with multiple arguments, they do respective element−by−element operations.
For example, if

v1 = (1,3,5)
v2 = (6,4,2)
v3 = (7,8,9)

then

max(v1) = 5
min(v2) = 2
sum(v3) = 24

but

max(v1,v2,v3) = (7,8,9)
min(v1,v2,v3) = (1,3,2)
sum(v1,v2,v3) = (14,15,16)

For example, since the scalar product operator "." is only defined for 3−component arrays, a scalar product of
arrays with a different number of components can be computed as sum(v1*v2).

1.6.3 Common Statements for Animator and Control Scripts

[var] type[dimension] variable−name[dimension] [,
variable−name[dimension] ...]

This statement declares new variables with names given by one or more alpha−numeric
identifiers variable−name (which must be unique throughout the script). The type of the
new variables is determined by the keyword type, which must be one of the following 4
reserved words: int, bool, float, or double. If the optional dimension in the form

1 User Guide 1.6.2 Expressions

© 2005−2007 by Nick Gnedin 16

[number] is present, the variable becomes a 1−dimensional array (vector) of size number,
which must be a positive integer number. Notice that two forms of array declaration are
supported: in the first (preferred) form the dimension specifier follows the name of the
variable; in the second form the dimension specifier follows the type name. The second form
is for backward compatibility and will be removed in a later version. At the moment both
forms can intermix freely, and the first form takes precedence. For example, the following
statement declares three integer arrays: p and q with 5 elements each and s with 10 elements:

int[5] p, s[10], q

The old−style prefix var is now optional, so that var float is identical to float for all
purposes. For backward compatibility, a type name real is equivalent to float. The new
variables are initialized to zero. Declared variables can be assigned values and can be used in
expressions.

[set] variable−name[dimension] [+−*/]= expression

This statement assigns (or increments in case of +=, −=, *=, or /=) a value given by an
algebraic expression expression to the variable identified by variable−name. The
variable must be either a variable declared earlier in the script with the variable declaration
command, or, in the case of the Animator Script, one of the pre−defined script variables. If
the optional dimension in a form [expression] is present, and the variable is an array,
then the value is assigned to the appropriate component of the array, which must have a value
between 1 and the size of the array. The reserved word set can, in fact, be omitted. Here are
some examples of assignment statements:

q[2] = 3
q += (cos(x^2)+a,2*a,3,4,5)
q[2] *= q[1]*sin(q[3]^2)

loop expression for variable=first,last,step

... or ...
end end

These two pairs of statements form two kinds of simple loops: they repeat the statements
between loop or for and their respective end a number of times. In the loop the number
of executions is specified by the value of expression (if it is less than 1, the loop is
skipped). In the for form, the integer variable with name variable (which must be
declared earlier with the int command) serves as an index of the loop, that takes values from
first to last with an interval of step (all three must be integer−valued algebraic
expressions). If the loop condition is never fulfilled (i.e. last is less than first for a
positive step), then the body of the loop is skipped. For backward compatibility, the
old−style form of the for statement can be used: for variable to last. In that form
the first value for the loop index and the loop step are taken to be 1.

if boolean−expression then
...
else
...
end

1 User Guide 1.6.3 Common Statements for Animator and Control Scripts

© 2005−2007 by Nick Gnedin 17

These statements form a normal conditional execution branch, and else branch can, of
course, be omitted. You should use usual C−style comparison operators to compare numbers:
<, >, >=, <=, &&, ||, !=. For backward compatibility, the closing end can be replaced with
endif.

embed animator−script (to be used in the Control Script)
embed control−script (to be used in the Animator Script)

The first form of this statement includes a piece of the Control Script inside the Animator
Script, the second form is for the inverse insertion. The piece of the script inserted should
begin on the same or the next line, and every line after embed should start with the symbol
greater (>) followed by a whitespace. The embedded piece is immediately executed. For
example, here is the piece of the Animator Script (blue) embedded into the Control Script
(black), into which is embedded another piece of the Control Script (green):

exec DataReader:LoadData/UniformScalars/+z1000.txt
embed animator−script
> set number−of−frames = 10
> set style = tumble
> render 2
> embed control−script
> > show Surface
> > animate # this command is silently ignored.
> render 2
hide Surface

To avoid infinite recursion, only two levels of embedding are allowed, and only one of the
embedded scripts can be the Animator Script, i.e. the example above shows the only allowed
case of double embedding. Any attempt of further embedding, or calling animate from the
inner Control Script will be silently ignored (as commented in the example above).

A script embedded into another has read−only access to all variables and parameters defined
in the parent script, including access to grandparent's variables. For example, in the following
fragment:

int granny
embed animator−script
> int daddy
> embed control−script
> > int child
> > child = daddy + granny
> > daddy = child^2 # error: daddy is read−only.

the first statement is legitimate, since the child script can see variables from all its parents, but
the second will generate an error, since the variables from the parent script are defined as
read−only, i.e. they can appear on the right hand side of the assignment operator, but cannot
be assigned values to.

1 User Guide 1.6.3 Common Statements for Animator and Control Scripts

© 2005−2007 by Nick Gnedin 18

1.6.4 Specific Control Script Statements

The following statements are only valid in the control script:

exec request [request ...] (short form .e)
exec−all−objects request [request ...] (short form .eo)
exec−all−windows request [request ...] (short form .ew)

The first form of this command executes one or more control module requests for the current
object. A request has the following form:

object:property[index]/value[/value...]

where object is the name of the object to which this request is addressed, property is the
property (i.e. parameter) that serves the request, and value is the value to be assigned to the
object parameter which is controlled by this property (can be an array). The optional index
specified in the square brackets can be used to set a single component of an array. For
example, the following command:

exec Camera:ParallelProjection/0

will set the projection in the visualization window to perspective. The same command can be
types in a short form as:

.e c:pp/0

where .e is the short form for exec. The first of the following two requests sets the position
of the current marker to (1.0,2.0,3.0), while the second request only changes marker's
Y coordinate (array indicies start with 1):

exec Marker:Position/1.0/2.0/3.0
exec Marker:Position[2]/4.0

Two other forms of the exec command will execute the request for all instances of the object
in the current window and for all instances in all windows respectively. The value in the
request may be a script expression, but in that case it must be enclosed into braces ({}) even if
it is a single variable. For example the following statements are the perfectly valid way to
issue a request:

var int mode, a, b
mode = 2
a = 2
b = 12
exec Camera:ParallelProjection/{1−mode/2}
exec Marker:Position[{a}]/{sin(b)}

show object (short form .s)
hide object (short form .h)

These two commands show/hide a visualization object specified by object.

1 User Guide 1.6.4 Specific Control Script Statements

© 2005−2007 by Nick Gnedin 19

create object [/type] (short form .c)
delete object (short form .d)

These two commands create/delete a new instance of a visualization object. The valid values
for object are Surface, CrossSection, ParticleGroup, and ViewModule
(other objects cannot have multiple instances). In the latter case an optional type can be
specified, which takes two possible values: copy (creates a new View Module and copies
internal settings from the old one to the new one) or clone (a clone shares the data with the
parent View Module).

current−window id (short form .u)

This command sets the visualization window #id as current. For example, the following 2
commands create a new visualization window (View Module) and make the second window
current:

create ViewModule
current−window 2

animate [filename] (short form .a)
animate /type

This statement starts an animation. If the optional name of the file (which should not be
enclosed in quotes) with the Animation Script is specified, the script is used for the
animation, otherwise the Animator objects settings are used for producing the animation. The
form with the file name is analogous to the embed command, with the only difference that
the embed command places the text of the Animator Script to be embedded directly into the
body of the Control Script, while the animate command reads the Animator Script from
a file. In the second form of this command, a single option /type is accepted, where type
is either all or clones; in this form Animators of all other View Modules or of only
clones of the current one will be driven by the current Animator object.

render state (short form .r)

This command toggles whether the scene is rendered after each command; state has only
two values: on or off.

The following commands work only for the top−level interactive Constrol Script. For an embedded Control
Script these commands are silently ignored, without generating any error, so that the same script can be used
as both the top−level script and as an embedded one.

print query [, query ...] (short form .p)

This command prints the value(s) of one or more query(s), which can be any script
expression, including an object property in the form object:property. If this script is
embedded, this command will produce nothing.

list objects (short form .lo)
list properties object (short form .lk)

1 User Guide 1.6.4 Specific Control Script Statements

© 2005−2007 by Nick Gnedin 20

The first of these two commands lists all available objects, the second lists all properties for
an object specified by object

help [command] (short form .q)
help object object (short form .qo)
help property object:property (short form .qk)

The first form of this command prints a short help for each of the Control Script commands.
A call to help without an argument lists all script commands with short annotations. The
second and third forms produce help information about a specific object or a specific
property.

An object property in the form object:property is considered to be a script variable, and can participate
in expressions just like any other variable. Needless to say, that types and dimensions of the object property
should match those required from a regular variable at this place in the expression, with one exception: a
color−valued property is assigned to an integer so that a (r,g,b) color is assigned as
r+256*b+65536*b.

1.6.5 Specific Animator Script Statements

The following statements are only valid in the animator script:

render expression
render−all expression

This statement evaluates the algebraic expression expression and performs that number of
consequent renderings of the scene in the current window (the first form) or in all
visualization windows (the latter form).

render−set array

This statement performs one rendering of the scene in the subset of all visualization windows
whose numbers are contained in array.

reset

This statement resets all the values of the pre−defined script variables to their default values.
This command is useful for making sure that script always executes the same way
independently of the internal settings of the Animator object.

load expression

This statement evaluates the algebraic expression expression and loads the data set with
that record number. As a special case, a parameter next is allowed instead of the
expression, in which case the next record is loaded.

execure−control−script filename

This statement executed the Control Script from the file with name filename (which must
exist and must contain the Control Script). This command is analogous to the embed

1 User Guide 1.6.5 Specific Animator Script Statements

© 2005−2007 by Nick Gnedin 21

command, with the only difference that the embed command places the text of the Control
Script to be embedded directly into the body of the Animator Script, while the
execute−control−script command reads the Control Script from a file.

1.6.6 Pre−defined Animator Script Variables

In addition to local variables declared with the var command, the Animator Script understands several
pre−defined (global) variables. These variables can be assigned values to, but cannot be used on the right hand
side of an assignment operator, i.e. they don't have any values (in fact, they simply pass the values that are
"assigned" to them to other components of IFrIT). In this respect, they are the opposite to parameters, which
have values but cannot be assigned to.

Pre−defined variables:

style sets the style of the animation to one of the five parameters: static, rotate, tumble,
flyby, and path.

•

number−of−frames specifies the number of frames to animate for each data file. An old−style
alias frames−per−file for this variable is also currently understood, but will be removed in a
later version.

•

number−of−blended−frames specifies the number of frames for the gradual blending of
subsequent frames. An old−style alias blended−frames for this variable is also currently
understood, but will be removed in a later version.

•

number−of−transition−frames specifies the number of frames for the gradual transition
between the two consequent data files (the old scene slowly dissolves while the new scene slowly
forms). An old−style alias transition−frames for this variable is also currently understood, but
will be removed in a later version.

•

flyby−speed sets the speed of the camera in the fly−by mode.•
rotation−phi sets the rotation (in degrees) around the vertical axis between the two consequent
frames (camera's azimuth).

•

rotation−theta sets the rotation (in degrees) around the horizontal axis between the two
consequent frames (camera's elevation).

•

rotation−roll sets the rotation (in degrees) around the camera axis (the axis perpendicular to the
screen) between the two consequent frames.

•

zoom sets zooming of the scene between the two consequent frames.•
cross−section−speed sets the speed of the cross−section (if it is set to move through the
visualization scene) relative to the speed of animation.

•

camera−focal−point
camera−view−up
camera−position are 3D spatial duble−valued vectors. The value that can be assigned to them
should be a 3−component array. Setting these variables moves the focal point, the "view up" vector
(the vertical direction from the camera's point of view), and the position of the camera respectively to
the specified point.

•

camera−parallel−scale changes the camera parallel scale, i.e. the height of the viewport in
world−coordinate distances. Note that the "scale" variable works as an "inverse scale" − larger
numbers produce smaller images. This variable has no effect in perspective projection mode. An
old−style alias camera−scale for this variable is also currently understood, but will be removed in
a later version.

•

projection sets the projection of the scene to either parallel or perspective.•
record−label•

1 User Guide 1.6.6 Pre−defined Animator Script Variables

© 2005−2007 by Nick Gnedin 22

color−bars
bounding−box switch on and off these scene features. They can only be assigned one of two
parameters: hidden or visible.
record−label−value allows to specify the value displayed as the record label from the script.•
title−page−file specifies the name (a double−quoted string) for the image file to use as a title
page for the animation.

•

title−page−number−of−frames specifies the number of frames to display the title page
before the start of the animation.

•

title−page−number−of−blended−frames specifies the number of frames during which the
title page gradually dissolves, revealing the visualized scene.

•

logo−file specifies the name (a double−quoted string) for the image file to use as a logo image in
the corner of the visualization scene.

•

logo−opacity specifies the opacity of the logo as a floating point number between 0 and 1.•
logo−position specifies the position of the logo as one of the four possible parameters:
upper−left−corner, upper−right−corner, lower−left−corner, and
lower−right−corner.

•

surface
cross−section
volume
particles
vector−field
tensor−field can only be assigned one of two parameters: hidden or visible. They switch
rendering of respective visualization objects on and off.

•

surface−level is an array with the dimension equal to the number of surface instances (i.e. it
accepts an index qualifier in the form [N], where N is the positive number. A special parameter
current means the current instance. The variables set isosurface level for the instance N (or for all
instances of no index qualifier is supplied). If such instance does not exist, this command does
nothing (no error is reported).

•

cross−section−position is similar to surface−level variable; it sets the position for the
cross section instance(s).

•

Earlier versions of IFrIT also supported other variables that are currently deprecated − using them will trigger
error messages. The capabilities offered by those variables are overwhelmingly superceeded by the embed
control−script command that allows one to change any internal setting from within the Animator
Script.

1 User Guide 1.6.6 Pre−defined Animator Script Variables

© 2005−2007 by Nick Gnedin 23

2 Shell Reference

2.1 Command−line Shell Reference

2.1.1 Command−line Shell

The command−line shell is a little more than an interface to the Control Script. Script commands are typed
one per line. In order to allow for multi−line commands (like loop...end), typed commands are not executed
immediately, but saved in a buffer. The full buffer gets executed when the typed command is appended with
the semi−colon (;). Script commands that produce help information (help, list, and print) are executed
immediately even without a semi−colon. Command−line shell also adds the following three commands to the
Control Script:

window (use a single dot . as a short form)

Because the command−line shell does not implement an event loop, like in a GUI shell, a
keyboard focus has to be switched explicitly between the command−line prompt and the
mouse interaction in visualization windows. This command switches the focus from the
command line to the visualization windows. Press 'q' in one of the visualization windows to
switch the focus back to the command line.

< filename

© 2005−2007 by Nick Gnedin 24

This command includes the text from a file with filename into the body of the script (as if
it was typed from the keyboard). If the file name starts with the plus sign (+), the name of the
IFrIT main directory will be prepended to the file name, replacing the plus sign.

exit
quit

These two commands exit the command−line shell and terminate IFrIT.

2.2 GUI Shell Reference

2.2.1 Graphical User Interface (GUI) Shell

The GUI shell provides a fast access to all object properties through a set of GUI widgets (on−screen control
elements). All widgets have a dynamic help feature: pressing [Cntr] and F1 keys together while a mouse
cursor points on a particular GUI widget will pop−up a small help window for that widget.

In addition, the GUI shell includes several dialogs that provide additional functionality, as described below.

2 Shell Reference 2.1.1 Command−line Shell

© 2005−2007 by Nick Gnedin 25

2.2.2 Animation Script Debugger

Animation Script Debugger is a tool designed to
ease−up debugging of animation scripts. It includes a
standard editor with usual New, Open, Save, etc file
manipulation functions and Undo, Cut, Paste etc text
editing functions for editing the script. The editor
supports script syntax highlighting. Script debugging
is controlled by menu entries (and tool buttons) for
compiling the script, for setting or removing a
breakpoint (marked by a different background color of
a script statement), and for starting debugging.In the
debugging mode a control panel appears at the bottom.
The panel includes 4 buttons for running and stopping
the script and for stepping the script one line or one
frame at a time. The latter two buttons have different
behaviour only with statements render, render−all,
and render−set. For example, the following statement:
 render 10
will be executed in one step with the
step−one−line−at−a−time button, but will require 10

clicks with the step−one−frame−at−a−time button. Breakpoints can be set in the script and will behave as
expected.

During the execution, the current script line is highlighted as if it was selected in the editor mode, and
selection follows the script as it is being executed. A Variables window will display all currently defined
script variables and their respective values. In addition, any internal loop counter (like inside render
statetements or a silent counter of the loop statement) will be displayed when it value changes.

A delay slider can be used to adjust a time delay between execution of two subsequent lines − without a
delay, the script will be executed as fast as possible, but it might be difficult to follow with the eye what
statements are being executed at every moment. The use dummy scene box, if checked, will replace the real
scene with a simple dummy object, to speed up rendering. In addition, subsequent data files in the dummy
mode are not actually loaded from the disk, but only checked to exist.

2.2.3 Array Calculator

Array Calculator allows a user to perform
mathematical manipulations with scalar field
variables. Up to first three variables can be used in
the expression, and, in addition, a magnitude of the
vector field be used as well, if the dimensions of the
vector field data coincide with the dimensions of the
scalar data. The array calculator window has a
calculator−like interface that is straightforward to
use.

2 Shell Reference 2.2.2 Animation Script Debugger

© 2005−2007 by Nick Gnedin 26

2.2.4 Command Line

The Command Line dialog provides access to
Control Module Requests, just like in the
command−line shell.

2.2.5 Data Explorer

The Data Explorer dialog can be used to obtain
information about the currently loaded data. The
available variables from the "All variables" window
can be moved to the "Shown variables" window
with a click of a button. The histograms of all shown
variables are displayed in the main window, and the
information about the top shown variables is listed
on the right.

2.2.6 Palette Editor

Palette Editor allows to modify existing
palettes, create new ones, save or load
custom palettes to/from a file, and
remove palettes from the list. Editing of a
palette is performed using three windows
for sculpting a color component for all
three colors. Other functions can be
invoked by pressing the respective
buttons. Palette Editor saves palettes
into files with extensions ".ipf" (IFrIT
Palette File).

2 Shell Reference 2.2.4 Command Line

© 2005−2007 by Nick Gnedin 27

2.2.7 File Set Explorer

File Set Explorer can be used to load an arbitrary member of a file
set. The main part of the window is a list of members in the current
file set. Clicking with the left mouse button on any member of the set
will highlight it. Using the mouse with the left button pressed,
several consequitive members can be highlighted at once. Pressing
the Enter key will load selected members of the set one after
another. Double clicking on a given member will load this one
member too. In addition to using the mouse, a user can also use
keyboard navigation (up and down keys, Page Up and Page
Down, and Home and End keys) to move along the displayed list. If
the Control key is pressed together with other navigation keys, the
selection will change instead.
If the Load data for all visualization windows box
is checked, IFrIT will try to load corresponding members (with the
same record number) for all sets displayed in various visualization
windows. For example, if window #1 shows the data from a file
aaa_0010.bin, and window #2 shows the data from a file
bbb_0015.bin, then loading the file aaa_0020.bin in window
#1 will also cause loading of the file bbb_0020.bin in window #2

(if such a file exists).

2.2.8 Image Composer

Image Composer dialog is a tool that
allows you to organize several
visualization windows into one image
(both as a snapshot image and as a part of
an animation). Image Composer has two
layers: a background and a foreground. A
small book (tab) widget to the right of the
drawing area gives you controls for these
two layers. Background layer consists of
regularly tiled images from one or several
visualization windows. You van change
the number of tiles in the horizontal and
vertical directions, assign a given
visualization window to a given tile (or
not assign any window at all), add a
border to the full image with a selectable
color, and specify whether the border
only surrounds the whole image or each

individual tile as well. Tiles that have no visualization window attached to them can be filled with a
background image that should be read from an external file. Usual IFrIT image formats are understood (PNG,
JPEG, PNM, BMP, and TIFF). Foreground layer consists of freely floating "inserts" that must be associated
with a visualization window. Inserts can be moved around by clicking on them with the left mouse button and
dragging them around. They can be scaled to a fraction of their original size and added a border of a
predefined color. Check the Reference Guide for the Image Composer object for more information.

2 Shell Reference 2.2.7 File Set Explorer

© 2005−2007 by Nick Gnedin 28

2.2.9 Picker Window

Picker Window is brought up during the pick operation −
when you press the "P" key in the visualization window. If
anything is picked in your scene, the Picker Window will
appear, and a small marker sphere will be placed at the
picked position. The Picker Window has a slider to control
the size of the matker and a check box to select hardware vs
software picking. The hardware picking is much faster, but
may not work properly when translucent objects are present
in the scene.

2.2.10 Parallel Controller

Parallel Controller can be used to monitor the
parallel performance. Most of IFrIT operations can
be done in parallel if more than one processor is
available. The maximum possible number of
processors that IFrIT will use is set by −np
command−line option.

2.2.11 Event Recorder

Event Recorder is used to record and play back
mouse and keyboard events registered in the
visualization windows. Its basic functionality is very
similar to a usual tape recorder, except the tape is
replaced by a file. As an option, an image of the
scene can be dumped after each event is played back
− this can serve as a crude way of making
animations, although IFrIT supports much better
ways of making very complex .

