
Interchange Programmer Reference

Table of Contents
1. Introduction...1

1.1. Software installation...1
1.2. Software prerequisites...1
1.3. Audience...1

2. Overview of Interchange..3
2.1. Catalogs..3
2.2. Hacking...3
2.3. ITL −− Interchange Tag Language...3
2.4. Talking to Interchange via socket...4
2.5. Talking to Interchange over the command line..5
2.6. Data structure overview..5
2.7. Session data structure..7

3. Tour the source...9
3.1. From startup to serving content..9
3.2. Notes about databases...10

Interchange Programmer Reference

i

Interchange Programmer Reference

ii

1. Introduction
Interchange is a highly−complex but very powerful web application server focused on ecommerce. It is built
on the power of Perl, using many of its standard modules and capabilities while defining many more.

While Interchange focuses on e−commerce, it is really a general−purpose database access, retrieval, and
templating systems. Besides online stores, here are some of the applications have been built on top of it:

 Auction
 Calendar
 Configuration management
 Content management
 Document archival and rental
 Guestbook
 Image archival and download
 Intranet
 MP3 jukebox
 Poll
 Quiz
 Software repository
 Web log

This reference attempts to illuminate the source code of Interchagne and how you can write Perl
enhancements, gadgets, and applications that integrate with Interchange.

1.1. Software installation

To follow along, it is recommended you get the latest release of Interchange (5.0 as of this writing), unpack it
from the tar file, and install it at a private directory. For the purposes of this document, it will be assumed that
Interchange is installed at /usr/local/interchange and that the catalogs are installed at
/usr/local/catalogs.

1.2. Software prerequisites

Interchange only requires a few added Perl modules, which can be installed by getting the Perl CPAN bundle
Bundle::Interchange. Install that (usually as root) with:

 perl −MCPAN −e 'install Bundle::Interchange'

To get most of the modules Interchange can use:

 perl −MCPAN −e 'install Bundle::InterchangeKitchenSink'

1.3. Audience

This reference is not meant for casual users of Interchange. Though they might learn something from reading
it, it would probably not do them much targeted good. A reasonable set of prerequisites to make reading this
document profitable include:

Programming knowledge

1. Introduction 1

A good knowledge of Perl or strong knowledge of other programming languages is needed.

Database knowledge

Interchange is all about databases, and a knowledge of the concepts of database programming and SQL is
strongly recommended.

Networking knowledge

The more you know about networking and the web, the more comfortable you will be with this document.

UNIX knowledge

Almost all production Interchange servers are UNIX−based, so knowledge of that is helpful.

Interchange Programmer Reference

2 1. Introduction

2. Overview of Interchange
Interchange is a daemon server, similar to a web server. Its entry point is usually talking to it over a socket via
its own protocol. That socket can be either UNIX domain or INET domain, or an infinite number of either.

2.1. Catalogs

Interchange as a server dispatches connections to a catalog, an independently−configurable set of data and
templates. These are for the most part completely independent of each other, though they inherit common
global characteristics and settings. Almost all of those can be overridden by the catalog.

2.2. Hacking

Of course Interchange's source is completely open and available. You could, if you wished, hack on it all you
wanted. However this is strongly discouraged, for the simple reason that you can override almost any behavior
with configurations and tag definitions of your own. In fact, if you want to override a core routine you can
even do that.

So if you are tempted to hack a routine in the core, simply override it with:

GlobalSub <<EOR
sub override_me {
 package Vend::Interpolate;
 sub shipping {
 your_code();
 }
}
EOR

2.3. ITL −− Interchange Tag Language

Interchange delivers its content by parsing templates that contain text and ITL, tags in the Interchange Tag
Language.

ITL takes the form of HTML−like tags using [square brackets] as the tag introduction. Here is an ITL
tag sequence:

 [if value name]
 Your name is [value name], in case you forgot.
 [/if]

The above will show the contents of the [if ...] [/if] container providing a non−blank, non−zero
value is present in the user session.

ITL provides direct access to Perl via the ITL container tags [perl], [calc] and [calcn], and
[mvasp]. This allows ITL like:

 [calc]
 my $out = '';
 if($Values−>{name}) {

2. Overview of Interchange 3

 $out = "Your name is $Values−>{name}, in case you forgot.";
 }
 return $out;
 [/calc]

The above is completely identical to the ITL−only snippet above in effect.

