
Lire Developer’s Manual

Joost van Baal

Egon L. Willighagen

Francis J. Lacoste

Lire Developer’s Manual
by Joost van Baal, Egon L. Willighagen, and Francis J. Lacoste

Copyright © 2000, 2001, 2002, 2003, 2004 Stichting LogReport Foundation

This manual is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free

Software Foundation; either version 2 of the License, or (at your option) any later version.

This is distributed in the hope that it will be useful, butwithout any warranty; without even the implied warranty ofmerchantabilityor fitness for a

particular purpose. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this manual (see COPYING); if not, check with

http://www.gnu.org/copyleft/gpl.html (http://www.gnu.org/copyleft/gpl.html) or write to the Free Software Foundation, Inc., 59 Temple Place -

Suite 330, Boston, MA 02111, USA.

Revision History

Revision 2.0.2 $Date: 2006/07/20 12:11:15 $
$Id: dev-manual.dbx,v 1.87 2006/07/20 12:11:15 vanbaal Exp $

Table of Contents
Preface...ix

What This Book Contains...ix
How Is This Book Organized?..ix
Conventions Used...ix
If You Don’t Find Something In This Manual..ix

I. Lire Architecture ...xi

1. Architecture Overview...1
Lire’s Design Patterns...2
Log File Normalisation...2
Log Analysis...4
Report Generation..6
Report Formatting and Other Post-Processing...7
Going Further...8

II. Using the Lire Framework ...1

2. Writing a New DLF Converter...2
Prerequisites...2
The common_syslog Log Format...2
Creating the DLF Converter Skeleton..3
Adding a Constructor...3
The Meta-Data Methods...4

The DLF Converter Name..4
Providing Information To Users...4
Providing Information to the Framework...5
The Conversion Methods..6

Conversion Initialization...6
Conversion Finalization...6
The DLF Conversion Process..7

File-Oriented Conversion...8
Registering Your DLF Converter with the Lire Framework...9
DLF Converter API..10

3. Writing a DLF Schema..11
Designing the ftpproto schema...11

Creating The Schema File...11
Adding the Schema’s Description...12
Defining the Schema’s Fields..12

The Field Types...13
Installing The Schema...15

4. Writing a New DLF Analyser..17
Writing a Categoriser..17

Defining The Extended Schema..17
Defining the Categoriser...18
Categoriser Configuration...19
Categoriser Implementation..20

Writing an Analyser...21
DLF Analyser API..21

iii

5. Writing a New Report..22
Filter Specification..22

III. Developer’s Reference...23

6. Lire Data Types..24
Lire Textual Elements...24

title element..24
DocBook Elements...24
description element...25

7. Common Textual Elements to All XML Formats..26
Lire Data Types Parameter Entities..26

Boolean Type..26
Integer Type..26
Number Type..26
String Type..26
Timestamp type...27
Time Type...27
Date Type..27
Duration Type...27
IP Type..28
Port Type...28
Hostname Type...28
URL Type..28
Email Type..29
Bytes Type..29
Filename Type...29
Field Type...29
Superservice Type...29
Related Types..30

8. The Lire Report Configuration Specification Markup Language..31
The Lire Report Configuration Specification Markup Language...31

config-spec element...33
summary element..33
Parameter Specifiations Elements...33

Common Attributes...33
boolean element..34
integer element..34
string element..34
dlf-converter element...35
dlf-schema element..35
dlf-streams element...35
commandelement..36
file element...36
directory element..36
executable element..37
select element..37
option element..37
list element...37

iv

object element..38
output-format element...38
record element..38
record element..39
reference element..39
report-config element...39
plugin element..40

9. The Lire Report Configuration Markup Language..41
The Lire Report Configuration Markup Language...41

config element..41
global element..42
param element..42

10. The Lire DLF Schema Markup Language...43
The Lire DLF Schema Markup Language..43

Thedlf-schema element..44
extended-schema element..45
derived-schema element...45
field element..46

11. The Lire Report Specification Markup Language..48
The Lire Report Specification Markup Language..48

report-spec element...49
global-filter-spec element..50
display-spec element...51
param-spec element...51
param element..51
chart-configs element...52
Filter expression elements...52

filter-spec element...53
value element..53
eq element...53
ne element...54
gt element...54
ge element...54
lt element...54
le element...54
match element..55
not element...55
and element...55
or element...56

Report Calculation Elements..56
report-calc-spec element...56
Common Attributes...57
group element..57
timegroup element..58
timeslot element..59
rangroup element..60
field element..61
sum element...62

v

avg element...63
max element...63
min element...64
first element..64
last element...65
count element..66
records element..67

12. The Lire Report Markup Language...68
The Report Markup Language..68

report element..69
Meta-information elements...69

date element...70
timespan element..70

section element..70
subreport element...71
missing-subreport element..72
table element..72
table-info element...73
group-info element...73
column-info element...74
group-summary element...75
group element..76
entry element..76
name element..77
value element..78
chart-configs element...78

IV. Lire Developers’ Conventions..80

13. Contributing Code to Lire..81
14. Developers’ Toolbox..82

Required Tools To Build From CVS..82
Accessing Lire’s CVS...82

CVS primer...82
SourceForge..83
Mailing Lists...83

15. Coding Standards...84
Shell Coding Standards..84
Perl Coding Standards..84

16. Making Lire “Test-infected”..85
Unit Tests in Lire..85

PerlUnit...85
Writing Tests..85
Running Tests...85
Some “Best Practices” on Unit Testing..86

17. Commit Policy...87
CVS Branches..87

Hands-on example..87
Naming, what it looks like..87

vi

Creating a Branch...88
Accessing a Branch...88
Merging Branches on the Trunk...88