2 Shell Reference 2.2.9 Picker Window

© 2005−2007 by Nick Gnedin 29

2.2.12 Additional command−line options

A GUI shell accepts the following additional command−line options:

−8: force IFrIT to use an 8−bit display; without this option IFrIT will refuse to work
with an 8−bit display, as the quality of visualizations will be very poor.

♦

−d: start IFrIT with all windows docked together; this is equivalent to starting IFrIT
and then docking windows using the corresponding menu option.

♦

−fs <number>: increase (if number > 0) or decrease (if number < 0) the size of
font in GUI windows; this also increases/decreases window sizes.

♦

−nf: do not show a splash window at start−up.♦
−owm: this option instructs IFrIT not to expect that the window manager is modern
and has a close window button on top of a window; if this option is specified, IFrIT
will place a close button on dialog windows.

♦

−sd: this option tells IFrIT that the desktop is small, so that it should not arrange
windows on the desktop; by default, IFrIT assumes that the desktop is small if its
height is less than 1024 pixels and its width is less than 1280 pixels.

♦

2 Shell Reference 2.2.12 Additional command−line options

© 2005−2007 by Nick Gnedin 30

3 Object Reference

3.1 Overview

3.1.1 Components of the IFrIT core

The core of IFrIT consists of objects. Depending on their use, objects are divided into two categories:
modules and View Objects. A hierarchy of IFrIT objects is shown in the figure below.

IFrIT object hierarchy

Modules form the highest level of object hierarchy. A Control Module object plays a role of the root of the
hierarchy, its main function is to provide coordination between various View Modules. A View Module
appears as an IFrIT visualization window on the screen. All View Objects belong to one of the View
Modules, with the single exception of ImageComposer module, which is responsible for composing a
snapshot or an animation image from several View Modules.

Each View Module is an independent part of IFrIT that has its own visualization window on the computer
screen, its own set of other objects and, often, its own data. Some of View Modules may share the data with
another View Module − in that case the owner of the data is called a "parent" View Module, and sharing
View Modules are called "clones". Irrespectively of whether a given View Module is a clone or a parent, it
has its own set of View Objects. View Modules are directly responsible for a general setup of the
visualization scene, such as lighting, camera properties, bounding box, clipping plane, and various accessories
(such as rulers, labels, measuring boxes, etc). They "outsource" operations on various components of the
visualization scene and manipulations on the data to their own View Objects.

© 2005−2007 by Nick Gnedin 31

Some View Objects are responsible for maintaining various parts of the visualization scene. For example the
Surface object represents a two−dimensional surface within the visualization scene that samples the
three−dimensional scalar data (either as an isosurface of a particular scalar variable, or a specified geometric
shape like a sphere or a plane), while the Particles object represents a set of particles (points).

Other View Objects (also called Helper Objects) perform various functions that are not directly represented
in the visualization scene. For example, the Data Reader object is responsible for loading data files into
IFrIT, while the Animator object creates animations of your visualization scene in a diverse variety of ways.

Object are manipulated by special requests, which invoke specialized parts of each object called properties.
You can think of a property as of a special variable: as soon as you assign a new value to the variable,
something happens. For example, if you assign a value 1 (which is equivalent to true) to the property
ViewModule:BoundingBox, the bounding box will appear in the visualization scene. Assign 0 (false) to
the same property, and the bounding box disappears. In the Command−line Shell these requests are typed
explicitly in the command prompt, but in GUI shells commands are issued by GUI widgets, and a user does
not need to know the specific form of every command.

3.1.2 ControlModule Requests

Objects in IFrIT are manipulated by means of requests to the Control Module object. Each request is a string
in the following format:

object:property[index]/value[/value...]

where object is the name of the object to which this request is addressed, property is the name of the
object property that serves the request, and value is the value to be assigned to the object parameter which is
controlled by this property (can be an array). The optional index specified in the square brackets can be used
to set a single component of an array.

Most of object properties correspond to internal settings of an object, i.e. numerical values can both be
assigned to them and read from them. Some properties, however, are "read−only", i.e. they give access to a
value, but do not allow to change it. A small subset of properties are so−called "action" properties, i.e. they
are write−only properties: assigning a value to them causes some action to be performed, without necessarily
changing the internal state of an object. One example of action properties is the LoadData property of the
DataReader object; assigning this property a two−component string array loads a data file from the disk.

3.2 Available objects

Modules:

ControlModule•
ImageComposer•
ViewModule•

View objects:

CrossSection•
Marker•
ParticleGroup•
Particles•

3 Object Reference 3.1.1 Components of the IFrIT core

© 2005−2007 by Nick Gnedin 32

Surface•
TensorField•
VectorField•
Volume•

Helper objects:

Animator•
Camera•
ColorBars•
DataReader•
Picker•

Data objects and data types

Names of data objects are derived from the corresponding names of data types by adding "Data−" in front.
The following data objects are available:

Data−BasicParticles object (short form: d−bp)
This object represents the Basic Particles data type.

•

Data−GADGETBoundaryParticles object (short form: d−gzp)
This object represents the GADGET boundary particles.

•

Data−GADGETBulgeParticles object (short form: d−gbp)
This object represents the GADGET bulge particles.

•

Data−GADGETDiskParticles object (short form: d−gdp)
This object represents the GADGET disk particles.

•

Data−GADGETGasParticles object (short form: d−ggp)
This object represents the GADGET Gas particles.

•

Data−GADGETHaloParticles object (short form: d−ghp)
This object represents the GADGET halo particles.

•

Data−GADGETStellarParticles object (short form: d−gsp)
This object represents the GADGET stellar particles (stars).

•

Data−NativeVTKPolyData object (short form: d−vtkp)
This object represents polygonal mesh data type in the VTK native format.

•

Data−NativeVTKScalars object (short form: d−vtks)
This object represents scalar data type in the VTK native format.

•

Data−NativeVTKTensors object (short form: d−vtkt)
This object represents tensor data type in the VTK native format.

•

Data−NativeVTKVectors object (short form: d−vtkv)
This object represents vector data type in the VTK native format.

•

Data−UniformScalars object (short form: d−us)
This object represents the Uniform Scalars data type.

•

Data−UniformTensors object (short form: d−ut)
This object represents the Uniform Tensors data type.

•

Data−UniformVectors object (short form: d−uv)
This object represents the Uniform Vectors data type.

•

All Data objects have the same set of propeties

3 Object Reference 3.2 Available objects

© 2005−2007 by Nick Gnedin 33

3.3 Animator object

Animator creates a series of snapshots ("animation"). It can modify the scene between the subsequent
snapshots in a variery of ways, from plain rotation to following a camera path, and load subsequent data files
at specified intervals to follow the evolution of the scene, as explained in Animation Support. The animation
can start with a title page, and a small logo image can be displayed in every animation frame. Animator can
work either by using its internal settings, or by following the Animator Script.

Short form: a

Available properties:

CameraPathClosed (short form: cpc; type: bool; # of arguments: 1)
A switch that specifies whether the camera path is a closed loop (PathLoop=1) or an open curve
(PathLoop=0).

•

CameraPathDemo (short form: cpd; type: bool; # of arguments: 1)
This is an action property, assigning 1 to it causes the camera to follow the camera path without
actually loading any new data files or producing animation snapshot images. After the demonstration
of the camera path, the camera view is restored to its original state.

•

CameraPathX (short form: cpx; type: float; # of arguments: any)
Properties CameraPathX, CameraPathY, and CameraPathZ set X, Y, and Z coordinates of the
points on the camera path. These three properties are arrays, and each of them must have the number
of components specified by the NumberOfCameraPathSteps property. Extra components of these
arrays will be ignored, and missing components will be undefined. These properties are mostly used
for saving and restoring the internal state, since the camera path is most conveniently modified
interactively with the mouse using the camera path handles.

•

CameraPathY (short form: cpy; type: float; # of arguments: any)
See CameraPathX.

•

CameraPathZ (short form: cpz; type: float; # of arguments: any)
See CameraPathX.

•

CrossSectionSpeed (short form: xs; type: float; # of arguments: 1)
The speed of the CrossSection object (measured as a distance by which cross section moves between
the two consequitive frames) during the animation. The current cross section will move through the
bounding box with this speed. If multiple instances of the CrossSection object are shown, only the
current instance will move during the animation. The cross section will bounce off the bounding box
edge, if it reaches it.

•

FlybySpeed (short form: fs; type: float; # of arguments: 1)
A camera speed in the fly−by style, as measured by a distance a camera travels between two
consequitive frames. The distance is measured in OpenGL units, with the bounding box size being 2.

•

FocalPathEnabled (short form: fpe; type: bool; # of arguments: 1)
A switch that toggles the focal point path. The focal point path is a path along which the focal point of
the camera moves when the camera is marching along the camera path. Using both the camera path
and the focal point path allows to specify an arbitrary transformation of the camera during the
animation.

•

FocalPathToPoint (short form: fpp; type: bool; # of arguments: 1)
A switch that specifies whether the focal point path is compressed ito a single point
(FocalPointPathToPoint=1). In that case the camera is pointing towards a single point during the
whole animation.

•

3 Object Reference 3.3 Animator object

© 2005−2007 by Nick Gnedin 34

FocalPathX (short form: fpx; type: float; # of arguments: any)
Properties FocalPathX, FocalPathY, and FocalPathZ set X, Y, and Z coordinates of the points on
the path the camera focal point follows in the camera path mode. These three properties are arrays,
and each of them must have the number of components specified by the NumberOfCameraPathSteps
property. The focal path may be disabled using the FocalPathEnabled property, or compressed into a
single point using the FocalPathToPoint property.

•

FocalPathY (short form: fpy; type: float; # of arguments: any)
See FocalPathX.

•

FocalPathZ (short form: fpz; type: float; # of arguments: any)
See FocalPathX.

•

InheritSettings (short form: is; type: bool; # of arguments: 1)
A switch that specified whether the internal settings of the Animator object are retained when the
Animator Script is used. If InheritSettings=0, the Animator Script starts with all settings
initialized to zero. This is equivalent to calling reset command as the first command of the script.

•

LoadScriptFile (short form: ls; type: string; # of arguments: 1)
This write−only (action) property loads a file with the animator script and instructs the Animator
object to use the script for animations.

•

LogoFile (short form: lf; type: string; # of arguments: 1)
The name of the file with the image to be used as a logo shown on every animation snapshot image.
The image must be in one of the formats understood by VTK (JPEG, PNM, BMP, TIFF, and PNG).
Logo images are usually small, if the image in the file exceeds 20% of the animation snapshot image,
it will be scaled down. The logo image can be placed in one of the four corners of the animation
image with the LogoPosition property, and its opacity (transparency) can be controlled with the
LogoOpacity property.

•

LogoOpacity (short form: lo; type: float; # of arguments: 1)
The opacity of the logo image, given as a floating point number from 0 to 1. Zero opacity makes the
logo transparent (invisible), while opacity of 1 makes it solid (non−transparent).

•

LogoPosition (short form: lp; type: int; # of arguments: 1)
The position of the logo image on the screen. Integer numbers from 0 to 3 are accepted, as follows:

upper−left corner: LogoPosition=0♦
upper−right corner: LogoPosition=1♦
lower−left corner: LogoPosition=2♦
lower−right corner: LogoPosition=3♦

•

NumberOfBlendedFrames (short form: nb; type: int; # of arguments: 1)
The number of consequitive frames that are blended together in each animation snapshot. Blending
frames creates an impression of gradual transition from one frame to another.

•

NumberOfCameraPathHandles (short form: nph; type: int; # of arguments: 1)
The number of "handles" on the camera path. Handles are used to interactively morph the camera path
by dragging them around with the mouse. More handles will make the camera path more flexible, but
the scene more crowded.

•

NumberOfCameraPathSteps (short form: nps; type: int; # of arguments: 1)
The number of steps along the camera path. In the camera path mode, the camera moves along the
path one step per frame. If the path is too short, the animation will stop prematurely. Selecting the
correct number of steps along the camera path for complex animations may be a non−trivial task. For
examaple, if you are animating a sequence of files with, say, 100 files, and specified 10 frames per
file, then the number of steps along the camera path should be 1000 − then the camera reaches the end
of the path by the time the last file is used up.

•

NumberOfFrames (short form: nf; type: int; # of arguments: 1)
The number of frames for each input data file. This option can be used in several ways. For example,
if you have only one file in a series, using this option you can create an animation of rotation or
fly−by through your data series. If you have a whole series of data files, by setting the number of

•

3 Object Reference 3.3 Animator object

© 2005−2007 by Nick Gnedin 35

frames per file you can control the speed with which the animation is played. For example, if you
have just 30 data files, they will be played in 1 second with a regular MPEG stream. By setting the
number of frames per file to 10, you extend your animation for 10 seconds (with 3 frames per second
it will still look ok if the differences between subsequent data files are not great).
NumberOfTitlePageBlendedFrames (short form: tbf; type: int; # of arguments: 1)
The number of frames during which the title page is blended with the first image of the visualization
scene. Blending creates an effect of a title page slowly dissolving to reveal the visualization scene.

•

NumberOfTitlePageFrames (short form: tnf; type: int; # of arguments: 1)
The number of frames during which the title page is displayed at the beginning of the animation.

•

NumberOfTransitionFrames (short form: nt; type: int; # of arguments: 1)
The number of consequitive frames that are blended together when a new data file is read. This
property is similar to NumBlendedFrames, but only blends frame after a file read, other frames are
saved into the image files as they are.

•

Phi (short form: dp; type: float; # of arguments: 1)
Properties Phi, Theta, and Roll control the angles (in degrees) by which the scene is rotated between
the two consequitive frames. Phi and Theta are usual spherical angles, i.e. phi direction is horizontal
and theta direction is vertical. Roll angle is the angle around the axis parallel to the axis of the camera
(an axis perpendicular to the plane of the screen). In the tumble mode the direction of rotation
changes, so only the total angle of rotation matters.

•

PositionOnPath (short form: pop; type: int; # of arguments: 1)
An integer property that specifies the camera position (step number) on the path.

•

RestoreCamera (short form: rc; type: bool; # of arguments: 1)
A switch that specifies whether the came view should be restored after the animation.

•

Roll (short form: dr; type: float; # of arguments: 1)
See Phi.

•

ScriptFileName (short form: sfn; type: string; # of arguments: 1)
The name of the file with the text of the Animator Script to be used if the animation is to run with
the script. This is a read−only property, use LoadScriptFile action property to actually load a file.

•

StopOnPath (short form: sop; type: bool; # of arguments: 1)
A boolen property that instructs the Animator to stop on the camera path and continue the animation,
keeping the camera fixed in space.

•

Style (short form: s; type: int; # of arguments: 1)
A method of transformation of a scene between the two subsequent frames. The first frame of the
animation is produced from the current scene. After the first frame, IFrIT can transform the scene for
the next frame in one of the five ways:

static (Style=0): the scene does not change from a frame to frame. The scene will change
only if new data files are loaded.

♦

rotate/scale (Style=1): the scene rotates (and optionally scales) during the animation by a
predefined amount (set with Phi, Theta, Roll, and DZoom properties).

♦

tumble (Style=2): the scene tumbles in a random fashion during the animation, i.e. it rotates
(and optionally scales) by a predefined amount in the direction that slowly changes by a
random amount. This is a nice feature for making animations that show the whole scene all
the time.

♦

fly−by (Style=3): the camera flies through the visualization scene along a randomly
precessing trajectory. This feature allows to focus on the detail, but the whole scene may not
be visible for most of the time. IFrIT however takes care to insure that the camera always
points toward the central part of the scene. The starting position of the camera depends on the
projection mode: in the perspective projection mode the camera starts from the current
position, in the parallel projection mode the camera moves closer to the center of the scene
before starting a fly−by.

♦

•

3 Object Reference 3.3 Animator object

© 2005−2007 by Nick Gnedin 36

camera path (Style=4): an interactively adjustable curve is placed in the scene which serves
as a path along which the camera moves during the animation. Optionally, another curve can
be placed into the scene along which the focal point of the camera moves. These curves will
not show in the images produced during the animation.

♦

Theta (short form: dt; type: float; # of arguments: 1)
See Phi.

•

TitlePageFile (short form: tf; type: string; # of arguments: 1)
The name of the file with the image that should be used as title page for the animation. The image
must be in one of the formats understood by VTK (JPEG, PNM, BMP, TIFF, and PNG). If the size of
the title page image is different than the size of the animation snapshot image, the title page image
will be smoothly stretched to match the animation image. The title page will be displayed for a
number of frames set by the NumTitlePageFrames property. After that, a number of frames specified
by the NumTitlePageBlendedFrames property will be blended with the first image of the visualization
scene, producing an effect of a gradually dissolving title page.

•

UseScript (short form: us; type: bool; # of arguments: 1)
A switch that specifies whether the animation must be made using the Animator Script (if
UseScript=1) or the current setting of the Animator object (if UseScript=0).

•

Zoom (short form: dz; type: float; # of arguments: 1)
A zooming factor by which the scene is scaled between the two consequitive frames.

•

3.4 Camera object

Camera object represents the current camera that observes the scene. The camera supports two projection
modes: parallel (orthogobal) and perspective. The orientation of the camera are set by its Position, a
FocalPoint (the point in space the camera is directly looking at), and direction in space that the camera
considers to be "up" (ViewUp vector).

Short form: c

Available properties:

Azimuth (short form: a; type: float; # of arguments: 1)
Rotate the camera horizontally (about the view up vector) centered at the focal point. This is the
action property that specifies the angle of rotation in degrees.

•

ClippingRange (short form: cr; type: double; # of arguments: 2)
This property sets the location of the near and far clipping planes along the direction of projection (in
OpenGL coordinates). Both of these values must be positive. How the clipping planes are set can have
a large impact on how well z−buffering works. In particular the front clipping plane can make a very
big difference. Setting it to 0.01 when it really could be 1.0 can have a big impact on your z−buffer
resolution farther away.

•

ClippingRangeAuto (short form: cra; type: bool; # of arguments: 1)
Switch the automatic adjustment of the Clipping Range on and off. In almost all cases this property
should be set.

•

Elevation (short form: e; type: float; # of arguments: 1)
Rotate the camera vertically (about the cross product of the direction of projection and the view up
vector) centered on the focal point. This is the action property that specifies the angle of rotation in
degrees.

•

3 Object Reference 3.4 Camera object

© 2005−2007 by Nick Gnedin 37

EyeAngle (short form: ea; type: float; # of arguments: 1)
This property specifies the separation between eyes (in degrees) in the stereo mode.

•

FocalPoint (short form: f; type: double; # of arguments: 3)
The property that specifies the focal point of the camera.

•

ParallelProjection (short form: pp; type: bool; # of arguments: 1)
Sets the camera projection mode to parallel (if true), or perspective (if false).

•

ParallelScale (short form: ps; type: float; # of arguments: 1)
This property sets the scaling used for a parallel projection, i.e. the height of the viewport in OpenGL
distances. Note that the ParallelScale parameter works as an "inverse scale" − larger numbers
produce smaller images. This method has no effect in perspective projection mode.

•

Pitch (short form: p; type: float; # of arguments: 1)
Rotate the focal point vertically (about the cross product of the view up vector and the direction of
projection, centered at the camera's position. This is the action property that specifies the angle of
rotation in degrees.

•

Position (short form: x; type: double; # of arguments: 3)
The position of the camera.

•

Reset (short form: rs; type: bool; # of arguments: 1)
This is an action property that resets the camera so that the nearest side of the bounding box faces the
screen.

•

Roll (short form: r; type: float; # of arguments: 1)
Rotate the camera about the direction of projection. This is the action property that specifies the angle
of rotation in degrees

•

ViewAngle (short form: va; type: float; # of arguments: 1)
This property specifies the width (in degrees) of the field of view.

•

ViewAngleVertical (short form: vav; type: bool; # of arguments: 1)
A boolen property that specifies whether the ViewAngle is measured vertically or horizontally.

•

ViewUp (short form: u; type: double; # of arguments: 3)
The property that specifies the unit direction that camera considers to be "up".

•

Yaw (short form: y; type: float; # of arguments: 1)
Rotate the focal point horizontally (about the view up vector centered at the camera's position). This is
the action property that specifies the angle of rotation in degrees.

•

Zoom (short form: z; type: float; # of arguments: 1)
In perspective mode, decrease the view angle by the specified factor. In parallel mode, decrease the
parallel scale by the specified factor. A value greater than 1 is a zoom−in, a value less than 1 is a
zoom−out.

•

3.5 ColorBars object

ColorBars show a correspondence between the color of a point in space and the value of scalar variable
which this color represents. They appear as two bars with text captions on the left and right side of the
visualization window. Normally, IFrIT will display color bars automatically, but they can also be manipulated
manually.

Short form: cb

Available properties:

3 Object Reference 3.5 ColorBars object

© 2005−2007 by Nick Gnedin 38

Automatic (short form: a; type: bool; # of arguments: 1)
A switch specifying whether the ColorBars are in the automatic mode or not. In the automatic mode,
IFrIT determines what variables to display at what color bar. In the manual mode the contents of each
color bar is determined by the user.

•

BarLeft (short form: bl; type: int; # of arguments: 3)
See BarRight.

•

BarRight (short form: br; type: int; # of arguments: 3)
BarLeft and BarRight properties set the properties of each of the two color bars. The argument to
this property is a 3−component integer array, with three components being the scalar variable, the
active data type, and the palette id displayed on the color bar. The palette id is the same quantity used
to specify a palette for View Objects (palette index if >0 and −palette index if

•

Color (short form: c; type: color; # of arguments: 1)
A color of the text legend. In properties colors are specified as 3−component RGB values
int.int.int (like 255.0.0 for red).