In addition, you can call defined ITL tags in your embedded Perl:

 [calc]
 my $out = '';
 my $name = $Tag−>value('name');
 if($name) {
 $out = "Your name is $Values−>{name}, in case you forgot.";
 }
 return $out;
 [/calc]

Again, the result is identical to the previous two examples.

2.3.1. User Defined Tags

ITL is comprehensibly extensible. You can produce your own ITL tags that are fully as powerful as the ones
supplied with the distribution. In fact they are indistinguishable, as you will see when you examine the code
hierarchy.

These tags can use any Perl module, use external programs, or basically do most anything Perl can, providing
you define them in the Global configuration. Tags defined in the Catalog configuration are restricted by Perl's
standard Opcode and Safe facilities, though they can optionally be allowed global capability.

See the ictags manpage for complete information on ITL.

2.4. Talking to Interchange via socket

Interchange can run in any of several modes:

Foreground

The foreground, meaning the same Interchange server listens for connections and then runs the tasks those
connections cause.

Forking mode

One master Interchange listens for connections, then forks instances to handle the tasks those connections
cause. The forked instance terminates at the end of the task.

Prefork mode

Similar to the way Apache does, Interchange can fork off a number of instances that all listen to the sockets
open for connections. The first one to answer gets the task, runs it, then returns to listen again. After
MaxChildRequests requests, it dies and causes another new instance to take its place.

Interchange Programmer Reference

4 2.3. ITL −− Interchange Tag Language

mod_perl mode

Interchange can be loaded into mod_perl. See the documentation in scripts/ic_mod_perl.PL for
information.

SOAP mode

Interchange can listen to a socket designed to accept a SOAP connection −− those always run in prefork
mode. This mode can co−exist with other modes, so the same Interchange server can serve both page and
SOAP requests.

2.5. Talking to Interchange over the command line

Interchange starts its servers by being invoked from the command line. Other command line invocations can
stop the server via signal, cause addition of additional catalogs to respond to, remove catalogs from the list to
respond to, or cause execution of "cron" jobs.

2.6. Data structure overview

Interchange has three major data stuctures, which correspond to the master server, the catalog, and the user.

You can examine two of these structures by setting in interchange.cfg:

 DumpStructure Yes

This will by default dump an interchange.structure file which shows the global configuration, and a
CATALOGNAME.structure file in each catalog directory showing that catalog's configuration.

The third structure, the user data session, can be viewed with the following ITL placed in a page:

 <XMP>[dump]</XMP>

2.6.1. The Global configuration

This is held in a set of variables inhabiting the Global package. They define overall server behavior, and
contain pointers to the catalog structures.

The Global configuration is defined in interchange.cfg and any files that it reads via include
statements. The configuration is produced by parsing interchange.cfg with the routine
Vend::Config::global_config.

Directives can be defined for parsing by the catalog configuration within the global configuration −− and they
can be deleted as well.

The only way to define new global directives is via hacking the source. Luckily, this is just about never
needed −− you can define settings for use by your programs in Variable or other repositories.

Interchange Programmer Reference

2.5. Talking to Interchange over the command line 5

http://perl.apache.org

2.6.2. The Catalog configuration

Each Interchange catalog has its own configuration completely independent from others. It is basically
produced from the file catalog.cfg in the directory defined as the base for the catalog. It is parsed by the
subroutine Vend::Config::config.

We say basically, because there are many ways to alter catalog configuration. (CATNAME below refers to the
name of the catalog being configured.)

ConfigAllBefore

Global catalog configuration preamble, affecting all catalogs, can be defined by the Global directive
ConfigAllBefore. It defaults to catalog_before.cfg in the Interchange software directory
(/usr/local/interchange).

LI1. CATNAME.before

An individual per−catalog preamble configuration is defined in
$Global::ConfDir/CATNAME.before.

By default it would be /usr/local/interchange/etc/CATNAME.before.

CATNAME.site

A file in the catalog directory which is read before catalog.cfg. Deprecated.

catalog.cfg

The normal configuration file.

CATNAME.after

An individual per−catalog postamble configuration is defined in
$Global::ConfDir/CATALOGNAME.after. This can be used to prevent user catalogs from doing
unsafe things −− for instance enforcing the use of encryption, or preventing running in WideOpen mode.