•

SideOffset (short form: so; type: float; # of arguments: 1)
A distance by which the color bars are offset from the side of the visualization window, in the fraction
of the window width.

•

3.6 ControlModule object

ControlModule establishes interactions between various visualization windows. For example, it can
synchronize all windows, so that mouse interaction in one window affects all other windows in the same way.
It is also responsible for channeling requests to other objects.

Short form: cm

Available properties:

AutoRender (short form: ar; type: bool; # of arguments: 1)
A switch controlling whether the visualization windows are rendered automatically after every
request, or a render command needs to be issued explicitly. Normally, you do not need to use this
switch.

•

OptimizationMode (short form: om; type: int; # of arguments: 1)
This integer property specifies the way IFrIT tries to optimize its performance. If it is set to 0, IFrIT
will try to optimize for speed, using extra memory whenever it can lead to faster performance; the
value 1 will set optimization for memory, and IFrIT will try to minimize its memory use at the
expense of doing extra calculations. With the value 2, IFrIT will optimize for quality, i.e. it will try to
make the highest quality rendering of the scene even if it takes more memory and more computing
time.

•

SynchronizeCameras (short form: sc; type: bool; # of arguments: 1)
A boolean "action" (write−only) property synchronizing (i.e. orienting them in the same way)
cameras in different visualization windows.

•

SynchronizeInteractors (short form: si; type: bool; # of arguments: 1)
A boolean property switching the interactor synchronization between different visualization windows
on and off. If interactors in different visualization windows are synchronized, mouse interaction in
one window will affect all other visualization windows. This can be useful for, for example,
comparing two different data files, or for looking at two sides of the same scene. If the interactors are

•

3 Object Reference 3.6 ControlModule object

© 2005−2007 by Nick Gnedin 39

synchronized, the views in different windows do not have to be same − different cameras may be
oriented differently, but they will all move in unison.

3.7 CrossSection object

A Cross Section object shows a section (a slice) of the visualization scene. The slice is orthogonal, i.e. it is
always perpendicular to either X, or Y, or Z axis. Use a Surface object to show an arbitrary oriented slice.
Because of the restricted orientation, the Cross Section object is significantly faster to visualize than a
Surface object. Multiple slices can exists simulatenously.An important feature of the Cross Section object is
that it treats point and cell data differently. If you want to show your data as it is, without any interpolation,
set the VoxelLocation property of the DataReader object to 1 (cell data) and use no interpolation in this
object. This is the only object that can show your data without any interpolation.

Short form: x

Available properties:

Ambient (short form: ma; type: float; # of arguments: 1)
Properties Ambient, Diffuse, Specular, and SpecularPower control material properties of the object,
as specified in OpenGL. The first three take a floating−point value between 0 and 1, while the
SpecularPower property, which controls the OpenGL shininess property (it is called specular power
in VTK), takes a floating−point value between 0 and 128. You need to know how OpenGL handles
material properties to understand what these values mean.

•

AttachToMarker (short form: am; type: int; # of arguments: 1)
If this property is set to the value of the index of an existing Marker, then the position of the object
will be "attached" to that Marker. If the Marker is moved, the object will move with it too.

•

ClipPlane (short form: cp; type: bool; # of arguments: 1)
A switch activating or deactivating the clipping plane. Takes a boolean (0/1) value.

•

DataPresent (short form: dp; type: bool; # of arguments: 1)
A read−only boolean property returning 1 if the object has the data and 0 otherwise.

•

DataType (short form: dt; type: int; # of arguments: 1)
This property specifies the type of data a given object uses. It has no effect for the basic edition of
IFrIT, but extensions to IFrIT use multiple data types and this property is used to select among
different types of data.

•

Diffuse (short form: md; type: float; # of arguments: 1)
See Ambient.

•

Dir (short form: d; type: int; # of arguments: 1)
Orientation of the Cross Section object. Takes one of the values 0, 1, or 2 (the slice is perpendicular
to the X, Y, or Z axis respectively).

•

InterpolateData (short form: id; type: bool; # of arguments: 1)
The boolean property that specifies whether the data are linearly interpolated on the cross section.

•

Location (short form: l; type: double; # of arguments: 1)
The current location of the Cross Section along its direction (see also the Position property).

•

Method (short form: m; type: int; # of arguments: 1)
Sets one of the available methods to render a cross section: polygons (0) or texture (1). The textute
method is usually faster and gives the best quality, but it may not be always available.

•

3 Object Reference 3.7 CrossSection object

© 2005−2007 by Nick Gnedin 40

MoveTo (short form: to; type: int; # of arguments: 1)
This action (write−only) integer property moves the position of the object to a particular location, as
listed below:

•

0: the last picked point (if any);•
1: the current focal point fo the camera;•
2: the center of the box;•
OverTheEdgeFlag (short form: oe; type: bool; # of arguments: 1)
A boolean read−only property that returns true if the Cross Section reached the edge of the box. It
is probably only useful for internal purposes.

•

Palette (short form: p; type: int; # of arguments: 1)
See Color.

•

Position (short form: x; type: double; # of arguments: 3)
The position of the object in the scene. Different View Objects may have different meaning for the
position property − for example, the position may be relevant for only a part of the object, or for a
particular mode of representation.

•

Ready (short form: r; type: bool; # of arguments: 1)
A read−only boolean value for checking whether the object is ready to be shown (i.e. has the data and
all the correct settigs). An attept to show an object that is not ready will not succeed.

•

Shading (short form: mw; type: bool; # of arguments: 1)
A boolean switch that can be used to switch off shading of light on the material (so that a surface
looks the same no matter what its orientation relative to lights and a camera is).

•

SpecialLocation (short form: loc; type: int; # of arguments: 1)
This integer "action" (write−only) property moves the cross−section to a special location in the
current data, depending on the property value. The valid values are

0: place at the location of the minimum of current variable;♦
1: place at the location of the maximum of current variable;♦
2: place at 1/4 of the box size along its direction;♦
3: place at 1/2 of the box size along its direction;♦
4: place at 3/4 of the box size along its direction;♦

•

Specular (short form: ms; type: float; # of arguments: 1)
See Ambient.

•

SpecularPower (short form: mp; type: float; # of arguments: 1)
See Ambient.

•

Var (short form: v; type: int; # of arguments: 1)
The scale variable to show on the Cross Section.

•

Visible (short form: vis; type: bool; # of arguments: 1)
A read−only boolean value for checking whether the object is visible. It has a value of true (1) is the
View Object is visible, and false otherwise. This property cannot be used to show/hide the object,
only to test the visibility state.

•

3.8 DataReader object

DataReader is responsible for loading data files of all types from the disk. It can also perform calculations on
Uniform Scalars data.

Short form: dr

3 Object Reference 3.8 DataReader object

© 2005−2007 by Nick Gnedin 41

Available properties:

BoundaryConditions (short form: bc; type: int; # of arguments: 1)
This integer property specifies the tpe of boundary conditions:

Wall boundary conditions (BoundaryConditions=0) imply that there is nothing outside the
bounding box;

♦

Periodic boundary conditions (BoundaryConditions=1) imply that opposite sides of the
bounding box are identical, i.e. the value of x=−0.1 is identical to x=1.9 (the size of the
bounding box is 2 in OpenGL units).

♦

Additional options for boundary conditions can be added in the future.

•

EraseData (short form: e; type: string; # of arguments: 1)
An "action" (write−only) property that erases some of the loaded data from memory. It accepts one
string argument that specifies the name of data type to be erased. The name of a data type is the string
after "Data−" in the name of the data object. For example, assigning a value of "UniformTensors"
(formed from the name "Data−UniformTensors" of the data object) to the argument of this property
will erase Uniform Tensors data.

•

ErrorMessage (short form: em; type: string; # of arguments: 1)
A string−valued read−only property that returns the text of the error message if the error occured, or
an empty string if the file was loaded successfully.

•

GADGET−ConfigurationFlags (short form: gcf; type: bool; # of arguments: any)
An integer−valued property that sets internal configuration flags for the GADGET extension. It is
primarily for internal use.

•

IsSet (short form: is; type: bool; # of arguments: 1)
A boolean read−only property that returns 1 if the current data files form a set, and 0 if not.

•

LoadData (short form: l; type: string; # of arguments: 2)
An "action" (write−only) property that loads a data file. The first argument of this property is the
name of data type to be erased. The name of a data type is the string after "Data−" in the name of the
data object. For example, a name "Uniform Scalars" (formed from the name "Data−UniformScalars"
of the data object) corresponds to the Uniform Scalars data.

The second argument is the name of the file. If it starts with the plus sign, the plus sign will be
replaced with the name of the default data directory for this type of data file.

•

ScaledDimension (short form: sd; type: int; # of arguments: 1)
An integer value from −2 to 2, specifying which dimension (X, Y, or Z) of the uniform mesh data (a
scalar, vector, or tensor field data) to fit into the bounding box. A value of −2 means the largest
dimension, a valur of −1 means the shortest dimension, and a value between 0 and 2 means an X to Z
dimension respectively. If the uniform mesh data is an exact cube, this property has no effect.

•

ShiftData (short form: s; type: double; # of arguments: 3)
A three−dimensional floating point array that specifies the amounts (in units of the bounding box size
= 2) by which the data should be shifted in each of 3 dimensions relative to their location in the data
files. This is especially useful for periodic boundary conditions: it allows to bring to the center of the
view a feature which, otherwise, may be cut into several peacies by the bounding box edges.

•

VTK−ConvertArraysToFloat (short form: vtkca; type: bool; # of arguments: 1)
IFrIT works with scalar data in float format only. Since VTK files may contain scalar data in different
numerical formats, this boolean property, if set to true, causes all scalar data to be converted to
float.

•

VTK−ScalePositions (short form: vtksp; type: bool; # of arguments: 1)
Internally, IFrIT positions are kept in OpenGL coordinates that go from −1 to 1 in each direction. If
this boolean property is set to true, all positions in loaded VTK data will be rescaled to fit into the
[−1,1] cube, with axis ratios preserved.

•

3 Object Reference 3.8 DataReader object

© 2005−2007 by Nick Gnedin 42

VoxelLocation (short form: vl; type: int; # of arguments: 1)
A property specifying the location of the data on the uniform mesh. Value 0 means that the data are
point data, i.e. they are located at the vertices of the mesh; value 1 implies cell data, which are located
at the centers of mesh cells (see Cell and Point Data).

•

3.9 ImageComposer object

ImageComposer can combine several independent visualization windows into one output image. For
example, it can tile several windows together in a regular mesh, or place a reduced representation of one
visualization window as a insert inside another visualization window.

An example of an image composed from 3 different visualization windows

Images from different visualization windows are split into background and foreground images. The
background images are tiles on a regular grid. Some of grid tiles may remain empty, or a fixed image from an
external file can placed into an empty tile. The foreground images can be scaled down and placed anywhere in
fron of the background grid of tiles. Both, background and foreground images may have borders.

If no background or foreground visualization windows are specified, then the Image Composer is considered
to be inactive (or bypassed): it will simply create an image of whatever is shown in the current visualization
windows.

Short form: ic

Available properties:

3 Object Reference 3.9 ImageComposer object

© 2005−2007 by Nick Gnedin 43

BackgroundWindowViewModule (short form: bgv; type: int; # of arguments: any)
An array with number of components equal to the number of background tiles. Each component of the
array gives an id of the visualization window whose image goes into that tile, or −1, if that tile is
empty.

•

BackgroundWindowViewModule2 (short form: bgv2; type: int; # of arguments: any)
See BackgroundWindowViewModule3.

•

BackgroundWindowViewModule3 (short form: bgv3; type: int; # of arguments: any)
Properties BackgroundWindowViewModule2 and BackgroundWindowViewModule3 specify
additional visualization windows for a given tile for psedo−color composing. They are similar to
BackgroundWindowViewModule property, but if more than one visualization window is specified
for a given background tile, images from multiple windows are combined in pseudo−color single
image as follows: each image is turned into a grayscale image, and then the grayscale image from the
primary window is used to specify the red channel of the combined image, and grayscale images from
windows 2 and 3 (if present) are used to provide the green and the blue channels. If no windows 2 and
3 are specified, then normal composing is used − the image from the primary window is displayed in
the respective tile as is.

•

BackgroundWindowWallpaperFile (short form: bgw; type: string; # of arguments: any)
An array with number of components equal to the number of background tiles. Each component of the
array gives a name of the image file whose image goes into that tile, or an empty string, if no image
should be placed in that tile. If both, the visualization window and the image file are specified for a
tile, the visualization window takes precedence.

•

BorderColor (short form: bc; type: color; # of arguments: 1)
A color of the border around background images. In properties colors are specified as 3−component
RGB values int.int.int (like 255.0.0 for red).

•

BorderWidth (short form: bw; type: int; # of arguments: 1)
A width (in pixels) of the border around background images.

•

ForegroundWindowBorderColor (short form: fgc; type: color; # of arguments: any)
An array with number of components equal to the number of foreground windows. Each component
of the array gives the color of the border (as R.G.B) for the corresponding visualization window.

•

ForegroundWindowBorderWidth (short form: fgw; type: int; # of arguments: any)
An array with number of components equal to the number of foreground windows. Each component
of the array gives the width of the border (in pixels) for the corresponding visualization window.

•

ForegroundWindowPositionX (short form: fgx; type: int; # of arguments: any)
See ForegroundWindowPositionY.

•

ForegroundWindowPositionY (short form: fgy; type: int; # of arguments: any)
ForegroundWindowPositionX and ForegroundWindowPositionY are two arrays with number of
components equal to the number of foreground windows. Each component of the arrays gives the
horizontal and vertical location of the lower left corner of the corresponding foreground window in
the composed image.

•

ForegroundWindowScale (short form: fgs; type: float; # of arguments: any)
An array with number of components equal to the number of foreground windows. Each component
of the array gives a floating point number less or eaual to 1, by which the corresponding visualization
window is scaled.

•

ForegroundWindowViewModule (short form: fgv; type: int; # of arguments: any)
An array with number of components equal to the number of foreground windows. Each component
of the array gives an id of the visualization window whose image goes into that tile. Each foreground
image must have a visualization window associated with it.

•

ForegroundWindowViewModule2 (short form: fgv2; type: int; # of arguments: any)
See ForegroundWindowViewModule3.

•

ForegroundWindowViewModule3 (short form: fgv3; type: int; # of arguments: any)
Properties ForegroundWindowViewModule2 and ForegroundWindowViewModule3 are used

•

3 Object Reference 3.9 ImageComposer object

© 2005−2007 by Nick Gnedin 44

for psedo−color composing in a foreground window, completely analogous to
BackgroundWindowViewModule2/3 properties.
ForegroundWindowZoom4Line (short form: fgz4; type: bool; # of arguments: any)
See ForegroundWindowZoomSource.

•

ForegroundWindowZoomFactor (short form: fgzf; type: float; # of arguments: any)
See ForegroundWindowZoomSource.

•

ForegroundWindowZoomSource (short form: fgz; type: int; # of arguments: any)
Properties ForegroundWindowZoom... control the appearance of a foreground window when it is
presented as a zoom onto another window. The zoom is displayed as a frame with 2 or 4 lines
reaching from the corners of the frame into the corners of the foreground window. The property
ForegroundWindowZoomSource sets the source window for the zoom: if this value is positive, it is
taken as an index of another foreground window; if it is negative, it is taken as minus an index of a
background window (background windows are numbered from left to right and from bottom to top).
A zero value for the ForegroundWindowZoomSource property indicates that no zoom is displayed.
The location and the size of the zoom frame are controled by the ForegroundWindowZoomX,
ForegroundWindowZoomY, and ForegroundWindowZoomFactor properties. The first two set the
center of the zoom frame in units of the source window size (i.e. both change from 0 to 1), while the
latter sets the scale factor of the zoom frame relative to the original window (i.e., if the zoom is by a
factor of 10, then ForegroundWindowZoomFactor should be set to 0.1). Finally, the
ForegroundWindowZoom4Line boolean property controls whether the zoom frame is connected to
the foreground window with 2 (ForegroundWindowZoom4Line=false) or 4
(ForegroundWindowZoom4Line=true) lines.

If the zoom source and this foreground window are clones of each other, are both in parallel
projections, and the foreground window displays a portion of the source window (i.e. it is a true
zoom), then the zoom location and size will be set automatically to reflect the relationship between
the two windows. In other words, whenever the foreground window is a true zoom onto another
window, IFrIT will try to do its best to determine this relationship.

•

ForegroundWindowZoomX (short form: fgzx; type: float; # of arguments: any)
See ForegroundWindowZoomSource.

•

ForegroundWindowZoomY (short form: fgzy; type: float; # of arguments: any)
See ForegroundWindowZoomSource.

•

ImageHeight (short form: h; type: int; # of arguments: 1)
See ImageWidth.

•

ImageWidth (short form: w; type: int; # of arguments: 1)
ImageWidth and ImageHeight are read−only properties that give the total width and height of the
composed image, including the border. The dimensions of the image are determined by the number of
background tiles in both direction, by the size of each tile (which is taken to be the size of the largest
visualization window set as a background tile), and the width of the border.

•

InnerBorder (short form: ib; type: bool; # of arguments: 1)
A boolean switch specifying whether, if the background images have a border, this border should be
present between the inner sides of background tiles, or only on the outside.

•

NumForegroundWindows (short form: nfg; type: int; # of arguments: 1)
The number of foreground windows.

•

NumTiles (short form: nt; type: int; # of arguments: 2)
The number of background tiles in two dimensions (stored as two components of this array).

•

ScaleBackground (short form: sb; type: bool; # of arguments: 1)
A boolean switch specifying whether the background images, if they are smaller than the size of the
background tile, should be scaled or padded to the tile size.

•

3 Object Reference 3.9 ImageComposer object

© 2005−2007 by Nick Gnedin 45

3.10 Marker object

Marker is a small resizable object that can be placed at a specified position inside the visualization scene. It
can be used simply to mark a particular point, or other visualization objects can be "attached" to a marker. For
example, markers can be used as staring points for streamlines of a vector field, or as centers of probing
surfaces. A text caption − a body of text connected to the object by a line − can be attached to a marker to
provide a short explanation. A legend listing all markers and their captions can also be placed at the bottom of
the scene. A marker can be moved interactively using the ViewModule:PlaceMarker property. The marker
caption can be moved interactively using ViewModule:MoveMarkerCaption property.

Short form: m

Available properties:

Ambient (short form: ma; type: float; # of arguments: 1)
Properties Ambient, Diffuse, Specular, and SpecularPower control material properties of the object,
as specified in OpenGL. The first three take a floating−point value between 0 and 1, while the
SpecularPower property, which controls the OpenGL shininess property (it is called specular power
in VTK), takes a floating−point value between 0 and 128. You need to know how OpenGL handles
material properties to understand what these values mean.

•

AttachToMarker (short form: am; type: int; # of arguments: 1)
If this property is set to the value of the index of an existing Marker, then the position of the object
will be "attached" to that Marker. If the Marker is moved, the object will move with it too.

•

CaptionPosition (short form: cx; type: float; # of arguments: 2)
The position of the marker caption in the visualization window in viewport coordinates (in which the
visualization window ranges from 0 to 1 in each direction).

•

CaptionText (short form: ct; type: string; # of arguments: 1)
The text of the marker caption. The caption will be shown if this string is non−empty.

•

ClipPlane (short form: cp; type: bool; # of arguments: 1)
A switch activating or deactivating the clipping plane. Takes a boolean (0/1) value.

•

Color (short form: c; type: color; # of arguments: 1)
Properties Color, Opacity, and Palette set these three properties for View Objects, which are
represented as solid surfaces (OpenGL polygonal mesh) − which are all View Objects except the
Volume object. These three properties can be either scalar (1−component) or arrays
(multi−component), depending on the type of the View Objects they belong to (check descriptions
for specific objects for more details).The Color property takes a 3−component RGB value
int.int.int (like 255.0.0 for red). The Opacity properties takes a floating point number between
0 and 1, and the Palette takes the integer value, that is interpreted as follows: if the value is positive,
it is taken to be the index of the specific palette; if the value is negative, it is taken as minus the index
of the palette, and the palette is reversed. For example, a value of 1 will select a traditional rainbow
palette, while a value of −1 will select the rainbow palette but in the reversed order (pink is on the
left, dark blue is on the right). Finally, a value of zero will select the special "brightness" palette, with
which the object is colored by shades of its current color, with brightness of the shade related to the
value of scalar variable used to color the object. The brightness palette cannot be reversed, and Cross
Section and Volume objects cannot be colored with a brightness palette (they do not have a regular
color), so the value 0 is ignored for them.

•

ColorAutomatic (short form: ca; type: bool; # of arguments: 1)
This property sets the color of the marker to be "automatic", i.e. to be the inverse of the scene
background color. If the scene background color changes, so will the marker color. If this property is

•

3 Object Reference 3.10 Marker object

© 2005−2007 by Nick Gnedin 46

set to false, the color of the marker is specified by the Color property.
DataPresent (short form: dp; type: bool; # of arguments: 1)
A read−only boolean property returning 1 if the object has the data and 0 otherwise.

•

DataType (short form: dt; type: int; # of arguments: 1)
This property specifies the type of data a given object uses. It has no effect for the basic edition of
IFrIT, but extensions to IFrIT use multiple data types and this property is used to select among
different types of data.

•

Diffuse (short form: md; type: float; # of arguments: 1)
See Ambient.

•

InteractiveMove (short form: im; type: bool; # of arguments: 1)
This boolean property toggles whether a marker is moved interactively. During the interactive move,
objects attached to a marker are updated immediately, while with the non−interactive move, attached
objects are only updated when the move is done. Since updating objects may be computationally
expensive, and interactive move may potentially be very slow.

•

MoveTo (short form: to; type: int; # of arguments: 1)
This action (write−only) integer property moves the position of the object to a particular location, as
listed below:

•

0: the last picked point (if any);•
1: the current focal point fo the camera;•
2: the center of the box;•
Opacity (short form: o; type: float; # of arguments: 1)
See Color.

•

Position (short form: x; type: double; # of arguments: 3)
The position of the object in the scene. Different View Objects may have different meaning for the
position property − for example, the position may be relevant for only a part of the object, or for a
particular mode of representation.

•

Ready (short form: r; type: bool; # of arguments: 1)
A read−only boolean value for checking whether the object is ready to be shown (i.e. has the data and
all the correct settigs). An attept to show an object that is not ready will not succeed.

•

Scaled (short form: sc; type: bool; # of arguments: 1)
The boolean property that controls whether the marker is scaled during the scene interaction so that its
aparent size remains the same, or behaves as all other objects − unscaled marker will become
larger/smaller if the scene is zoomed in/out.

•

Size (short form: s; type: double; # of arguments: 1)
The size of the marker.

•

Specular (short form: ms; type: float; # of arguments: 1)
See Ambient.

•

SpecularPower (short form: mp; type: float; # of arguments: 1)
See Ambient.

•

Transform (short form: tf; type: float; # of arguments: 6)
The first three arguments of this property are angles of rotation of this marker around X, Y, and Z
axes (in degrees). The last three arguments are scaling factors of the marker along X, Y, and Z axes
respectively. Scaling is done before rotations, so scaling axes are relative to the original marker
orientation. Rotations are performed in the order Z, X, and then Y (like Euler angles).

•

Type (short form: t; type: int; # of arguments: 1)
The type of the marker. The following values are available:

0: Point♦
1: Sphere♦
2: Tetrahydron♦
3: Cube♦
4: Octahedron♦

•

3 Object Reference 3.10 Marker object

© 2005−2007 by Nick Gnedin 47

5: Icosahedron♦
6: Dodecahedron♦
7: Cone♦
8: Cylinder♦
9: Arrow♦
10: Cluster (a cloud of points)♦
11: Galaxy♦

Visible (short form: vis; type: bool; # of arguments: 1)
A read−only boolean value for checking whether the object is visible. It has a value of true (1) is the
View Object is visible, and false otherwise. This property cannot be used to show/hide the object,
only to test the visibility state.

•

3.11 ParticleGroup object

Particle Group object represents a subset of particles that are visualized together: they share the same
representation, coloring and sizing schemes, palette, etc.

Particles in one group can also be connected by lines (to represent trajectories). Two integer properties control
how particles are connected. The property AttributeToConnect specifies the attribute that is used to connect
particles. If this property is zero, no particles are connected. If it is non−zero, particles are connected in order
of the increasing values of AttributeToConnect. In addition, the property AttributeToSeparate can be used
to split a single line connecting all particles in the group into several separate lines. If the value of this
property is positive, only particles with the same value of AttributeToSeparate are connected. For example,
if the group contains 4 particles with 2 attributes: (1,1), (4,2), (2,1), and (3,2), then if AttributeToConnect=1,
the particles are connected by a single line in the following order: 1,3,4,2. If, in addition,
AttributeToSeparate=2, then two lines will be created, one connecting particles 1 and 3, and the second one
connecting particles 4 and 2.

Short form: pg

Available properties:

Ambient (short form: ma; type: float; # of arguments: 1)
Properties Ambient, Diffuse, Specular, and SpecularPower control material properties of the object,
as specified in OpenGL. The first three take a floating−point value between 0 and 1, while the
SpecularPower property, which controls the OpenGL shininess property (it is called specular power
in VTK), takes a floating−point value between 0 and 128. You need to know how OpenGL handles
material properties to understand what these values mean.

•

AttributeSizeDirect (short form: ad; type: bool; # of arguments: 1)
This is a boolean property that specifies whether sizing of particles with the AttributeToSize
property should be down directly (the value of the attribute = particle size), or via SizeFunction.

•

AttributeSizeExtraFactor (short form: ae; type: float; # of arguments: 1)
If the particles are sized directly (AttributeSizeDirect=true), this property specifies an additional
factor used to convert the particle attribute to size.

•

AttributeToColor (short form: ac; type: int; # of arguments: 1)
Specifies the particle attribute used to color the particles with a palette. A value of zero means no
coloring.

•

3 Object Reference 3.11 ParticleGroup object

© 2005−2007 by Nick Gnedin 48

AttributeToConnect (short form: atc; type: int; # of arguments: 1)
Particles in a group can be connected by lines. This property specifies the attribute that determines the
order by which particles are connected. If this property is set to zero, no particles are connected.

•

AttributeToSeparate (short form: ats; type: int; # of arguments: 1)
If particles are connected with lines, this property specifies the attribute (or none if it is set to 0) that is
used to break a single line connecting all particles in a group into separate lines. If this attribute is
non−zero, then only particles having the same value of AttributeToSeparate attribute are connected.

•

AttributeToSize (short form: as; type: int; # of arguments: 1)
Specifies the particle attribute used to size the particle with. Depending on the value of the boolean
attribute AttributeSizeDirect, particles can be either sized directly
(Size=Attribute*AttributeSizeExtraFactor), or via a sizing function
(Size=Function(Attribute)). Particles can be sized differently only
if they are not represented by points. Points cannot be sized
differentially in OpenGL.

•

AutoScaled (short form: au; type: bool; # of arguments: 1)
If this boolean property is set to true, IFrIT will scale the particles automatically so that their size
appear to be fixed when the scene is zoomed in or out. That requires a re−calculation of particle
properties and may be slow.

•

ClipPlane (short form: cp; type: bool; # of arguments: 1)
A switch activating or deactivating the clipping plane. Takes a boolean (0/1) value.

•

Color (short form: c; type: color; # of arguments: 1)
Properties Color, Opacity, and Palette set these three properties for View Objects, which are
represented as solid surfaces (OpenGL polygonal mesh) − which are all View Objects except the
Volume object. These three properties can be either scalar (1−component) or arrays
(multi−component), depending on the type of the View Objects they belong to (check descriptions
for specific objects for more details).The Color property takes a 3−component RGB value
int.int.int (like 255.0.0 for red). The Opacity properties takes a floating point number between
0 and 1, and the Palette takes the integer value, that is interpreted as follows: if the value is positive,
it is taken to be the index of the specific palette; if the value is negative, it is taken as minus the index
of the palette, and the palette is reversed. For example, a value of 1 will select a traditional rainbow
palette, while a value of −1 will select the rainbow palette but in the reversed order (pink is on the
left, dark blue is on the right). Finally, a value of zero will select the special "brightness" palette, with
which the object is colored by shades of its current color, with brightness of the shade related to the
value of scalar variable used to color the object. The brightness palette cannot be reversed, and Cross
Section and Volume objects cannot be colored with a brightness palette (they do not have a regular
color), so the value 0 is ignored for them.

•

DataPresent (short form: dp; type: bool; # of arguments: 1)
A read−only boolean property returning 1 if the object has the data and 0 otherwise.

•

DataType (short form: dt; type: int; # of arguments: 1)
This property specifies the type of data a given object uses. It has no effect for the basic edition of
IFrIT, but extensions to IFrIT use multiple data types and this property is used to select among
different types of data.

•

Diffuse (short form: md; type: float; # of arguments: 1)
See Ambient.

•

FixedSize (short form: s; type: float; # of arguments: 1)
The basic size of all particles. If particles are sized with a Size Function, all sizes are proportional to
this value.

•

LineWidth (short form: lw; type: int; # of arguments: 1)
The width of the line that connects particles, if they connected with lines

•

LowerLimitToColor (short form: ltc; type: float; # of arguments: 1)
See StretchToColor.

•

3 Object Reference 3.11 ParticleGroup object

© 2005−2007 by Nick Gnedin 49

LowerLimitToSize (short form: lts; type: float; # of arguments: 1)
See StretchToSize.

•

NumReplicas (short form: nr; type: int; # of arguments: 6)
Some of View Objects can be replicated, i.e. their identical replicas placed outside the bounding box.
This 6−dimensional integer property specifies how many replicas should be placed in −X, +X, −Y,
+Y, −Z, and +Z directions, respectively. This property only has effect if the data are periodic in at
least some of the directions, and if the object can be replicated (not all View Objects.

•

Opacity (short form: o; type: float; # of arguments: 1)
See Color.

•

Palette (short form: p; type: int; # of arguments: 1)
See Color.

•

Ready (short form: r; type: bool; # of arguments: 1)
A read−only boolean value for checking whether the object is ready to be shown (i.e. has the data and
all the correct settigs). An attept to show an object that is not ready will not succeed.

•

Shading (short form: mw; type: bool; # of arguments: 1)
A boolean switch that can be used to switch off shading of light on the material (so that a surface
looks the same no matter what its orientation relative to lights and a camera is).

•

SizeFunction (short form: sf; type: any; # of arguments: 1)
This property sets the sizing function for differentially sizing particles depending on the value of their
AttributeToSize. The sizing function is piece−wise linear function, and it is specified by a set of
(X,Y) coordinates separated by a semicolon (;). For example, the following ControlModule
request: SizeFunction/0,0;0.5,1.0;1,0/ specifies a sizing function which stars at
(X,Y)=(0,0), goes linearly to (X,Y)=(0.5,1.0), and then falls back to (X,Y)=(1,0). The
function is always defined for X and Y changing between 0 and 1, and the value of AttributeToSize
are scaled to that range. For example, if the values of AttributeToSize are from −10 to 30, then the
function described before will have a value of 0 for the attribute values of −10 and 30, and will be 1
for the attribute value of −10+(30+10)/2=10, so that particles with attribute values of −10 and 30
will be invisible, and particles with the attribute values of 10 will have their size equal to the value of
FixedSize property, and particles with attribute values in between will be smaller.

•

Specular (short form: ms; type: float; # of arguments: 1)
See Ambient.

•

SpecularPower (short form: mp; type: float; # of arguments: 1)
See Ambient.

•

StretchToColor (short form: stc; type: int; # of arguments: 1)
Properties StretchToColor, LowerLimitToColor, and UpperLimitToColor specify how the
particles are colored with a Palette. The StretchToColor sets the stretch for coloring within the limits
specified by LowerLimitToColor and UpperLimitToColor.

•

StretchToSize (short form: sts; type: int; # of arguments: 1)
Properties StretchToSize, LowerLimitToSize, and UpperLimitToSize specify how the particles are
sized with a Size Function. The StretchToSize sets the stretch for sizing within the limits specified
by LowerLimitToSize and UpperLimitToSize. The later two properties are aliases of
Data−BasicParticles LowerLimit and UpperLimit properties.

•

Type (short form: t; type: int; # of arguments: 1)
This property specifies the representation of individual particles. The values of this property are the
same as Marker:Type. Points are the fastest to show, but they cannot be sized differentially in
OpenGL. If you need to size particles differentially, the fastest type to use is tetrahydron. Spheres are
always the slowest type to visualize.

•

UpperLimitToColor (short form: utc; type: float; # of arguments: 1)
See StretchToColor.

•

UpperLimitToSize (short form: uts; type: float; # of arguments: 1)
See StretchToSize.

•

3 Object Reference 3.11 ParticleGroup object

© 2005−2007 by Nick Gnedin 50

Visible (short form: vis; type: bool; # of arguments: 1)
A read−only boolean value for checking whether the object is visible. It has a value of true (1) is the
View Object is visible, and false otherwise. This property cannot be used to show/hide the object,
only to test the visibility state.

•

3.12 Particles object

Particles object represents a collection of particles (points). The set of particles consists of one or more
independent subsets called Particle Groups. Each Particle Group is controlled indepedently, particles within
each group can be connected with lines to, for example, represent trajectories. Particles in different Particle
Groups can have different representation (dots, spheres, etc), color, size, they can be colored or sized
according to values of one of the attributes. One of the Particle Groups is always considered "current". The
properties of a Particle Group can be accessed in two ways: either by using Particle Group properties for
the current group, or using equivalent arrays−valued Particles properties with the appropriate arrays index.
For example, if the Particle Group #2 is current, the ParticleGroup:Type property is equivalent to
Particles:Type[2] property. To avoid referring to the specific Particle Group number, two special index
values of the Particles array−valued property are understood: an empty index ([]) or index 0 ([0]) are
understood as referring to the current ParticleGroup. Thus, the last example can also be expressed as
Particles:Type[] or Particles:Type[0]. Of course, array−valued Particles properties can also be used to
access other, non−current ParticleGroups: Particles:Type[1] always refers to the point type of the
ParticleGroup #1, no matter whether that group is current or not.

Short form: p

Available properties:

Ambient (short form: ma; type: float; # of arguments: any)
Properties Ambient, Diffuse, Specular, and SpecularPower control material properties of the object,
as specified in OpenGL. The first three take a floating−point value between 0 and 1, while the
SpecularPower property, which controls the OpenGL shininess property (it is called specular power
in VTK), takes a floating−point value between 0 and 128. You need to know how OpenGL handles
material properties to understand what these values mean.

•

AttributeSizeDirect (short form: ad; type: bool; # of arguments: any)
An array property that sets AttributeSizeDirect property for all Particle Groups.

•

AttributeSizeExtraFactor (short form: ae; type: float; # of arguments: any)
An array property that sets AttributeSizeExtraFactor property for all Particle Groups.

•

AttributeToColor (short form: ac; type: int; # of arguments: any)
An array property that sets AttributeToColor property for all Particle Groups.

•

AttributeToConnect (short form: atc; type: int; # of arguments: any)
An array property that sets AttributeToConnect property for all Particle Groups.

•

AttributeToSeparate (short form: ats; type: int; # of arguments: any)
An array property that sets AttributeToSeparate property for all Particle Groups.

•

AttributeToSize (short form: as; type: int; # of arguments: any)
An array property that sets AttributeToSize property for all Particle Groups.

•

AttributeToSplit (short form: a; type: int; # of arguments: 1)
The particle attribute used in splitting Particles into separate Particle Groups. All particles within
one Particle Group have the value of AttributeToSplit within the given range. Since ranges of

•

3 Object Reference 3.12 Particles object

© 2005−2007 by Nick Gnedin 51

different Particle Groups may overlap, a given particle may belong to more than one group.
AutoScaled (short form: au; type: bool; # of arguments: any)
An array property that sets AutoScaled property for all Particle Groups.

•

ClipPlane (short form: cp; type: bool; # of arguments: 1)
A switch activating or deactivating the clipping plane. Takes a boolean (0/1) value.

•

Color (short form: c; type: color; # of arguments: any)
An array property that sets Color property for all Particle Groups.

•

CurrentGroup (short form: cg; type: int; # of arguments: 1)
This property sets the index of the current group. The index takes a value between 1 and the value of
MaxGroup property.

•

DataPresent (short form: dp; type: bool; # of arguments: 1)
A read−only boolean property returning 1 if the object has the data and 0 otherwise.

•

Diffuse (short form: md; type: float; # of arguments: any)
See Ambient.

•

FixedSize (short form: s; type: float; # of arguments: any)
An array property that sets FixedSize property for all Particle Groups.

•

LineWidth (short form: lw; type: int; # of arguments: any)
An array property that sets LineWidth property for all Particle Groups.

•

LowerLimitToColor (short form: ltc; type: float; # of arguments: any)
An array property that sets LowerLimitToColor property for all Particle Groups.

•

LowerLimitToSize (short form: lts; type: float; # of arguments: any)
An array property that sets LowerLimitToSize property for all Particle Groups.

•

MaxGroup (short form: mg; type: int; # of arguments: 1)
The index of the last group (the same as the number of groups available). If the value of this property
is changed, additional groups are created and extra groups are deleted automatically.

•

NumReplicas (short form: nr; type: int; # of arguments: 6)
Some of View Objects can be replicated, i.e. their identical replicas placed outside the bounding box.
This 6−dimensional integer property specifies how many replicas should be placed in −X, +X, −Y,
+Y, −Z, and +Z directions, respectively. This property only has effect if the data are periodic in at
least some of the directions, and if the object can be replicated (not all View Objects.

•

Opacity (short form: o; type: float; # of arguments: any)
An array property that sets Opacity property for all Particle Groups.

•

Palette (short form: p; type: int; # of arguments: any)
An array property that sets Palette property for all Particle Groups.

•

Ready (short form: r; type: bool; # of arguments: 1)
A read−only boolean value for checking whether the object is ready to be shown (i.e. has the data and
all the correct settigs). An attept to show an object that is not ready will not succeed.

•

Shading (short form: mw; type: bool; # of arguments: any)
A boolean switch that can be used to switch off shading of light on the material (so that a surface
looks the same no matter what its orientation relative to lights and a camera is).

•

SizeFunction (short form: sf; type: any; # of arguments: any)
An array property that sets SizeFunction property for all Particle Groups.

•

Specular (short form: ms; type: float; # of arguments: any)
See Ambient.

•

SpecularPower (short form: mp; type: float; # of arguments: any)
See Ambient.

•

SplitRangeLowerLimit (short form: rl; type: float; # of arguments: any)
Arrays properties SplitRangeLowerLimit and SplitRangeUpperLimit set the range of the values of
AttributeToSplit that belong to the particular group. For example, if AttributeToSplit=1, setting
SplitRangeLowerLimit[2]=0.5 and SplitRangeUpperLimit[2]=1.5 will lace all particles with the
value of attribute #1 between 0.5 and 1.5 into group #2. These two properties can be thought of

•

3 Object Reference 3.12 Particles object

© 2005−2007 by Nick Gnedin 52

as boundaries of each Particle Group.
SplitRangeUpperLimit (short form: ru; type: float; # of arguments: any)
See SplitRangeLowerLimit.

•

SplitRangesMax (short form: rmax; type: float; # of arguments: 1)
Properties SplitRangesMin and SplitRangesMax specify the absolute minimum and maximum
between which the boundaries of separate Particle Groups are allowed to vary.

•

SplitRangesMin (short form: rmin; type: float; # of arguments: 1)
See SplitRangesMax.

•

SplitRangesStretch (short form: rs; type: int; # of arguments: 1)
This property specifies the stretch used for scaling attribute ranges. The values of range boundaries
are always scaled linearly, and this property has a minor, mostly stylistic effect. For example, when a
new range is created, the current group is split into two; with linear scaling the current range is split
into two halves; with logarithmic scaling, the splitting value is taken to be the geometric mean of the
two limits of the current range.

•

SplitRangesTiled (short form: rt; type: bool; # of arguments: 1)
If this boolean property is set, the ranges of separate Particle Groups are always adjoint ("tiled"), i.e.
SplitRangeMin[1] = SplitRangeLowerLimit[1], SplitRangeUpperLimit[1] =
SplitRangeLowerLimit[2], SplitRangeUpperLimit[2] = SplitRangeLowerLimit[3], etc. For
example, chaning the value of SplitRangeUpperLimit[2] property automatically changes the value
of the SplitRangeLowerLimit[3] property to the same value. This is useful for making sure that
every particle always belongs to exactly one group.

•

StretchToColor (short form: stc; type: int; # of arguments: any)
An array property that sets StretchToColor property for all Particle Groups.

•

StretchToSize (short form: sts; type: int; # of arguments: any)
An array property that sets StretchToSize property for all Particle Groups.

•

Type (short form: t; type: int; # of arguments: any)
An array property that sets Type property for all Particle Groups.

•

UpperLimitToColor (short form: utc; type: float; # of arguments: any)
An array property that sets UpperLimitToColor property for all Particle Groups.

•

UpperLimitToSize (short form: uts; type: float; # of arguments: any)
An array property that sets UpperLimitToSize property for all Particle Groups.

•

Visible (short form: vis; type: bool; # of arguments: 1)
A read−only boolean value for checking whether the object is visible. It has a value of true (1) is the
View Object is visible, and false otherwise. This property cannot be used to show/hide the object,
only to test the visibility state.

•

3.13 Picker object

Picker allows the user to "pick" an object in the visualization scene, and obtain information about the data at
the picked location. Picking is activated by pointing the cursor to the desired location and pressing a key P on
the keyboard. IFrIT then follows an imaginary line drawn through the cursor position, and finds the View
Object that the line intersects. The information about the location of the intersection and properties of the
View Object is then reported.

Picker operates in one of three modes:

3 Object Reference 3.13 Picker object

© 2005−2007 by Nick Gnedin 53

Cell mode is the slowest, but it is most intuitive. In this mode Picker picks a "cell" that first intersects
the line of sight. For an OpenGL polygonal mesh the cell is a polygon of the mesh, for volume
rendering, the cell is a cell in the volume, for particles a cell is a single particle − in the latter case the
size of the cell is zero, so it is often ambigious to pick, the Point mode is best for picking particles.

•

Point mode is also slow, and is best suited for picking Particles. It is important to keep in mind that
IFrIT only picks an OpenGL point, which may or may not have any relation to the underlying data
structure. For example, if IFrIT picks a point on the isosurface, the point most likely will not
correspond to any vertex of the undelying grid. In addition, for a solid object (i.e. object consisting of
the polygonal OpenGL mesh), only a vertex of a polygon can be picked. Thus, it is possible that you
point the cursor on the solid surface, but nothing gets picked, because all polygon vertices are too far
from the imaginary line. In that case, either use a Cell mode, or adjust the Accuracy property to
reduce the maximum distance from the line−of−sight.