By default it would be /usr/local/interchange/etc/CATALOGNAME.after.

ConfigAllAfter

Global catalog configuration postamble, affecting all catalogs, can be defined by the Global directive
ConfigAllAfter. It defaults to catalog_after.cfg in the Interchange software directory
(/usr/local/interchange).

command line

Any configuration passed on the command line at Interchange startup is applied last. For instance, to test out a
catalog named foundation with a different invocation URL without having to alter the config files:

bin/interchange −−foundation:VendURL=http://localhost/cgi−bin/found \

Interchange Programmer Reference

6 2.6. Data structure overview

foundation:SecureURL=http://localhost/cgi−bin/found \◊
foundation:RobotLimit=1000◊

That will set the foundation catalog directive values VendURL, SecureURL, and RobotLimit, overriding
any settings in the configuration files.

Tied configuration

Interchange has dynamic catalog configuration as well. See Programming Watch Points in catalog.cfg.

2.7. Session data structure

Each user session is a hash reference saved in some sort of data repository. By default it is file−based using
the Storable manpage, but it can reside in any Interchange database type as well.

It is placed at the global variable location $Vend::Session, which for programming use in UserTag and
GlobalSub routines is $Session (meaning $Vend::Interpolate::Session).

The structure is initialized when the session is created (or canceled by the user). The initial form is described
in Vend::Session::init_session:

 $Vend::Session = {
 'ohost' => $CGI::remote_addr,
 'arg' => $Vend::Argument,
 'browser' => $CGI::useragent,
 'referer' => $CGI::referer,
 'scratch' => { %{$Vend::Cfg−>{ScratchDefault}} },
 'values' => { %{$Vend::Cfg−>{ValuesDefault}} },
 'carts' => {main => []},
 'levies' => {main => []},
 };

This structure is used as a repository for the transitory user session values like form values, scratch variable
settings, payment transaction results, errors, and any other user−tied values. It is also possible to add code that
can be run on a user−by−user basis with the Autoload, Filter, and Profile facilities.

Interchange Programmer Reference

2.7. Session data structure 7

Interchange Programmer Reference

8 2.7. Session data structure

3. Tour the source
Navigating the Interchange source requires a couple of clues. The main program invocation point is
bin/interchange in the Interchange software directory.

3.1. From startup to serving content

Once Interchange is invoked, it does some basic program configuration at the top of that file. The types of
available database facilities and modules are determined, and the base modules are brought in with "use" or
"require". Execution by a non−root user ID is checked.

After the initial program configuration, execution goes to the main_loop() subroutine in bin/interchange.
Some more initialization is done, then the command line options are parsed. Options mostly will set the
program mode (i.e. start, stop, kill, test, cron, or other command line actions), but can also set Global and
Catalog configuration values.

Once the options are parsed, Interchange will chdir() to the Interchange software directory
(/usr/local/interchange) and run its global configuration. That means all file names passed to it during this
phase are relative to that program root.

Part of global configuration is determination of the ITL tags that will be used by Interchange. By default, that
is all files with appropriate extensions under the code directory. Sets of tags to be used can be set with the
TagGroup and TagInclude directives.

Global configuration also includes specifying the catalogs that will be configured and loaded in the next
phase. This is done via the Catalog directive. An important part of that directive is supplying the script
parameter, which is used to initialize the pointer structure which will select the catalog based on the URL
coming in.

After Global configuration, catalog configuration commences, via the ::config_named_catalog() routine,
which calls Vend::Config::config(). Each catalog specified in the global configuration has a base directory.
Interchange does a chdir() to that directory and parses the various configuration files, databases and specified
command−line parameters.

After the catalog is configured, the database is opened to ensure that database table objects are initialized
properly. It is then immediately closed.

The resulting Catalog configuration structure reference is then saved in $Global::Selector and
$Global::SelectorAlias so that the calling URL can map to the proper catalog.

Once all configuration is done, Interchange determines the program mode. There are only two modes −−
test and serve. The test mode simply exits the program at this point −− it is used to test validity of the
configuration.

If the mode is serve, ::main_loop() calls Vend::Server::run_server(). Based on global configuration, one of
the server modes discussed previously is initialized and Interchange starts listening on one or more sockets for
a connection from a client. (This is not true for mod_perl mode −− Interchange simply exits at that point and
the code is waiting for mod_perl to call it.)