•

Object mode is fast, because in this mode IFrIT uses the hardware to pick an object. However, the
hardware picker may not pick translucent (non−opaque) objects correctly.

•

Short form: pi

Available properties:

Accuracy (short form: a; type: float; # of arguments: 1)
This property specifies the distance (tolerance) within which the Picker will search for the nearest
point or cell. If this distance is too small, Picker may not find even one point or cell to pick. If this
distance is too large, the picked point may be too far from the cursor position, and may not be the
point you intended to pick. Adjust this parameter to get the best results for you data. This property has
no effect in the Object mode.

•

PickMethod (short form: m; type: int; # of arguments: 1)
This property sets the picker mode: 0 is for Cell mode, 1 is for Point mode, and 2 is for Object mode.

•

PointSize (short form: ps; type: float; # of arguments: 1)
The size of the point the Picker places at the picked position, in OpenGL coordinates (the length of
the bounding box is 2).

•

3.14 Surface object

Surface object represents a two−dimensional surface that samples the three−dimensional scalar data. The
surface can be either an isosurface of a particular scalar variable, or a specified geometric shape like a sphere
or a plane. A surface can be painted by varied colors that correspond to a value of one of scalar variables via a
specified palette. Multiple instances of a Surface object can co−exist at the same time − for example, several
isosurfaces corresponding to different values of a scalar variable can be used to represent the
three−dimensional structure of the data.

Because a surface has two sides, IFrIT uses the following rule to determine which side is called "outside" and
which is called "inside" for an isosurface:

For the first variable the outside side is the side where the value of the variable is larger than the
level of the isosurface.

1.

For the second and the third variables the outside side is the side where the value of the variable is
smaller than the level of the isosurface.

2.

3 Object Reference 3.14 Surface object

© 2005−2007 by Nick Gnedin 54

It might help you to put more meaning in the words "inside" and "outside" for your isosurface by
appropriately ordering variables in the data file.

Common Color, Opacity, and Palette properties are 2−component arrays, with the first component
refererring to the outside of the surface, and the second component referring to the inside of the surface; the
Position property only applies to the fixed probe surface (sphere or plane).

Short form: s

Available properties:

AlternativeIsoSurfaceReductionMethod (short form: rda; type: bool; # of arguments: 1)
If this property is set to 1, an alternative method for reducing the number of polygons in the isosurface
will be used. Smetimes, the alternative method may be faster or may produce better results.

•

Ambient (short form: ma; type: float; # of arguments: 1)
Properties Ambient, Diffuse, Specular, and SpecularPower control material properties of the object,
as specified in OpenGL. The first three take a floating−point value between 0 and 1, while the
SpecularPower property, which controls the OpenGL shininess property (it is called specular power
in VTK), takes a floating−point value between 0 and 128. You need to know how OpenGL handles
material properties to understand what these values mean.

•

AttachToMarker (short form: am; type: int; # of arguments: 1)
If this property is set to the value of the index of an existing Marker, then the position of the object
will be "attached" to that Marker. If the Marker is moved, the object will move with it too.

•

ClipPlane (short form: cp; type: bool; # of arguments: 1)
A switch activating or deactivating the clipping plane. Takes a boolean (0/1) value.

•

Color (short form: c; type: color; # of arguments: 2)
Properties Color, Opacity, and Palette set these three properties for View Objects, which are
represented as solid surfaces (OpenGL polygonal mesh) − which are all View Objects except the
Volume object. These three properties can be either scalar (1−component) or arrays
(multi−component), depending on the type of the View Objects they belong to (check descriptions
for specific objects for more details).The Color property takes a 3−component RGB value
int.int.int (like 255.0.0 for red). The Opacity properties takes a floating point number between
0 and 1, and the Palette takes the integer value, that is interpreted as follows: if the value is positive,
it is taken to be the index of the specific palette; if the value is negative, it is taken as minus the index
of the palette, and the palette is reversed. For example, a value of 1 will select a traditional rainbow
palette, while a value of −1 will select the rainbow palette but in the reversed order (pink is on the
left, dark blue is on the right). Finally, a value of zero will select the special "brightness" palette, with
which the object is colored by shades of its current color, with brightness of the shade related to the
value of scalar variable used to color the object. The brightness palette cannot be reversed, and Cross
Section and Volume objects cannot be colored with a brightness palette (they do not have a regular
color), so the value 0 is ignored for them.

•

DataPresent (short form: dp; type: bool; # of arguments: 1)
A read−only boolean property returning 1 if the object has the data and 0 otherwise.

•

DataType (short form: dt; type: int; # of arguments: 1)
This property specifies the type of data a given object uses. It has no effect for the basic edition of
IFrIT, but extensions to IFrIT use multiple data types and this property is used to select among
different types of data.

•

Diffuse (short form: md; type: float; # of arguments: 1)
See Ambient.

•

IsoSurfaceLevel (short form: l; type: float; # of arguments: 1)
Sets the value for the isosurface level in the isosurface mode.

•

3 Object Reference 3.14 Surface object

© 2005−2007 by Nick Gnedin 55

IsoSurfaceMethod (short form: im; type: int; # of arguments: 1)
Selects the method for creating the isosurface. The IsoSurfaceMethod=1 selects a commonly used
Marching Cubes method, but it may not be available in all versions of VTK. A value of
IsoSurfaceMethod=0 selects an alternative method, which may vary from one VTK version to
another. Method 0 should always work, while method 1 may not always work due to VTK bugs. IFrIT
attempts to choose the best method as a default setting.

•

IsoSurfaceOptimization (short form: op; type: bool; # of arguments: 1)
A boolean property that toggles whether the isosurface is optimized after construction. Optimizing the
isosurface takes time, but the optimized isosurface will render faster. Setting this property to true
only makes sense if you plan to send long time working with a given isosurface.

•

IsoSurfaceReduction (short form: rd; type: int; # of arguments: 1)
Sets the level of reduction in the number of polygons that represent the isosurface. This property takes
values from 0 to 3: value 0 means no reduction, 1 attempts to reduce by 75%, 2 by 90%, and 3 by
99%. Reduction does not change the topology of the isosurface (at least, should not), so the target
level may not be achievable in practice.

•

IsoSurfaceSmoothing (short form: sm; type: int; # of arguments: 1)
The integer factor from 0 to 10 that controls the degree of additional smoothing for the isosurface.
The value of zero switches smoothing off. Smoothing an isosurface takes time, but makes it look
better.

•

IsoSurfaceVar (short form: v; type: int; # of arguments: 1)
The scalar variable whose isosurface is created.

•

Method (short form: m; type: int; # of arguments: 1)
Specifies the method for creating the surface. Three methods are currently supported:

0: isosurface of the scalar variable IsoSurfaceVar at the value IsoSurfaceLevel,♦
1: sphere of radius Size at the position Position,♦
2: plane with normal PlaneDirection at the position Position.♦

•

MoveTo (short form: to; type: int; # of arguments: 1)
This action (write−only) integer property moves the position of the object to a particular location, as
listed below:

•

0: the last picked point (if any);•
1: the current focal point fo the camera;•
2: the center of the box;•
NormalsFlipped (short form: nf; type: bool; # of arguments: 1)
This boolean property, if set to true, reverses the direction of normals (i.e. the sense of
inside−outside for the surface) relative to the default settings.

•

NumReplicas (short form: nr; type: int; # of arguments: 6)
Some of View Objects can be replicated, i.e. their identical replicas placed outside the bounding box.
This 6−dimensional integer property specifies how many replicas should be placed in −X, +X, −Y,
+Y, −Z, and +Z directions, respectively. This property only has effect if the data are periodic in at
least some of the directions, and if the object can be replicated (not all View Objects.

•

Opacity (short form: o; type: float; # of arguments: 1)
See Color.

•

PaintVar (short form: pv; type: int; # of arguments: 2)
This two−component integer array sets the variable to paint the outside (first component) or the inside
(the second component) of the surface with. The two−component Palette property sets the respective
palettes

•

Palette (short form: p; type: int; # of arguments: 2)
See Color.

•

PlaneDirection (short form: pd; type: float; # of arguments: 3)
The direction (specified as a 3−component double array) of the surface in plane mode.

•

3 Object Reference 3.14 Surface object

© 2005−2007 by Nick Gnedin 56

Position (short form: x; type: double; # of arguments: 3)
The position of the object in the scene. Different View Objects may have different meaning for the
position property − for example, the position may be relevant for only a part of the object, or for a
particular mode of representation.

•

Ready (short form: r; type: bool; # of arguments: 1)
A read−only boolean value for checking whether the object is ready to be shown (i.e. has the data and
all the correct settigs). An attept to show an object that is not ready will not succeed.

•

Size (short form: s; type: double; # of arguments: 1)
The radius of the sphere in the sphere mode.

•

Specular (short form: ms; type: float; # of arguments: 1)
See Ambient.

•

SpecularPower (short form: mp; type: float; # of arguments: 1)
See Ambient.

•

Visible (short form: vis; type: bool; # of arguments: 1)
A read−only boolean value for checking whether the object is visible. It has a value of true (1) is the
View Object is visible, and false otherwise. This property cannot be used to show/hide the object,
only to test the visibility state.

•

3.15 TensorField object

TensorField object represents a tensor field. Currently, the only supported method for tensor field
visualization is a "tensor glyph": a collection of ellipsods, which, at every point is oriented along the
eigenvectors of the tensor and (optionally) scaled in proportion to tensor eigenvalues.

Short form: t

Available properties:

Ambient (short form: ma; type: float; # of arguments: 1)
Properties Ambient, Diffuse, Specular, and SpecularPower control material properties of the object,
as specified in OpenGL. The first three take a floating−point value between 0 and 1, while the
SpecularPower property, which controls the OpenGL shininess property (it is called specular power
in VTK), takes a floating−point value between 0 and 128. You need to know how OpenGL handles
material properties to understand what these values mean.

•

ClipPlane (short form: cp; type: bool; # of arguments: 1)
A switch activating or deactivating the clipping plane. Takes a boolean (0/1) value.

•

Color (short form: c; type: color; # of arguments: 1)
Properties Color, Opacity, and Palette set these three properties for View Objects, which are
represented as solid surfaces (OpenGL polygonal mesh) − which are all View Objects except the
Volume object. These three properties can be either scalar (1−component) or arrays
(multi−component), depending on the type of the View Objects they belong to (check descriptions
for specific objects for more details).The Color property takes a 3−component RGB value
int.int.int (like 255.0.0 for red). The Opacity properties takes a floating point number between
0 and 1, and the Palette takes the integer value, that is interpreted as follows: if the value is positive,
it is taken to be the index of the specific palette; if the value is negative, it is taken as minus the index
of the palette, and the palette is reversed. For example, a value of 1 will select a traditional rainbow
palette, while a value of −1 will select the rainbow palette but in the reversed order (pink is on the

•

3 Object Reference 3.15 TensorField object

© 2005−2007 by Nick Gnedin 57

left, dark blue is on the right). Finally, a value of zero will select the special "brightness" palette, with
which the object is colored by shades of its current color, with brightness of the shade related to the
value of scalar variable used to color the object. The brightness palette cannot be reversed, and Cross
Section and Volume objects cannot be colored with a brightness palette (they do not have a regular
color), so the value 0 is ignored for them.
ColorBy (short form: cb; type: int; # of arguments: 1)
The integer property specifying the scalar variable which is used to color the object. If this property is
set to 0, no coloring by scalar variable is performed (all glyphs have the same color). The
VectorField object accepts, in addition, the following 3 values:

−3: color by the vector field magnitude;♦
−2: color by the vector field vorticity;♦
−1: color by the divergence of the vector field.♦

•

ConnectedToScalars (short form: cs; type: bool; # of arguments: 1)
A read−only boolean property specifying whether the object can be colored by a scalar variables. If
this property is false, setting ColorBy property to a positive value will have no effect.

•

DataPresent (short form: dp; type: bool; # of arguments: 1)
A read−only boolean property returning 1 if the object has the data and 0 otherwise.

•

DataType (short form: dt; type: int; # of arguments: 1)
This property specifies the type of data a given object uses. It has no effect for the basic edition of
IFrIT, but extensions to IFrIT use multiple data types and this property is used to select among
different types of data.

•

Diffuse (short form: md; type: float; # of arguments: 1)
See Ambient.

•

GlyphSampleRate (short form: gr; type: int; # of arguments: 1)
This property accepts integer positive numbers that specify the sampling rate for the object. If this
property is set to 1, every point in the data will be shown. For values larger than 1, only every
GlyphSampleRate value in every direction will be shown.

•

GlyphSize (short form: gs; type: double; # of arguments: 1)
The uniform size to scale all glyphs with.

•

Method (short form: m; type: int; # of arguments: 1)
This property is reserved for future use. Currently, only one methd − tensor glyph − is supported.

•

NumReplicas (short form: nr; type: int; # of arguments: 6)
Some of View Objects can be replicated, i.e. their identical replicas placed outside the bounding box.
This 6−dimensional integer property specifies how many replicas should be placed in −X, +X, −Y,
+Y, −Z, and +Z directions, respectively. This property only has effect if the data are periodic in at
least some of the directions, and if the object can be replicated (not all View Objects.

•

Opacity (short form: o; type: float; # of arguments: 1)
See Color.

•

Palette (short form: p; type: int; # of arguments: 1)
See Color.

•

Ready (short form: r; type: bool; # of arguments: 1)
A read−only boolean value for checking whether the object is ready to be shown (i.e. has the data and
all the correct settigs). An attept to show an object that is not ready will not succeed.

•

ScalingOn (short form: so; type: bool; # of arguments: 1)
The boolean property that specifies whether the tensor glyphs should be scaled by the tensor
eigenvalues. If it is false, all glyphs will have the same volume, but different shapes and
orientations.

•

Specular (short form: ms; type: float; # of arguments: 1)
See Ambient.

•

SpecularPower (short form: mp; type: float; # of arguments: 1)
See Ambient.

•

3 Object Reference 3.15 TensorField object

© 2005−2007 by Nick Gnedin 58

Visible (short form: vis; type: bool; # of arguments: 1)
A read−only boolean value for checking whether the object is visible. It has a value of true (1) is the
View Object is visible, and false otherwise. This property cannot be used to show/hide the object,
only to test the visibility state.

•

3.16 VectorField object

VectorField object represents a vector field, like the flow of the fluid. A vector field can be represented as a
"vector glyph" − a set of straight lines pointing in the direction of the vector field at every point with lengths
proportional to the magnitude of the vector, or as a collection of stream lines − lines which would correspond
to the fluid flow lines if the vector field was a real fluid velocity field. Streamlines originate at a source
object, which can be a plane, a sphere, a disk, or a all existing Markers. Common Color, Opacity, and
Palette properties are 2−component arrays, with the first component refererring to the vector field itself, and
the second component referring to the streamline source object. The Position property only refers to the
streamline source object.

Short form: v

Available properties:

Ambient (short form: ma; type: float; # of arguments: 1)
Properties Ambient, Diffuse, Specular, and SpecularPower control material properties of the object,
as specified in OpenGL. The first three take a floating−point value between 0 and 1, while the
SpecularPower property, which controls the OpenGL shininess property (it is called specular power
in VTK), takes a floating−point value between 0 and 128. You need to know how OpenGL handles
material properties to understand what these values mean.

•

AttachToMarker (short form: am; type: int; # of arguments: 1)
If this property is set to the value of the index of an existing Marker, then the position of the object
will be "attached" to that Marker. If the Marker is moved, the object will move with it too.

•

ClipPlane (short form: cp; type: bool; # of arguments: 1)
A switch activating or deactivating the clipping plane. Takes a boolean (0/1) value.

•

Color (short form: c; type: color; # of arguments: 2)
Properties Color, Opacity, and Palette set these three properties for View Objects, which are
represented as solid surfaces (OpenGL polygonal mesh) − which are all View Objects except the
Volume object. These three properties can be either scalar (1−component) or arrays
(multi−component), depending on the type of the View Objects they belong to (check descriptions
for specific objects for more details).The Color property takes a 3−component RGB value
int.int.int (like 255.0.0 for red). The Opacity properties takes a floating point number between
0 and 1, and the Palette takes the integer value, that is interpreted as follows: if the value is positive,
it is taken to be the index of the specific palette; if the value is negative, it is taken as minus the index
of the palette, and the palette is reversed. For example, a value of 1 will select a traditional rainbow
palette, while a value of −1 will select the rainbow palette but in the reversed order (pink is on the
left, dark blue is on the right). Finally, a value of zero will select the special "brightness" palette, with
which the object is colored by shades of its current color, with brightness of the shade related to the
value of scalar variable used to color the object. The brightness palette cannot be reversed, and Cross
Section and Volume objects cannot be colored with a brightness palette (they do not have a regular
color), so the value 0 is ignored for them.

•

3 Object Reference 3.16 VectorField object

© 2005−2007 by Nick Gnedin 59

ColorBy (short form: cb; type: int; # of arguments: 1)
The integer property specifying the scalar variable which is used to color the object. If this property is
set to 0, no coloring by scalar variable is performed (all glyphs have the same color). The
VectorField object accepts, in addition, the following 3 values:

−3: color by the vector field magnitude;♦
−2: color by the vector field vorticity;♦
−1: color by the divergence of the vector field.♦

•

ConnectedToScalars (short form: cs; type: bool; # of arguments: 1)
A read−only boolean property specifying whether the object can be colored by a scalar variables. If
this property is false, setting ColorBy property to a positive value will have no effect.

•

DataPresent (short form: dp; type: bool; # of arguments: 1)
A read−only boolean property returning 1 if the object has the data and 0 otherwise.

•

DataType (short form: dt; type: int; # of arguments: 1)
This property specifies the type of data a given object uses. It has no effect for the basic edition of
IFrIT, but extensions to IFrIT use multiple data types and this property is used to select among
different types of data.

•

Diffuse (short form: md; type: float; # of arguments: 1)
See Ambient.

•

GlyphSampleRate (short form: gr; type: int; # of arguments: 1)
This property accepts integer positive numbers that specify the sampling rate for the object. If this
property is set to 1, every point in the data will be shown. For values larger than 1, only every
GlyphSampleRate value in every direction will be shown.

•

GlyphSize (short form: gs; type: double; # of arguments: 1)
The uniform size to scale all glyphs with.

•

LineDir (short form: ld; type: int; # of arguments: 1)
The direction of the streamlines relative to the source. The following values are accepted:

0: the up−stream direction (the direction the vector field points to);♦
1: the down−stream direction (the direction opposite to the one the vector field points to);♦
2: the forward direction (the direction of increasing coordinate);♦
3: the backward direction (the direction of decreasing coordinate);♦
4: both directions (the streamline is drawn from both sides of the source object).♦

•

LineLength (short form: ll; type: float; # of arguments: 1)
The maximum length for the streamline to draw.

•

LineQuality (short form: lq; type: int; # of arguments: 1)
The quality of the streamline. If the value of this property is zero, the streamline may appear "jaggy".
Positive values of this property make the streamline smoother, at the expense of longer rendering
time.

•

Method (short form: m; type: int; # of arguments: 1)
The following modes for visualizing the vector field are supported:

Glyph (0): a set of straight lines pointing in the direction of the vector field at every point
with lengths proportional to the magnitude of the vector;

♦

Stream line (1): a set of lines, which would correspond to the fluid flow lines if the vector
field was a real fluid velocity field;

♦

Stream tube (2): a stream line that has a finite thickness that varies according to the flow
speed (as if the mass flow is conserved);

♦

Stream band (3): a pair of nearby stream lines with the surface between them. This is useful
to visualize diverging or converging flows.

♦

In the last three modes, streamlines are

•

MoveTo (short form: to; type: int; # of arguments: 1)
This action (write−only) integer property moves the position of the object to a particular location, as
listed below:

•

3 Object Reference 3.16 VectorField object

© 2005−2007 by Nick Gnedin 60

0: the last picked point (if any);•
1: the current focal point fo the camera;•
2: the center of the box;•
NumReplicas (short form: nr; type: int; # of arguments: 6)
Some of View Objects can be replicated, i.e. their identical replicas placed outside the bounding box.
This 6−dimensional integer property specifies how many replicas should be placed in −X, +X, −Y,
+Y, −Z, and +Z directions, respectively. This property only has effect if the data are periodic in at
least some of the directions, and if the object can be replicated (not all View Objects.

•

NumberOfStreamLines (short form: nl; type: int; # of arguments: 1)
The number of streamlines to generate. If the source object is Markers, then this property has no
effect, as the number of streamlines is equal to the number of available markers.

•

Opacity (short form: o; type: float; # of arguments: 2)
See Color.

•

Palette (short form: p; type: int; # of arguments: 2)
See Color.

•

Position (short form: x; type: double; # of arguments: 3)
The position of the object in the scene. Different View Objects may have different meaning for the
position property − for example, the position may be relevant for only a part of the object, or for a
particular mode of representation.

•

Ready (short form: r; type: bool; # of arguments: 1)
A read−only boolean value for checking whether the object is ready to be shown (i.e. has the data and
all the correct settigs). An attept to show an object that is not ready will not succeed.

•

ShowSourceObject (short form: sso; type: bool; # of arguments: 1)
A boolean property that toggles whether the source object is shown in the visualization scene.

•

SourceDirection (short form: sd; type: float; # of arguments: 3)
The direction (specified as a 3−component double array) of the source object when it is a plane or a
disk.

•

SourceOpacity (short form: so; type: float; # of arguments: 1)
The opacity of the source object (between 0 and 1), if it is shown.

•

SourceSize (short form: ss; type: double; # of arguments: 1)
The size of the source if it is a disk or a sphere.

•

SourceType (short form: st; type: int; # of arguments: 1)
The type of a geometric shape of the source object:

0: disk;♦
1: plane;♦
2: size.♦

The size of the disk or the sphere is set by the SourceSize property, the orientation of the disk or the
plane is set by the SourceDirection property, and the center of the source object is set by the
SourcePosition propery.

•

Specular (short form: ms; type: float; # of arguments: 1)
See Ambient.

•

SpecularPower (short form: mp; type: float; # of arguments: 1)
See Ambient.

•

TubeRangeFactor (short form: tr; type: float; # of arguments: 1)
TubeSize, TubeRangeFactor, and TubeVariationFactor control the shape of streamtubes. The
TubeSize property sets the minimum diameter of the tube; all linear scales in the tube are
proportional to the value of this property. The TubeRangeFactor property is the ratio of the
maximum to the minimum sizes of the tube. The TubeVariationFactor determines how sensitive the
size of the tube is to the value of the vector field visualized. It may take some experimentation with
these three parameters to achieve a satisfactory−looking tubes for your data.

•

3 Object Reference 3.16 VectorField object

© 2005−2007 by Nick Gnedin 61

TubeSize (short form: ts; type: int; # of arguments: 1)
See TubeRangeFactor.

•

TubeVariationFactor (short form: tv; type: float; # of arguments: 1)
See TubeRangeFactor.

•

Visible (short form: vis; type: bool; # of arguments: 1)
A read−only boolean value for checking whether the object is visible. It has a value of true (1) is the
View Object is visible, and false otherwise. This property cannot be used to show/hide the object,
only to test the visibility state.

•

3.17 ViewModule object

The View Module object is a single visualization window that displays the whole scene. Several
ViewModule objects can exist, and can either be independent, or be "clones" of another ViewModule. In the
latter case they share the data with the "parent" window but in all other respects behave as separate windows.
All other objects except the ControlModule object and the ImageComposer object belong to one of
ViewModule objects.The View Module object is directly responsible for showing the Bounding Box,
Record Label, Clipping Plane, and several other controls, but it delegates visualization of the data to its
View Objects.

Short form: vm

Available properties:

AnimationOutput (short form: ao; type: int; # of arguments: 1)
The boolean property that controls the final output of an animation. If it is set to 0, the animation is
stored in a sequence of files; for other values the animation is saved into a movie file: value of 1
creates an MPEG2 movie, and a value of 2 creates an AVI movie (the latter option requires special
libraries and may not be available on all platforms). The movie option is only available under VTK 5.

•

Antialiasing (short form: a; type: bool; # of arguments: 1)
The boolean property that toggles OpenGL antialiasing in the scene.

•

AxesBoxLabels (short form: abl; type: string; # of arguments: 3)
When the Bounding Box is displayed as axes, properties AxesBoxLabels and AxesBoxRanges
specify labels and ranges for the three axes respectively. The former property takes 3 string−values
arguments, while the latter takes 6 floating point numbers as Xmin, Xmax, Ymin, etc.

•

AxesBoxRanges (short form: abr; type: float; # of arguments: 6)
See AxesBoxLabels.

•

BackgroundColor (short form: bg; type: color; # of arguments: 1)
Sets the background color of the scene, specified as a 3−component RGB value int.int.int (like
255.255.255 for white).

•

BackgroundImage (short form: bi; type: string; # of arguments: 1)
If this property is assigned a name of an existing image file, the image from the file will be used as a
background for the visualization scene (instead of a fixed color background set by BackgroundColor
property). To revert to a fixed color background, assign an empty string to this property. Notice, that
rendering a scene with an image in the background is much slower than a scene with a fixed color
background.

•

BoundingBox (short form: bb; type: bool; # of arguments: 1)
The boolean property that toggles showing of the bounding box − the frame that encloses (but not

•

3 Object Reference 3.17 ViewModule object

© 2005−2007 by Nick Gnedin 62

truncates) the main visualizatin scene. The bounding box serves as a useful reference frames for
placing other objects in relation to each other.
BoundingBoxType (short form: bbt; type: int; # of arguments: 1)
The type of the Bounding Box, as follows:

0: the default IFrIT−style bounding box (red−blended−into−blue);♦
1: the classic bounding box (red in X−direction, green in Y, blue in Z);♦
2: the hair−thin bounding box (one−pixel wide lines);♦
3: the classic bounding box with X, Y, and Z axes shown as coordinate axes, with arrows at
the end, labels, and ranges. This type is useful for showing 3D scatter plots.

♦

•

BoxSize (short form: bs; type: float; # of arguments: 1)
This property sets the size of the Bounding Box in physical units. Chaging this property does not
actually change the visualization scene and it does not affect the relation of objects with respect to
each other, but it useful for assigning physical meaning to the distances in the scene. This property is
only meaningful if the OpenGL Coordinates property is set to false. Otherwise, the Box Size is
always 2 and coordinates go from −1 to 1.

•

CameraAlignmentLabel (short form: ca; type: bool; # of arguments: 1)
Toggles showing of coordinate axis when the came orientation is orthogonal, i.e. the direction of
viewing and the view up vector are both parallel to coordinate axes. This is useful when visualizing
Cross Section objects.

•

ClipPlane (short form: cp; type: bool; # of arguments: 1)
Toggles showing of the clipping plane. The clipping plane cuts off a portion of the scene, thus
allowing to look inside a visuaized object. It is controled by the ClipPlaneDirection and
ClipPlaneDistance properties.

•

ClipPlaneDirection (short form: cpd; type: float; # of arguments: 3)
ClipPlaneDirection and ClipPlaneDistance properties control the orientation and location of the .
The ClipPlaneDirection property specifies the direction of the normal to the , while the The
ClipPlaneDistance property sets the distance from the plane to the center of the bounding box in
OpenGL coordinates.

•

ClipPlaneDistance (short form: cpl; type: float; # of arguments: 1)
See ClipPlaneDirection.

•

CloneOfWindow (short form: co; type: int; # of arguments: 1)
A read−only property that returns true if this View Module is a clone of another one, and false if
it owns its data.

•

ColorBars (short form: cb; type: bool; # of arguments: 1)
Toggles showing of Color Bars.

•

CrossSectionCurrent (short form: oxc; type: int; # of arguments: 1)
This property specifies the index of the current cross section. Must take value between 1 and the value
of Cross Section Max property.

•

CrossSectionMax (short form: oxm; type: int; # of arguments: 1)
The read−only property that returns the number of existing cross sections.

•

DumpImage (short form: di; type: bool; # of arguments: 1)
An "action" (write−only) property, setting true to which creates the image file with the current
visualization scene (see Image Composer for more details what can be output as an image).

•

FontScale (short form: fs; type: int; # of arguments: 1)
FontScale and FontType properties set the font size and type of text displayed along Color Bars, a
Ruler, etc. The scale value of 0 means the default font size, negative values make the font smaller,
positive values make it larger. The available values for the FontType property are:

−1: use vector (drawn by lines) font. This font does not look too well, but is always available
and looks the same on all systems.

♦

0: use Arial font family.♦

•

3 Object Reference 3.17 ViewModule object

© 2005−2007 by Nick Gnedin 63

0: use Courier font family. This font has equal space per letter ("fixed" or "monispace") font
and is useful sometimes.

♦

0: use Times font family.♦
FontType (short form: ft; type: int; # of arguments: 1)
See FontScale.

•

GlassClipPlane (short form: gcp; type: bool; # of arguments: 1)
Toggles whether a highly transparent (a−la glass) plane showing the location and orientation of the is
shown in the scene. It is usually helpful in placing the in exact location.

•

ImageFormat (short form: if; type: int; # of arguments: 1)
The format of the image file produces. The accepted values are:

0: Portable Network Grapics(.png);♦
1: Joint Photographic Experts Group (.jpg);♦
2: Portable pixmap (.ppm);♦
3: Windows bitmap (.bmp);♦
4: Tag Image File Format (.tif);♦
5: Encapsulated Postrscript (.eps).♦

Frankly speaking, I have no idea why anyone would want all of them...

•

ImageMagnification (short form: ix; type: int; # of arguments: 1)
The magnification factor of the image. If the produces image does not have to be the same as the
image on the screen, but can be any factor larger. I have a 30,000 by 30,000 image on the wall of my
office.

•

InteractorStyle (short form: is; type: int; # of arguments: 1)
The style of the visualization window interactor, i.e. the component that control how mouse clicks
and keyboard keys are affect the visualization scene. IfrIT used four different interactor styles:

•

0 or 1: use Display mode described in Mouse and Keyboard Controls. The difference between values
0 and 1 is that the value 0 uses a trackball method of interaction, when you need to click on a mouse
button and move the mouse to change the scene; the value of 1 uses a joystick mode, when just
clicking on mouse button causes the scene to spin or zoom (depending on the button clicked) with a
rate that depends on how far away the mouse cursor is from the center of the screen;

•

2: use Fly−by mode described in Mouse and Keyboard Controls.•
3: use Keyboard Interactor mode described in Mouse and Keyboard Controls.•
Label (short form: lb; type: bool; # of arguments: 1)
The boolean property that shows/hides a record label that displays a properly modified current record
of an animatable data file. If the curent data file is ot animatable, the label is not displayed.

The specific contents of the label is controled by LabelName, LabelScale, LabelOffset, LabelUnit,
and LabelDigits properties. Namely, the label is shown as the following equation:

name=value unit

where name and unit are strings specified by string−values properties LabelName and LabelUnit,
and value is the mathematical product of the property LabelScale and the difference between value of
the current file record and the LabelOffset property (value = LabelScale*[record−LabelOffset]).
The number of decimal places to show in the value is set by the LabelDigits property.

For example, if LabelName="Power", LabelUnit="Watts", LabelOffset=0, and LabelScale=0.01,
then a file with the record 1234 will have a label

Power=12.34Watts

•

3 Object Reference 3.17 ViewModule object

© 2005−2007 by Nick Gnedin 64

A special value LabelScale=0 forms a label with name "z", no unit, and the value equal to
1e4/record−1, so that a file with the record 1234 will have a label

z=7.10

As you see, IFrIT remembers its origin!
LabelDigits (short form: ld; type: int; # of arguments: 1)
See Label.

•

LabelName (short form: ln; type: string; # of arguments: 1)
See Label.

•

LabelOffset (short form: lo; type: float; # of arguments: 1)
See Label.

•

LabelScale (short form: ls; type: float; # of arguments: 1)
See Label.

•

LabelUnit (short form: lu; type: string; # of arguments: 1)
See Label.

•

LightAngles (short form: la; type: float; # of arguments: 2)
Two angles (elevation and azimuth) that specify the location of the main light. See descrion of IFrIT
lights for more details on how light are controlled in IFrIT.

•

LightIntensity (short form: li; type: float; # of arguments: 3)
IFrIT uses LightKit object from VTK to control light. Below is the (slightly edited) description of
lights borrowed from VTK documentation.

LightKit is designed to make general purpose lighting of VTK scenes simple, flexible, and attractive
(or at least not horribly ugly without significant effort).

A LightKit consists of three lights, a main light, a fill light, and a headlight. The main light is
usually positioned so that it appears like an overhead light (like the sun, or a ceiling light). It is
generally positioned to shine down on the scene from about a 45 degree angle vertically and at least a
little offset side to side. The main light usually at least about twice as bright as the total of all other
lights in the scene to provide good modeling of object features.

The other lights in the kit (the fill light, headlight, and a pair of back lights) are weaker sources that
provide extra illumination to fill in the spots that the main light misses. The fill light is usually
positioned across from or opposite from the main light (though still on the same side of the object as
the camera) in order to simulate diffuse reflections from other objects in the scene. The headlight,
always located at the position of the camera, reduces the contrast between areas lit by the main and
fill light. The two back lights, one on the left of the object as seen from the observer and one on the
right, fill on the high−contrast areas behind the object. The LightIntensity property sets the
intensities of the main, fill, and head lights. The back lights intensities are set automatically.

All lights are directional lights (infinitely far away with no falloff). Lights move with the camera. For
simplicity, the position of lights in the LightKit can only be specified using two angles: the elevation
(latitude) and azimuth (longitude) of the main light with respect to the camera, expressed in degrees.
(Lights always shine on the camera's lookat point.) For example, a light at (elevation=0, azimuth=0) is
located at the camera. A light at (elevation=90, azimuth=0) is above the lookat point, shining down.
Negative azimuth values move the lights clockwise as seen above, positive values counter−clockwise.
So, a light at (elevation=45, azimuth=−20) is above and in front of the object and shining slightly
from the left side.

•

MarkerCurrent (short form: omc; type: int; # of arguments: 1)
This property specifies the index of the current marker. Must take value between 1 and the value of

•

3 Object Reference 3.17 ViewModule object

© 2005−2007 by Nick Gnedin 65

Marker Max property.
MarkerLegend (short form: ml; type: bool; # of arguments: 1)
A boolean property that toggles showing the legend for the existing markers.

•

MarkerLegendPosition (short form: mlp; type: int; # of arguments: 1)
A position on the screen of the Marker Legend. This property takes only 2 values: 0 (for lower−left
corner) or 1 (for lower−right corner).

•

MarkerMax (short form: omm; type: int; # of arguments: 1)
The read−only property that returns the number of existing markers.

•

MeasuringBox (short form: mb; type: bool; # of arguments: 1)
The boolean property that toggles showing the measuring box. The measuring box is a
semi−transparent cube that can be moved in the visualization scene. Its size can be adjusted, and is
always displayed on the screen, so the size of features that fit int the box are always known. When
shown, the measuring box takes over the mouse and keyboard interaction.

•

MoveMarkerCaption (short form: mmc; type: bool; # of arguments: 1)
A boolen property that toggles a Caption Move mode. In this mode the mouse interaction with the
visualization scene is disabled. The only mouse interaction that is allowed is to click on the marker
caption and drag it around the screen.

•

NoClone (short form: nc; type: bool; # of arguments: 1)
A read−only property that returns true if this View Module owns its data, or false if it is a clone
of other view module.

•

OpenGLCoordinates (short form: glc; type: bool; # of arguments: 1)
This boolean property specifies the coordinate system used to labels scales and locations in the
visualization scene. If this property is set to true, then the coordinate within the bounding box go
from −1 to 1 in each of the 3 directions; the center of the bounding box is at (0,0,0), and the linear size
of the bounding box is 2. If this property is false, then the value of the Box Size property is used to
set the size of the bounding box, and the coordinates go from 0 to Box Size in all 3 directions.

•

ParticlesCurrent (short form: opc; type: int; # of arguments: 1)
This property specifies the index of current particles. Must take value between 1 and the value of
Particles Max property.

•

ParticlesMax (short form: opm; type: int; # of arguments: 1)
The read−only property that returns the number of existing particles.

•

PlaceMarker (short form: pm; type: bool; # of arguments: 1)
A boolen property that toggles a Marker Placement mode. In this mode the mouse cursor gets an
outline bounding box, axes−aligned cross−hairs, and axes shadows that can be used to move the
current marker interactively.

•

Position (short form: p; type: int; # of arguments: 2)
The position of the visualization on the screen (returned as two−component integer array). This
property is read−only − use the mouse to move the windows on the screen.

•

PostScriptOrientation (short form: pso; type: int; # of arguments: 1)
This property sets the orientation of the PostScript images as portrait (0) or landscape (1).

•

PostScriptPaperFormat (short form: psf; type: int; # of arguments: 1)
Sets the paper format for the PostScript image format. The valid values are from 0 to 10, which select
the followinf formats respectively: A0, A1, A2, A3, A4, A5, A6, A7, A8, Letter, 11x17.

•

Ruler (short form: rl; type: bool; # of arguments: 1)
This property toggles showing the ruler on top of the visualization window. The ruler is only visible
in the parallel projection, because in the perspective projections the same distance projects on the
screen differently depending on its location in the scene.

•

RulerScale (short form: rs; type: float; # of arguments: 1)
Sets the scale shown on the ruler. The scene will be zoomed in/out appropriatey to maintain
consistency between the scale of the scene and the value shown on the ruler.

•

3 Object Reference 3.17 ViewModule object

© 2005−2007 by Nick Gnedin 66

RulerTitle (short form: rt; type: string; # of arguments: 1)
Sets the title shown on top of the ruler. By default, there is no title.

•

Size (short form: s; type: int; # of arguments: 2)
This property controls the size of the visualization window on the screen. Opposite to the Position
property, this property is writeable, i.e. changing this value also changes the size of the window on the
screen.

•

Stereo (short form: ss; type: bool; # of arguments: 1)
The boolean property that toggles the stereo mode. The same effect is obained by pressing a key "3"
in the visualization window in the display mode.

•

StereoAlignmentMarkers (short form: sam; type: bool; # of arguments: 1)
The boolean property that toggles showing alighnment markers for dual window stereo mode. This
property has no effect if stereo is not used, or if the Stereo Type mode is not dual windows.

•

StereoType (short form: st; type: int; # of arguments: 1)
Specifies the method to use to display stereo image. The following values are accepted:

0: Two eyes in two separate windows (for geowall−like set up).♦
1: Crystal Eyes special purpose hardware.♦
2: Simple blue−red stereo.♦
3: The interlaced render stereo type is for output to a VRex stereo projector. All of the odd
horizontal lines are from the left eye, and the even lines are from the right eye. The user has
to make the render window aligned with the VRex projector, or the eye will be swapped.

♦

4: Left eye only.♦
5: Right eye only.♦
6: Dresden Display special purpose hardware.♦

•

SurfaceCurrent (short form: osc; type: int; # of arguments: 1)
This property specifies the index of the current surface. Must take value between 1 and the value of
Surface Max property.

•

SurfaceMax (short form: osm; type: int; # of arguments: 1)
The read−only property that returns the number of existing surfaces.

•

UpdateRate (short form: r; type: int; # of arguments: 1)
Specifies the interactive update rate. The main feature of VTK is that it can adjust rendering of a
complex visualization scene to achieve a request update rate. If the rendering of one frames takes too
long to keep up with the requested rate, some of the objects in the scene will be simplified temporarily
to maintain interactive rate. The rate is measured in frames per second, rounded to the nearest integer.

•

WindowNumber (short form: wn; type: int; # of arguments: 1)
This read−only property returns the index of the current View Module.

•

3.18 Volume object

Volume object uses the volume rendering method to represent the full three−dimensional structure of the
data. Several methods for volume rendering are available.

Short form: w

Available properties:

Ambient (short form: ma; type: float; # of arguments: 1)
Properties Ambient, Diffuse, Specular, and SpecularPower control material properties of the object,

•

3 Object Reference 3.18 Volume object

© 2005−2007 by Nick Gnedin 67

as specified in OpenGL. The first three take a floating−point value between 0 and 1, while the
SpecularPower property, which controls the OpenGL shininess property (it is called specular power
in VTK), takes a floating−point value between 0 and 128. You need to know how OpenGL handles
material properties to understand what these values mean.
BlendMode (short form: bm; type: int; # of arguments: 1)
The Blend Mode is only meaningful for the Raycast and VolumePro methods. It accepts two values:

0: composite mode, when all values along a line−of−sight direction are composed together
depending on the opacity function;

♦

1: "maximum intensity" mode, when the maximum value along a line−of−sight direction is
used to represent the opacity along the line−of−sight.

♦

•

ClipPlane (short form: cp; type: bool; # of arguments: 1)
A switch activating or deactivating the clipping plane. Takes a boolean (0/1) value.

•

DataPresent (short form: dp; type: bool; # of arguments: 1)
A read−only boolean property returning 1 if the object has the data and 0 otherwise.

•

DataType (short form: dt; type: int; # of arguments: 1)
This property specifies the type of data a given object uses. It has no effect for the basic edition of
IFrIT, but extensions to IFrIT use multiple data types and this property is used to select among
different types of data.

•

DepthDownsampleFactor (short form: dd; type: float; # of arguments: 1)
See ImageDownsampleFactor.

•

Diffuse (short form: md; type: float; # of arguments: 1)
See Ambient.

•

ImageDownsampleFactor (short form: di; type: float; # of arguments: 1)
Properties ImageDownsampleFactor and DepthDownsampleFactor specify downsampling factors
in the plane of the screen and along the line−of−sight respectively. Both factors can be less than 1,
which would imply super−sampling rather than down−sampling. These properties are not supported
by all methods.

•

InterpolationType (short form: it; type: int; # of arguments: 1)
The value of 0 sets the nearest neighbor interpolation; the value of 1 switches to linear interpolation.

•

Method (short form: m; type: int; # of arguments: 1)
Specifies the method for volume rendering. VTK provides several different methods, and different
versions of VTK and different installations may or may not include all methods; IFrIT extensions may
have their own sets of volume rendering methods. In order to find out which methods are present in
the current installation, a read−only property MethodNames can be used to output the list of
currently supported methods. A specific method can then be specified by the index (starting with 1) of
the method in the names list. Most commonly used methods are:

•

Ray Casting method computes volume properties along rays cast from every point on the screne into
the volume; rendering is done in software, and is slow for large data sets.

•

Fixed Point Ray Casting is an alternative software ray casting method. It is often faster than
traditional ray casting, but is only available under VTK 5.

•

Shear Warp Factorization is another fast software implementation of the ray casting method. It is
only available under VTk 5.

•

2D Texture method replaces the volume with a set of semi−transparent textures; this can be fast for
medium−size volumes and high quality videocards, although the quality of rendering is usually worse
then in the Ray Casting method; this method is not suitable for volumes with less than about
30x30x30 cells.