3. Tour the source 9

While waiting for a connection, signals are disabled and handlers are set up for TERM, HUP, INT, USR1, and
USR2. TERM and INT both cause the main server to exit; HUP signals Interchange to look for a
reconfiguration event; and USR1 and USR2 are optionally used to keep track of how many servers are
running.

NOTE: Because signals are not especially safe in Perl prior to 5.8.0, occasionally a core dump can occur on
receipt of USR1 or USR2. This is especially true for BSD with its reentrant system calls. They can be disabled
by setting MaxServers to 0 −− PreFork mode is strongly suggested if that is done.

Once a connection is received, the connector parameters are checked for security constraints and
Vend::Server::connection() is called. It reads the input from the client and constructs the environment,
%CGI::values array, and any passed entity like an HTTP POST or multipart form (for file upload). Those are
stored and and object referring to them and containing the connection file handle is constructed. That object is
passed to main::dispatch() for processing.

The main::dispatch() routine performs more transaction setup then determines the catalog that will process the
request. It sets $Vend::Cfg to the preset configuration for that catalog, sets file permissions as appropriate, and
the catalog's database is opened.

Once initialiation of the catalog configuraion is complete, user initialization begins. Interchange determines
the user session ID, if any, and restores the user session from the session database or starts a new session as
appropriate. Perl objects that will be used in the session are initialized or constructed, auto−login is run, and
the locale is determined and set. After that, the URI path is parsed, Autoload and Filter routines are run.

Finally a transaction action is determined. The action is the first path component of the path passed to
Interchange. The remainder is passed to the subroutine implementing the action, and may be used as default
path information for content or for other purposes.

For example, if the catalog VendURL is /cgi−bin/foundation and the URI sent to Interchange is
/cgi−bin/foundation/order/something/or/another, the action is order, and the path sent
to the action routine is is something/or/another.

If the transaction action is not mapped via standard system actions defined in the variable %action, or in the
ActionMap *global* or ActionMap directives, then the action path component is restored to the content path,
and that page is served (order/something/or/another in the example above).

If the action is mapped, it is run. If it returns a true value, the page to be served is determined by the setting of
$CGI::values::mv_nextpage. The action can produce send its own output and return a non−true value, in
which case Interchange will terminate the transaction at that time.

After the action is run and/or content is served, Interchange runs AutoEnd, saves the user session, closes the
catalog database, and finally main::dispatch() returns. The calling Vend::Server::connection() does some
cleanup and returns to the server loop. If the server was forked for that transaction only, it sends a signal
indicating it is done, cleans up PID files, and exits. If it is in the foreground or in PreFork mode, it scrubs the
Vend:: and CGI:: namespaces and returns to waiting for the next connection.

3.2. Notes about databases

Interchange maintains objects for all of its database tables defined in Database. These can be of diverse SQL,
DBM, and LDAP types.

Interchange Programmer Reference

10 3.2. Notes about databases

When the database is initialized at catalog configuration time, the individual database tables may be opened
depending on type. In general, SQL and LDAP types are always opened, and DBM types are not.

Opening a database table can be expensive in terms of CPU and IO time. So when the database is opened for a
page transaction, Interchange creates a "dummy" table object that waits for a real access. Those objects are
trivial to create, and a fast processor can create hundreds of thousands per second.

When access is made, the database table is really opened and the expensive initialization is done. This allows
many tables to be ready for access while only the ones used take up CPU and IO time.

Copyright 2002−2004 Interchange Development Group. Freely redistributable under terms of the GNU
General Public License.

Interchange Programmer Reference

3.2. Notes about databases 11

Interchange Programmer Reference

12 3.2. Notes about databases

	Table of Contents
	1. Introduction
	1.1. Software installation
	1.2. Software prerequisites
	1.3. Audience

	2. Overview of Interchange
	2.1. Catalogs
	2.2. Hacking
	2.3. ITL -- Interchange Tag Language
	2.4. Talking to Interchange via socket
	2.5. Talking to Interchange over the command line
	2.6. Data structure overview
	2.7. Session data structure

	3. Tour the source
	3.1. From startup to serving content
	3.2. Notes about databases