•

3D Texture method uses 3−dimensional textures, similar to 2D textures, except the visual quality is
usually much higher even for small volumes. It is also often faster that 2D textures. This method is
only available under VTK 5 and only if your hardware supports it − not all videocards can handle 3D
textures, but most of the most recent ones can.

•

3 Object Reference 3.18 Volume object

© 2005−2007 by Nick Gnedin 68

VolumePro Board method uses the VolumePro 1000 hardware volume rendering board; you need to
have this expensive board to use this method.

•

MethodNames (short form: mn; type: string; # of arguments: any)
See Method.

•

NumReplicas (short form: nr; type: int; # of arguments: 6)
Some of View Objects can be replicated, i.e. their identical replicas placed outside the bounding box.
This 6−dimensional integer property specifies how many replicas should be placed in −X, +X, −Y,
+Y, −Z, and +Z directions, respectively. This property only has effect if the data are periodic in at
least some of the directions, and if the object can be replicated (not all View Objects.

•

OpacityFunction (short form: of; type: any; # of arguments: 1)
The piece−wise function that specifies the opacity of a cell as a function of the variable value in the
cell. The opacity function is specified in the same as as the ParticleGroup:SizeFunction property.

•

Palette (short form: p; type: int; # of arguments: 1)
Sets the palette to render the volume with.

•

Ready (short form: r; type: bool; # of arguments: 1)
A read−only boolean value for checking whether the object is ready to be shown (i.e. has the data and
all the correct settigs). An attept to show an object that is not ready will not succeed.

•

Shading (short form: mw; type: bool; # of arguments: 1)
A boolean switch that can be used to switch off shading of light on the material (so that a surface
looks the same no matter what its orientation relative to lights and a camera is).

•

Specular (short form: ms; type: float; # of arguments: 1)
See Ambient.

•

SpecularPower (short form: mp; type: float; # of arguments: 1)
See Ambient.

•

Var (short form: v; type: int; # of arguments: 1)
Sets the scalar variable to do the volume rendering of.

•

Visible (short form: vis; type: bool; # of arguments: 1)
A read−only boolean value for checking whether the object is visible. It has a value of true (1) is the
View Object is visible, and false otherwise. This property cannot be used to show/hide the object,
only to test the visibility state.

•

3.19 Properties of Data Objects

All data objects support the following common properties.

DataPresent (short form: dp; type: bool; # of arguments: 1)
A read−only boolean property checking whether the data has been loaded.

•

FileName (short form: fn; type: string; # of arguments: 1)
This property returns the name of last data file read. The property is read−only − assigning it a name
of a file will not cause this file to be read. Use DataReader:LoadData property for loading data.

•

FixedLimits (short form: fl; type: bool; # of arguments: 1)
A boolean switch toggling whether the range for available variables (properties Max and Min) is
taken as the range of the data in the current file (if FixedLimits=false), or as a fixed range
unchanged after loading of a data file.

•

FixedStretch (short form: fs; type: bool; # of arguments: any)
This boolean property specifies whether the stretch for variables can be changed. If it is set to true
(1), the stretch is fixed once and for all. This property is read−only and cannot be changed. All basic

•

3 Object Reference 3.19 Properties of Data Objects

© 2005−2007 by Nick Gnedin 69

IFrIT data types have adjustable stretches, but this property may be set to true in an extension,
preventing a user from changing a stretch of a variable that − according to the judgement of the
extension author − should be used only with a specific stretch.
LowerLimit (short form: lo; type: float; # of arguments: any)
Array properties LowerLimit and UpperLimit have dimensions given by the NumVars property and
they take values in this range specified by Max and Min properties. These two properties are used by
View Objects to create a color representation of a scalar value with a Palette.

•

Max (short form: max; type: float; # of arguments: any)
Array properties Min and Max control the range for each available variable.

•

Min (short form: min; type: float; # of arguments: any)
See Max.

•

Name (short form: na; type: string; # of arguments: any)
A string−valued Name array sets the names of all available variables. Names are displayed on the
scene as Color Bars captions.

•

NumVars (short form: n; type: int; # of arguments: 1)
The read−only property NumVars reports the number of available variables in the current data.

•

ResizeLimits (short form: −rl; type: int; # of arguments: 1)
No help is available for this item.

•

Stretch (short form: s; type: int; # of arguments: any)
A Stretch property sets the stretch (value 0: linear, value 1: logarithmic) for each available variable.

•

UpperLimit (short form: up; type: float; # of arguments: any)
See LowerLimit.

•

All particle data objects also support additional properties:

DensityAttribute (short form: ad; type: int; # of arguments: 1)
This property sets the particle attribute that should be used for computing the spatial density. A
special value of 0 will compute the density of particles themselves, without weighting by the attribute
value. Setting this property to −1 would disable the density computation. IFrIT uses VTK classes to
compute the particle density. These classes are not very efficient, so computing density for a large
number of particles is slow. Density computation is done in parallel, so using more than 1 processor
would speed up the calculation.

•

DownsampleFactor (short form: df; type: int; # of arguments: 1)
See DownsampleMode.

•

DownsampleMode (short form: dm; type: int; # of arguments: 1)
DownsampleMode and DownsampleFactor properties specify which subset of all particles is to be
loaded from a Particle Set file. The DownsampleFactor is the inverse of the fraction of all particles
which must be loaded (i.e. DownsampleFactor=10 will load every tenth particle; but notice
exceptions for DownsampleMode=1 and DownsampleMode=2 modes), while the
DownsampleMode property specifies the way the particles must be subsampled, and takes values
from 0 to 5:

DownsampleMode=0 selects every DownsampleFactor particle in the order particles are
present in the data file.

♦

DownsampleMode=1 assumes that particles are set on a square 2D mesh and selects every
DownsampleFactor particle along each dimension. For example, if the total number of
particles is 16 and DownsampleFactor=2, then particles are assumed to be located on a 4 by
4 mesh and particles 1 (i=1,j=1), 3 (i=3,j=1), 9 (i=1,j=3), and 11 (i=3,j=3) are selected.

♦

DownsampleMode=2 is similar to DownsampleMode=1, but assumes that particles are set
on a cubic 3D mesh and every DownsampleFactor particle along each of the 3 dimensions is
selected.

♦

DownsampleMode=3 selects particles to load at random.♦

•

3 Object Reference 3.19 Properties of Data Objects

© 2005−2007 by Nick Gnedin 70

DownsampleMode=4 selects the particles from the data file in order, until a needed number
of particles is loaded. I.e., if the total number of particles in the file is n, then
n/DownsampleFactor first particles will be selected.

♦

DownsampleMode=5 selects the particles from the data file in order, but counting from the
end of the file.

♦

OrderIsAttribute (short form: ao; type: bool; # of arguments: 1)
A boolean switch that specifies whether the order of particles in the data file should be stored as an
additional particle attribute. This can be useful for plotting, for example, trajectories, when individual
particles in the data file are actually locations of the same object at different times.

•

TypeIncluded (short form: ti; type: bool; # of arguments: 1)
A boolean array property which specifies whether the particular type of particles is loaded or not. This
property only makes sense for extensions that support several different types of particles.

•

Some data objects can also have properties that are specific just for them:

Data−UniformScalars object (short form: d−us)
This object represents the Uniform Scalars data type.
Available properties:

VariableCalculatorFunction (short form: cf; type: string; # of arguments: 1)
See VariableCalculatorOutput.

♦

VariableCalculatorOutput (short form: co; type: int; # of arguments: 1)
VariableCalculator... properties control operations on scalar variables. One of the variables
(specified by the VariableCalculatorOutput property) can be replaced by an arbitrary
mathematical expression which may include all other variables from the data file, and a
vector field as well (if it is loaded). The VariableCalculatorFunction property is a string
that encapsulated the mathematical expression. It can use any of the mathematical functions
understood by both IFrIT scripts. Scalar variables in the expression should be named "Var1",
"Var2", etc, and the vector field should be named "Vector". For example, the string
Var1+Var2*mag(Vector) is the expression that will multiply the magnitude of the
vector field by the value of the second scalar variable, and will add to the product the valur of
the first scalar variable. This calculation will be done in every point on the mesh (if the
vector field is used in the expression, it must have the same dimensions as the scalar data).

♦

•

3 Object Reference 3.19 Properties of Data Objects

© 2005−2007 by Nick Gnedin 71

A Appendices

A.1 Codes For Writing IFrIT Data Files

A.1.1 Code Examples

Examples of computer codes for writing IFrIT data files are available in docs directory of IFrIT source
distribution.

A.1.2 Fortran

C
C Write to text uniform scalars data file
C
 subroutine WriteIFrITUniformScalarsTxtFile(n1,n2,n3,var1,var2,var3,
 . filename)
 integer n1, n2, n3 ! Size of the computational mesh in 3 directions
 real*4 var1(n1,n2,n3)
 real*4 var2(n1,n2,n3) ! Three scalar variables
 real*4 var3(n1,n2,n3)
 character*(*) filename ! Name of the file
 open(unit=1, file=filename)
 write(1,*) n1, n2, n3
 do k=1,n3
 do j=1,n2
 do i=1,n1
 write(1,*) var1(i,j,k), var2(i,j,k), var3(i,j,k)
 enddo
 enddo
 enddo
 close(1)
 return
 end
C
C Write to binary uniform scalars data file
C
 subroutine WriteIFrITUniformScalarsBinFile(n1,n2,n3,var1,var2,var3,
 . filename)
 integer n1, n2, n3 ! Size of the computational mesh in 3 directions
 real*4 var1(n1,n2,n3)
 real*4 var2(n1,n2,n3) ! Three scalar variables
 real*4 var3(n1,n2,n3)
 character*(*) filename ! Name of the file
 open(unit=1, file=filename, form='unformatted')
 write(1) n1, n2, n3
 write(1) (((var1(i,j,k),i=1,n1),j=1,n2),k=1,n3)
 write(1) (((var2(i,j,k),i=1,n1),j=1,n2),k=1,n3)
 write(1) (((var3(i,j,k),i=1,n1),j=1,n2),k=1,n3)
 close(1)
 return
 end
C
C Write to text uniform vectors data file

© 2005−2007 by Nick Gnedin 72

C
 subroutine WriteIFrITUniformVectorsTxtFile(n1,n2,n3,vect,filename)
 integer n1, n2, n3 ! Size of the computational mesh in 3 directions
 real*4 vect(3,n1,n2,n3) ! Vector field
 character*(*) filename ! Name of the file
 open(unit=1, file=filename)
 write(1,*) n1, n2, n3
 do k=1,n3
 do j=1,n2
 do i=1,n1
 write(1,*) vect(1,i,j,k), vect(2,i,j,k), vect(3,i,j,k)
 enddo
 enddo
 enddo
 close(1)
 return
 end
C
C Write to binary uniform vectors data file
C
 subroutine WriteIFrITUniformVectorsBinFile(n1,n2,n3,vect,filename)
 integer n1, n2, n3 ! Size of the computational mesh in 3 directions
 real*4 vect(3,n1,n2,n3) ! Vector field
 character*(*) filename ! Name of the file
 open(unit=1, file=filename, form='unformatted')
 write(1) n1, n2, n3
 write(1) (((vect(1,i,j,k),i=1,n1),j=1,n2),k=1,n3)
 write(1) (((vect(2,i,j,k),i=1,n1),j=1,n2),k=1,n3)
 write(1) (((vect(3,i,j,k),i=1,n1),j=1,n2),k=1,n3)
 close(1)
 return
 end
C
C Write to text uniform tensors data file
C
 subroutine WriteIFrITUniformTensorsTxtFile(n1,n2,n3,tens,filename)
 integer n1, n2, n3 ! Size of the computational mesh in 3 directions
 real*4 tens(6,n1,n2,n3) ! Tensor field
 character*(*) filename ! Name of the file
 open(unit=1, file=filename)
 write(1,*) n1, n2, n3
 do k=1,n3
 do j=1,n2
 do i=1,n1
 write(1,*) tens(1,i,j,k), tens(2,i,j,k), tens(3,i,j,k),
 . tens(4,i,j,k), tens(5,i,j,k), tens(6,i,j,k)
 enddo
 enddo
 enddo
 close(1)
 return
 end
C
C Write to binary uniform tensors data file
C
 subroutine WriteIFrITUniformTensorsBinFile(n1,n2,n3,tens,filename)
 integer n1, n2, n3 ! Size of the computational mesh in 3 directions
 real*4 tens(6,n1,n2,n3) ! Tensor field
 character*(*) filename ! Name of the file
 open(unit=1, file=filename, form='unformatted')
 write(1) n1, n2, n3
 write(1) (((tens(1,i,j,k),i=1,n1),j=1,n2),k=1,n3)

A Appendices A.1.2 Fortran

© 2005−2007 by Nick Gnedin 73

 write(1) (((tens(2,i,j,k),i=1,n1),j=1,n2),k=1,n3)
 write(1) (((tens(3,i,j,k),i=1,n1),j=1,n2),k=1,n3)
 write(1) (((tens(4,i,j,k),i=1,n1),j=1,n2),k=1,n3)
 write(1) (((tens(5,i,j,k),i=1,n1),j=1,n2),k=1,n3)
 write(1) (((tens(6,i,j,k),i=1,n1),j=1,n2),k=1,n3)
 close(1)
 return
 end
C
C Write to text basic particles data file
C
 subroutine WriteIFrITBasicParticlesTxtFile(n,xl,yl,zl,xh,yh,zh,
 . x,y,z,attr1,attr2,attr3,filename)
 integer n ! Number of particles
 real*4 xl, yl, zl, xh, yh, zh ! Bounding box
 real*4 x(n), y(n), z(n) ! Particle positions (can be real*8)
 real*4 attr1(n), attr2(n), attr3(n) ! Particle attributes
 character*(*) filename ! Name of the file
 open(unit=1, file=filename)
 write(1,*) n
 write(1,*) xl, yl, zl, xh, yh, zh
 do i=1,n
 write(1,*) x(i), y(i), z(i), attr1(i), attr2(i), attr3(i)
 enddo
 close(1)
 return
 end
C
C Write to binary basic particles data file
C
 subroutine WriteIFrITBasicParticlesBinFile(n,xl,yl,zl,xh,yh,zh,
 . x,y,z,attr1,attr2,attr3,filename)
 integer n ! Number of particles
 real*4 xl, yl, zl, xh, yh, zh ! Bounding box
 real*4 x(n), y(n), z(n) ! Particle positions (can be real*8)
 real*4 attr1(n), attr2(n), attr3(n) ! Particle attributes
 character*(*) filename ! Name of the file
 open(unit=1, file=filename, form='unformatted')
 write(1) n
 write(1) xl, yl, zl, xh, yh, zh
 write(1) (x(i),i=1,n)
 write(1) (y(i),i=1,n)
 write(1) (z(i),i=1,n)
 write(1) (attr1(i),i=1,n)
 write(1) (attr2(i),i=1,n)
 write(1) (attr3(i),i=1,n)
 close(1)
 return
 end

A.1.3 C

#include <stdio.h>

/* Write to text uniform scalars data file */

int WriteIFrITUniformScalarsTxtFile(
 int n1, int n2, int n3, /* Size of the computational mesh in 3 directions */
 float *var1, float *var2, float *var3, /* Three scalar variables */

A Appendices A.1.3 C

© 2005−2007 by Nick Gnedin 74

 char *filename) /* Name of the file */
{
 int i, j, k; FILE *F;
 F = fopen(filename,"w"); if(F == NULL) return 1;
 fprintf(F,"%d %d %d\n",n1,n2,n3);
 for(k=0; k<n3; k++)
 {
 for(j=0; j<n2; j++)
 {
 for(i=0; i<n1; i++)
 {
 fprintf(F,"%g %g %g\n",var1[i+n1*(j+n2*k)],
 var2[i+n1*(j+n2*k)],
 var3[i+n1*(j+n2*k)]);
 }
 }
 }
 fclose(F);
 return 0;
}

/* Write to binary uniform scalars data file */

int WriteIFrITUniformScalarsBinFile(
 int n1, int n2, int n3, /* Size of the computational mesh in 3 directions */
 float *var1, float *var2, float *var3, /* Three scalar variables */
 char *filename) /* Name of the file */
{
 int ntemp; FILE *F; /* ntemp should be declared long on a 16−bit machine */
 F = fopen(filename,"w"); if(F == NULL) return 1;
 ntemp = 12;
 fwrite(&ntemp,4,1,F);
 fwrite(&n1,4,1,F);
 fwrite(&n2,4,1,F);
 fwrite(&n3,4,1,F);
 fwrite(&ntemp,4,1,F);
 ntemp = 4*n1*n2*n3;
 fwrite(&ntemp,4,1,F); fwrite(var1,4,n1*n2*n3,F); fwrite(&ntemp,4,1,F);
 fwrite(&ntemp,4,1,F); fwrite(var2,4,n1*n2*n3,F); fwrite(&ntemp,4,1,F);
 fwrite(&ntemp,4,1,F); fwrite(var3,4,n1*n2*n3,F); fwrite(&ntemp,4,1,F);
 fclose(F);
 return 0;
}

/* Write to text uniform vectors data file */

int WriteIFrITUniformVectorsTxtFile(
 int n1, int n2, int n3, /* Size of the computational mesh in 3 directions */
 float *vect, /* Vector field */
 char *filename) /* Name of the file */
{
 int i, j, k; FILE *F;
 F = fopen(filename,"w"); if(F == NULL) return 1;
 fprintf(F,"%d %d %d\n",n1,n2,n3);
 for(k=0; k<n3; k++)
 {
 for(j=0; j<n2; j++)
 {
 for(i=0; i<n1; i++)
 {
 fprintf(F,"%g %g %g\n",vect[0+3*(i+n1*(j+n2*k))],

A Appendices A.1.3 C

© 2005−2007 by Nick Gnedin 75

 vect[1+3*(i+n1*(j+n2*k))],
 vect[2+3*(i+n1*(j+n2*k))]);
 }
 }
 }
 fclose(F);
 return 0;
}

/* Write to binary uniform vectors data file */

int WriteIFrITUniformVectorsBinFile(
 int n1, int n2, int n3, /* Size of the computational mesh in 3 directions */
 float *vect, /* Vector field */
 char *filename) /* Name of the file */
{
 int i, ntemp; FILE *F; /* ntemp should be declared long on a 16−bit machine */
 F = fopen(filename,"w"); if(F == NULL) return 1;
 ntemp = 12;
 fwrite(&ntemp,4,1,F);
 fwrite(&n1,4,1,F);
 fwrite(&n2,4,1,F);
 fwrite(&n3,4,1,F);
 fwrite(&ntemp,4,1,F);
 ntemp = 4*n1*n2*n3;
 fwrite(&ntemp,4,1,F);
 for(i=0; i<n1*n2*n3; i++) fwrite(vect+3*i+0,4,1,F);
 fwrite(&ntemp,4,1,F);
 fwrite(&ntemp,4,1,F);
 for(i=0; i<n1*n2*n3; i++) fwrite(vect+3*i+1,4,1,F);
 fwrite(&ntemp,4,1,F);
 fwrite(&ntemp,4,1,F);
 for(i=0; i<n1*n2*n3; i++) fwrite(vect+3*i+2,4,1,F);
 fwrite(&ntemp,4,1,F);
 fclose(F);
 return 0;
}

/* Write to text uniform tensors data file */

int WriteIFrITUniformTensorsTxtFile(
 int n1, int n2, int n3, /* Size of the computational mesh in 3 directions */
 float *tens, /* Tensor field */
 char *filename) /* Name of the file */
{
 int i, j, k; FILE *F;
 F = fopen(filename,"w"); if(F == NULL) return 1;
 fprintf(F,"%d %d %d\n",n1,n2,n3);
 for(k=0; k<n3; k++)
 {
 for(j=0; j<n2; j++)
 {
 for(i=0; i<n1; i++)
 {
 fprintf(F,"%g %g %g %g %g %g\n",tens[0+6*(i+n1*(j+n2*k))],
 tens[1+6*(i+n1*(j+n2*k))],
 tens[2+6*(i+n1*(j+n2*k))],
 tens[3+6*(i+n1*(j+n2*k))],
 tens[4+6*(i+n1*(j+n2*k))],
 tens[5+6*(i+n1*(j+n2*k))]);
 }
 }

A Appendices A.1.3 C

© 2005−2007 by Nick Gnedin 76

 }
 fclose(F);
 return 0;
}

/* Write to binary uniform tensors data file */

int WriteIFrITUniformTensorsBinFile(
 int n1, int n2, int n3, /* Size of the computational mesh in 3 directions */
 float *tens, /* Tensor field */
 char *filename) /* Name of the file */
{
 int i, ntemp; FILE *F; /* ntemp should be declared long on a 16−bit machine */
 F = fopen(filename,"w"); if(F == NULL) return 1;
 ntemp = 12;
 fwrite(&ntemp,4,1,F);
 fwrite(&n1,4,1,F);
 fwrite(&n2,4,1,F);
 fwrite(&n3,4,1,F);
 fwrite(&ntemp,4,1,F);
 ntemp = 4*n1*n2*n3;
 fwrite(&ntemp,4,1,F);
 for(i=0; i<n1*n2*n3; i++) fwrite(tens+6*i+0,4,1,F);
 fwrite(&ntemp,4,1,F);
 fwrite(&ntemp,4,1,F);
 for(i=0; i<n1*n2*n3; i++) fwrite(tens+6*i+1,4,1,F);
 fwrite(&ntemp,4,1,F);
 fwrite(&ntemp,4,1,F);
 for(i=0; i<n1*n2*n3; i++) fwrite(tens+6*i+2,4,1,F);
 fwrite(&ntemp,4,1,F);
 fwrite(&ntemp,4,1,F);
 for(i=0; i<n1*n2*n3; i++) fwrite(tens+6*i+3,4,1,F);
 fwrite(&ntemp,4,1,F);
 fwrite(&ntemp,4,1,F);
 for(i=0; i<n1*n2*n3; i++) fwrite(tens+6*i+4,4,1,F);
 fwrite(&ntemp,4,1,F);
 fwrite(&ntemp,4,1,F);
 for(i=0; i<n1*n2*n3; i++) fwrite(tens+6*i+5,4,1,F);
 fwrite(&ntemp,4,1,F);
 fclose(F);
 return 0;
}

/* Write to text basic particles data file */

int WriteIFrITBasicParticlesTxtFile(
 int n, /* Number of particles */
 float xl, float yl, float zl, float xh, float yh, float zh, /* Bounding box */
 float *x, float *y, float *z, /* Particle positions (can be double) */
 float *attr1, float *attr2, float *attr3, /* Particle attributes */
 char *filename) /* Name of the file */
{
 int i; FILE *F;
 F = fopen(filename,"w"); if(F == NULL) return 1;
 fprintf(F,"%d\n",n);
 fprintf(F,"%g %g %g %g %g %g\n",xl,yl,zl,xh,yh,zh);
 for(i=0; n>i; i++)
 {
 fprintf(F,"%g %g %g %g %g %g\n",x[i],y[i],z[i],
 attr1[i],attr2[i],attr3[i]);
 }
 fclose(F);

A Appendices A.1.3 C

© 2005−2007 by Nick Gnedin 77

 return 0;
}

/* Write to binary basic particles data file */

int WriteIFrITBasicParticlesBinFile(
 int n, /* Number of particles */
 float xl, float yl, float zl, float xh, float yh, float zh, /* Bounding box */
 float *x, float *y, float *z, /* Particle positions (can be double) */
 float *attr1, float *attr2, float *attr3, /* Particle attributes */
 char *filename) /* Name of the file */
{
 int i, ntemp; FILE *F;
 F = fopen(filename,"w"); if(F == NULL) return 1;
 ntemp = 4;
 fwrite(&ntemp,4,1,F); fwrite(&n,4,1,F); fwrite(&ntemp,4,1,F);
 ntemp = 24;fwrite(&ntemp,4,1,F);
 fwrite(&xl,4,1,F);
 fwrite(&yl,4,1,F);
 fwrite(&zl,4,1,F);
 fwrite(&xh,4,1,F);
 fwrite(&yh,4,1,F);
 fwrite(&zh,4,1,F);
 fwrite(&ntemp,4,1,F);
 ntemp = sizeof(x[0])*n;
 fwrite(&ntemp,4,1,F); fwrite(x,sizeof(x[0]),n,F); fwrite(&ntemp,4,1,F);
 fwrite(&ntemp,4,1,F); fwrite(y,sizeof(y[0]),n,F); fwrite(&ntemp,4,1,F);
 fwrite(&ntemp,4,1,F); fwrite(z,sizeof(z[0]),n,F); fwrite(&ntemp,4,1,F);
 ntemp = 4*n;
 fwrite(&ntemp,4,1,F); fwrite(attr1,4,n,F); fwrite(&ntemp,4,1,F);
 fwrite(&ntemp,4,1,F); fwrite(attr2,4,n,F); fwrite(&ntemp,4,1,F);
 fwrite(&ntemp,4,1,F); fwrite(attr3,4,n,F); fwrite(&ntemp,4,1,F);
 fclose(F);
 return 0;
}

A.1.4 IDL

;
; Write to text scalar field data file
;
pro WriteIFrITUniformScalarsTxtFile, n1, n2, n3, var1, var2, var3, filename
; n1, n2, n3: size of the computational mesh in 3 directions
; var1, var2, var3: three scalar variables
; filename: name of the file
openw, 1, filename
printf, 1, n1, n2, n3
for k=0,n3−1 do $
for j=0,n2−1 do $
for i=0,n1−1 do $
printf, 1, var1[i,j,k], var2[i,j,k], var3[i,j,k]
close, 1
end
;
; Write to binary scalar field data file
;
pro WriteIFrITUniformScalarsBinFile, n1, n2, n3, var1, var2, var3, filename
; n1, n2, n3: size of the computational mesh in 3 directions
; var1, var2, var3: three scalar variables

A Appendices A.1.4 IDL

© 2005−2007 by Nick Gnedin 78

; filename: name of the file
openw, 1, filename, /F77_UNFORMATTED
writeu, 1, long([n1,n2,n3])
writeu, 1, var1
writeu, 1, var2
writeu, 1, var3
close, 1
end
;
; Write to text uniform vectors data file
;
pro WriteIFrITUniformVectorsTxtFile, n1, n2, n3, vect, filename
; n1, n2, n3: size of the computational mesh in 3 directions
; vect[3,n1,n2,n3]: uniform vectors
; filename: name of the file
openw, 1, filename
printf, 1, n1, n2, n3
for k=0,n3−1 do $
for j=0,n2−1 do $
for i=0,n1−1 do $
printf, 1, vect[0,i,j,k], vect[1,i,j,k], vect[2,i,j,k]
close, 1
end
;
; Write to binary uniform vectors data file
;
pro WriteIFrITUniformVectorsBinFile, n1, n2, n3, vect, filename
; n1, n2, n3: size of the computational mesh in 3 directions
; vect[3,n1,n2,n3]: uniform vectors
; filename: name of the file
openw, 1, filename, /F77_UNFORMATTED
writeu, 1, long([n1,n2,n3])
writeu, 1, vect[0,*,*,*]
writeu, 1, vect[1,*,*,*]
writeu, 1, vect[2,*,*,*]
close, 1
end
;
; Write to text uniform tensors data file
;
pro WriteIFrITUniformTensorsTxtFile, n1, n2, n3, tens, filename
; n1, n2, n3: size of the computational mesh in 3 directions
; tens[6,n1,n2,n3]: uniform tensors
; filename: name of the file
openw, 1, filename
printf, 1, n1, n2, n3
for k=0,n3−1 do $
for j=0,n2−1 do $
for i=0,n1−1 do $
printf, 1, tens[0,i,j,k], tens[1,i,j,k], tens[2,i,j,k], $
 tens[3,i,j,k], tens[4,i,j,k], tens[5,i,j,k]
close, 1
end
;
; Write to binary uniform tensors data file
;
pro WriteIFrITUniformTensorsBinFile, n1, n2, n3, tens, filename
; n1, n2, n3: size of the computational mesh in 3 directions
; tens[6,n1,n2,n3]: uniform vectors
; filename: name of the file
openw, 1, filename, /F77_UNFORMATTED
writeu, 1, long([n1,n2,n3])

A Appendices A.1.4 IDL

© 2005−2007 by Nick Gnedin 79

writeu, 1, tens[0,*,*,*]
writeu, 1, tens[1,*,*,*]
writeu, 1, tens[2,*,*,*]
writeu, 1, tens[3,*,*,*]
writeu, 1, tens[4,*,*,*]
writeu, 1, tens[5,*,*,*]
close, 1
end
;
; Write to text basic particles data file
;
pro WriteIFrITBasicParticlesTxtFile, n, xl, yl, zl, xh, yh, zh, $
x, y, z, attr1, attr2, attr3, filename
; n: number of particles
; xl, yl, zl, xh, yh, zh: bounding box (can be double)
; x, y, z: particle positions (can be double)
; attr1, attr2, attr3: particle attributes/
; filename: name of the file
openw, 1, filename
printf, 1, n
printf, 1, xl, yl, zl, xh, yh, zh
for i=0,n−1 do $
printf, 1, x[i], y[i], z[i], attr1[i], attr2[i], attr3[i]
close, 1
end
;
; Write to binary basic particles data file
;
pro WriteIFrITBasicParticlesBinFile, n, xl, yl, zl, xh, yh, zh, $
x, y, z, attr1, attr2, attr3, filename
; n: number of particles
; xl, yl, zl, xh, yh, zh: bounding box (can be double)
; x, y, z: particle positions (can be double)
; attr1, attr2, attr3: particle attributes/
; filename: name of the file
openw, 1, filename, /F77_UNFORMATTED
writeu, 1, long(n)
writeu, 1, float([xl,yl,zl,xh,yh,zh])
writeu, 1, x
writeu, 1, y
writeu, 1, z
writeu, 1, attr1
writeu, 1, attr2
writeu, 1, attr3
close, 1
end

A.2 License Agreement

A.2.1 Overview

The standard edition of IFrIT is distributed under the GNU GPL License. Extensions of IFrIT may impose
their own licenses.

A Appendices A.2 License Agreement

© 2005−2007 by Nick Gnedin 80

For those not familiar with the GNU GPL, the license basically allows you to:

Use the IFrIT software and source code at no charge.•
Distribute verbatim copies of the software in source form or as binaries you create.•
Sell verbatim copies of the software for a media fee, or sell support for the software.•
Distribute or sell your own modified version of IFrIT so long as the source code is made available
under the GPL.

•

What this license does not allow you to do is make changes or add features to IFrIT and then sell a binary
distribution without source code. You must provide source for any changes or additions to the software, and
all code must be provided under the GPL.

A.2.2 GNU General Public License

Preamble

The licenses for most software are designed to take away your freedom to share and change it. By contrast,
the GNU General Public License is intended to guarantee your freedom to share and change free software−−to
make sure the software is free for all its users. This General Public License applies to most of the Free
Software Foundation's software and to any other program whose authors commit to using it. (Some other Free
Software Foundation software is covered by the GNU Library General Public License instead.) You can apply
it to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General Public Licenses are
designed to make sure that you have the freedom to distribute copies of free software (and charge for this
service if you wish), that you receive source code or can get it if you want it, that you can change the software
or use pieces of it in new free programs; and that you know you can do these things.

To protect your rights, we need to make restrictions that forbid anyone to deny you these rights or to ask you
to surrender the rights. These restrictions translate to certain responsibilities for you if you distribute copies of
the software, or if you modify it. For example, if you distribute copies of such a program, whether gratis or for
a fee, you must give the recipients all the rights that you have. You must make sure that they, too, receive or
can get the source code. And you must show them these terms so they know their rights.

We protect your rights with two steps: (1) copyright the software, and (2) offer you this license which gives
you legal permission to copy, distribute and/or modify the software.

Also, for each author's protection and ours, we want to make certain that everyone understands that there is no
warranty for this free software. If the software is modified by someone else and passed on, we want its
recipients to know that what they have is not the original, so that any problems introduced by others will not
reflect on the original authors' reputations.

Finally, any free program is threatened constantly by software patents. We wish to avoid the danger that
redistributors of a free program will individually obtain patent licenses, in effect making the program
proprietary. To prevent this, we have made it clear that any patent must be licensed for everyone's free use or
not licensed at all.

The precise terms and conditions for copying, distribution and modification follow.

GNU GENERAL PUBLIC LICENSETERMS AND CONDITIONS FOR COPYING, DISTRIBUTION

A Appendices A.2.1 Overview

© 2005−2007 by Nick Gnedin 81

AND MODIFICATION

0. This License applies to any program or other work which contains a notice placed by the copyright holder
saying it may be distributed under the terms of this General Public License. The "Program", below, refers to
any such program or work, and a "work based on the Program" means either the Program or any derivative
work under copyright law: that is to say, a work containing the Program or a portion of it, either verbatim or
with modifications and/or translated into another language. (Hereinafter, translation is included without
limitation in the term "modification".) Each licensee is addressed as "you".

Activities other than copying, distribution and modification are not covered by this License; they are outside
its scope. The act of running the Program is not restricted, and the output from the Program is covered only if
its contents constitute a work based on the Program (independent of having been made by running the
Program). Whether that is true depends on what the Program does.

1. You may copy and distribute verbatim copies of the Program's source code as you receive it, in any
medium, provided that you conspicuously and appropriately publish on each copy an appropriate copyright
notice and disclaimer of warranty; keep intact all the notices that refer to this License and to the absence of
any warranty; and give any other recipients of the Program a copy of this License along with the Program.

You may charge a fee for the physical act of transferring a copy, and you may at your option offer warranty
protection in exchange for a fee.

2. You may modify your copy or copies of the Program or any portion of it, thus forming a work based on the
Program, and copy and distribute such modifications or work under the terms of Section 1 above, provided
that you also meet all of these conditions:

a) You must cause the modified files to carry prominent notices stating that you changed the files and the
date of any change.

•

b) You must cause any work that you distribute or publish, that in whole or in part contains or is derived
from the Program or any part thereof, to be licensed as a whole at no charge to all third parties under the
terms of this License.

•

c) If the modified program normally reads commands interactively when run, you must cause it, when
started running for such interactive use in the most ordinary way, to print or display an announcement
including an appropriate copyright notice and a notice that there is no warranty (or else, saying that you
provide a warranty) and that users may redistribute the program under these conditions, and telling the user
how to view a copy of this License. (Exception: if the Program itself is interactive but does not normally
print such an announcement, your work based on the Program is not required to print an announcement.)

These requirements apply to the modified work as a whole. If identifiable sections of that work are not
derived from the Program, and can be reasonably considered independent and separate works in
themselves, then this License, and its terms, do not apply to those sections when you distribute them as
separate works. But when you distribute the same sections as part of a whole which is a work based on the
Program, the distribution of the whole must be on the terms of this License, whose permissions for other
licensees extend to the entire whole, and thus to each and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights to work written entirely by you;
rather, the intent is to exercise the right to control the distribution of derivative or collective works based on
the Program.

In addition, mere aggregation of another work not based on the Program with the Program (or with a work
based on the Program) on a volume of a storage or distribution medium does not bring the other work under
the scope of this License.

•

A Appendices A.2.2 GNU General Public License

© 2005−2007 by Nick Gnedin 82

3. You may copy and distribute the Program (or a work based on it, under Section 2) in object code or
executable form under the terms of Sections 1 and 2 above provided that you also do one of the following:

a) Accompany it with the complete corresponding machine−readable source code, which must be
distributed under the terms of Sections 1 and 2 above on a medium customarily used for software
interchange; or,

•

b) Accompany it with a written offer, valid for at least three years, to give any third party, for a
charge no more than your cost of physically performing source distribution, a complete
machine−readable copy of the corresponding source code, to be distributed under the terms of
Sections 1 and 2 above on a medium customarily used for software interchange; or,

•

c) Accompany it with the information you received as to the offer to distribute corresponding
source code. (This alternative is allowed only for noncommercial distribution and only if you
received the program in object code or executable form with such an offer, in accord with
Subsection b above.)

•

The source code for a work means the preferred form of the work for making modifications to it. For an
executable work, complete source code means all the source code for all modules it contains, plus any
associated interface definition files, plus the scripts used to control compilation and installation of the
executable. However, as a special exception, the source code distributed need not include anything that is
normally distributed (in either source or binary form) with the major components (compiler, kernel, and so
on) of the operating system on which the executable runs, unless that component itself accompanies the
executable.

If distribution of executable or object code is made by offering access to copy from a designated place, then
offering equivalent access to copy the source code from the same place counts as distribution of the source
code, even though third parties are not compelled to copy the source along with the object code.

4. You may not copy, modify, sublicense, or distribute the Program except as expressly provided under this
License. Any attempt otherwise to copy, modify, sublicense or distribute the Program is void, and will
automatically terminate your rights under this License. However, parties who have received copies, or
rights, from you under this License will not have their licenses terminated so long as such parties remain in
full compliance.

5. You are not required to accept this License, since you have not signed it. However, nothing else grants
you permission to modify or distribute the Program or its derivative works. These actions are prohibited by
law if you do not accept this License. Therefore, by modifying or distributing the Program (or any work
based on the Program), you indicate your acceptance of this License to do so, and all its terms and
conditions for copying, distributing or modifying the Program or works based on it.

6. Each time you redistribute the Program (or any work based on the Program), the recipient automatically
receives a license from the original licensor to copy, distribute or modify the Program subject to these terms
and conditions. You may not impose any further restrictions on the recipients' exercise of the rights granted
herein. You are not responsible for enforcing compliance by third parties to this License.

7. If, as a consequence of a court judgment or allegation of patent infringement or for any other reason (not
limited to patent issues), conditions are imposed on you (whether by court order, agreement or otherwise)
that contradict the conditions of this License, they do not excuse you from the conditions of this License. If
you cannot distribute so as to satisfy simultaneously your obligations under this License and any other
pertinent obligations, then as a consequence you may not distribute the Program at all. For example, if a
patent license would not permit royalty−free redistribution of the Program by all those who receive copies
directly or indirectly through you, then the only way you could satisfy both it and this License would be to

A Appendices A.2.2 GNU General Public License

© 2005−2007 by Nick Gnedin 83

refrain entirely from distribution of the Program.

If any portion of this section is held invalid or unenforceable under any particular circumstance, the balance
of the section is intended to apply and the section as a whole is intended to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any patents or other property right claims or to
contest validity of any such claims; this section has the sole purpose of protecting the integrity of the free
software distribution system, which is implemented by public license practices. Many people have made
generous contributions to the wide range of software distributed through that system in reliance on
consistent application of that system; it is up to the author/donor to decide if he or she is willing to
distribute software through any other system and a licensee cannot impose that choice.

This section is intended to make thoroughly clear what is believed to be a consequence of the rest of this
License.

8. If the distribution and/or use of the Program is restricted in certain countries either by patents or by
copyrighted interfaces, the original copyright holder who places the Program under this License may add an
explicit geographical distribution limitation excluding those countries, so that distribution is permitted only
in or among countries not thus excluded. In such case, this License incorporates the limitation as if written
in the body of this License.

9. The Free Software Foundation may publish revised and/or new versions of the General Public License
from time to time. Such new versions will be similar in spirit to the present version, but may differ in detail
to address new problems or concerns.

Each version is given a distinguishing version number. If the Program specifies a version number of this
License which applies to it and "any later version", you have the option of following the terms and
conditions either of that version or of any later version published by the Free Software Foundation. If the
Program does not specify a version number of this License, you may choose any version ever published by
the Free Software Foundation.

10. If you wish to incorporate parts of the Program into other free programs whose distribution conditions
are different, write to the author to ask for permission. For software which is copyrighted by the Free
Software Foundation, write to the Free Software Foundation; we sometimes make exceptions for this. Our
decision will be guided by the two goals of preserving the free status of all derivatives of our free software
and of promoting the sharing and reuse of software generally.

NO WARRANTY

11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY FOR
THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN
OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES
PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO
THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE
PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING,
REPAIR OR CORRECTION.

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR

A Appendices A.2.2 GNU General Public License

© 2005−2007 by Nick Gnedin 84

REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES,
INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES
ARISING OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT
LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES
SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE
WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN
ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS

A Appendices A.2.2 GNU General Public License

© 2005−2007 by Nick Gnedin 85

	Table of Contents
	1 User Guide
	1.1 Overview
	1.1.1 What can IFrIT do?
	1.1.2 General Structure of IFrIT
	1.1.3 Components of the IFrIT core

	1.2 Controlling IFrIT
	1.2.1 Overview
	1.2.2 Mouse and Keyboard Controls
	1.2.3 Environment Variables
	1.2.4 Command-line Options
	1.2.5 State File

	1.3 File Formats
	1.3.1 Overview
	1.3.2 Uniform Scalars Data
	1.3.3 Uniform Vectors Data
	1.3.4 Uniform Tensors Data
	1.3.5 Basic Particles Data

	1.4 IFrIT Palettes
	1.4.1 Overview

	1.5 Animation Support
	1.5.1 Overview
	1.5.2 Animatable Files

	1.6 Animation and Control Scripts
	1.6.1 Overview
	1.6.2 Expressions
	1.6.3 Common Statements for Animator and Control Scripts
	1.6.4 Specific Control Script Statements
	1.6.5 Specific Animator Script Statements
	1.6.6 Pre-defined Animator Script Variables

	2 Shell Reference
	2.1 Command-line Shell Reference
	2.1.1 Command-line Shell

	2.2 GUI Shell Reference
	2.2.1 Graphical User Interface (GUI) Shell
	2.2.2 Animation Script Debugger
	2.2.3 Array Calculator
	2.2.4 Command Line
	2.2.5 Data Explorer
	2.2.6 Palette Editor
	2.2.7 File Set Explorer
	2.2.8 Image Composer
	2.2.9 Picker Window
	2.2.10 Parallel Controller
	2.2.11 Event Recorder
	2.2.12 Additional command-line options

	3 Object Reference
	3.1 Overview
	3.1.1 Components of the IFrIT core
	3.1.2 ControlModule Requests

	3.2 Available objects
	3.3 Animator object
	3.4 Camera object
	3.5 ColorBars object
	3.6 ControlModule object
	3.7 CrossSection object
	3.8 DataReader object
	3.9 ImageComposer object
	3.10 Marker object
	3.11 ParticleGroup object
	3.12 Particles object
	3.13 Picker object
	3.14 Surface object
	3.15 TensorField object
	3.16 VectorField object
	3.17 ViewModule object
	3.18 Volume object
	3.19 Properties of Data Objects

	A Appendices
	A.1 Codes For Writing IFrIT Data Files
	A.1.1 Code Examples
	A.1.2 Fortran
	A.1.3 C
	A.1.4 IDL

	A.2 License Agreement
	A.2.1 Overview
	A.2.2 GNU General Public License