18. Testing and debugging...90
Test before releasing...90
Test-installations and test-runs...90
Using the Perl debugger on Lire code..90

19. Making a Release...92
Setting version in NEWS file, checking ChangeLog...92
Tagging the CVS..92
Building The Tarball...92
Building The Debian Package..93
Building The RPM Package...95
Making sure the FreeBSD port gets updated..95
Uploading The Release...95

The LogReport Webserver..95
Advertising The Release...96

SourceForge..96
Freshmeat.net..96

20. Website Maintenance...97
Documentation on the LogReport Website..97

Publishing the DTD’s..97
21. Writing Documentation..98

Plain Text..98
Perl’s Plain Old Documentation: maintaining manpages...98
Docbook XML: Reference Books and Extensive User Manuals...98

V. Implementation Details ..100

22. Adding a New Superservice in Lire’s Distribution..101
23. Issues with Report Merging...102
24. Overview of Lire scripts...105
25. Source Tree Layout..106

Glossary..107

vii

List of Tables
11-1. weekly overview...59

viii

Preface
Log file analysis is both an essential and tedious part of system administration. It is essential because it’s
the best way of profiling the usage of the service installed on the network. It’s tedious because programs
generate a lot of data and tools to report on this data are often unavailable or incomplete. When such
tools exist, they are generally specific to one product, which means that you can’t compare e.g. your
Qmail and Exim mail servers.

Lire is a software package developed by the Stichting LogReport Foundation to generate useful reports
from raw log files of various network programs. Multiple programs are supported for various types of
network services. Lire also supports various output formats for the generated reports.

What This Book Contains
This book is theLire Developer’s Manual. Its purpose is to present Lire as a log analysis framework. To
this ends, it describes the architecture and design of Lire and contains comprehensive instructions on
how to use it. Its intended audience is system administrators or programmers who want to extend Lire or
want to understand its internals.

There is another book, theLire User’s Manualwhich describes how to install, configure and use Lire, as
a “off-the-shelf” log analyzer. Its intended audience is system administrators who want to install and use
Lire to gather information about the services operating on their network.

How Is This Book Organized?
This book is divided in five parts.Part Igives an overview of the architecture and design of Lire.

You will find in Part II information on extending Lire. In this part, you will learn how to add a new DLF
format to Lire, write log file converters and add reports for a superservice.

Part III is a reference section which gives comprehensive details about the various XML formats used by
Lire and gives in-depth descriptions of its various APIs.

Part IV is targeted at developers who want to participate in Lire’s development. It contains information
about CVS access, coding conventions, tools needed to build from CVS, release management and other
aspects important to those part of the Lire development team. Furthermore, it gives some information on
how to contribute code to Lire, as an external party.

Finally, Part Vcontains various implementation details that may be interesting to people wanting to learn
more about Lire internals.

Conventions Used

ix

Preface

If You Don’t Find Something In This Manual
You can report typos, incorrect grammar or any other editorial problems to <bugs@logreport.org >.
We welcome reader’s feedback. If you feel that certain parts of this manual aren’t clear, are missing
information or lacking in any other aspect, please tell us. Of course, if you feel like writing the missing
information yourself, we’ll very happily accept your patch. We will make our best effort to improve this
manual.

Remember, that there is another manual, theLire User’s Manualwhich contains comprehensive
information on how to install, use and configure Lire. It also contains reference information about all of
Lire’s standard reports and supported services.

There are various public mailing lists for Lire’s users. There is a general users’ discussion list where you
can find help on how to install and use Lire. You can subscribe to this list by sending an empty email
with a subject ofsubscribeto <questions-request@logreport.org >. Email for the list should be
sent to <questions@logreport.org >.

You can keep track of Lire’s new release by subscribing to the announcement mailing list. You can
subscribe yourself by sending an empty email with a subject ofsubscribeto
<announcement-request@logreport.org >.

Finally, if you’re interested in Lire’s development, there is a development mailing list to which you can
subscribe by sending an empty email with a subject ofsubscribeto
<development-request@logreport.org >. Email to the list should be sent to
<development@logreport.org >.

All posts on these lists are archived on a public website.

x

I. Lire Architecture

Chapter 1. Architecture Overview
From a developer’s point of view, Lire intends to be the universal log analysis framework. To this end, it
provides a reliable, complete, framework upon which to build log analysis and reporting solution. Lire,
the tool, is a proof of the versality and extendability of the framework as it is able to produce reports for
many of the services that run in today’s heterogeneous networks in a variety of output formats.

As a framework, Lire is the best choice to replace all those home-grown scripts developed to produce
reports from all the log files from the little-known products or custom-developed programs that run on
your system. Leveraging Lire framework will make those scripts a lot more versatile while not being
really more complicated to develop. It will be easier to add new reports or to support multiple report
formats.

Figure 1-1. Log Processing in the Lire’s Framework

1

Chapter 1. Architecture Overview

The Lire’s framework divides log analysis in four different processes. The figureFigure 1-1shows those
four processes:

1. Log Normalisation. The first process normalise logs from different products into a generic format
that can be shared by all products that have similar functionality. For example, log files from
products as different as Apache and Microsoft Internet Information Server will be transformed into
an identical format.

2. Log Analysis. In the analysis process, other information is created, inferred or extracted from the
normalised data. For example, an anlyser in the www superservice infers the browser used by the
client from the referrer information.

3. Report Generation.The third process generates a report from the normalised and analysed data.
This process is done by a generic report engine that computes the report based on specifications
describing what and how the information should appear in the report. The report is generated in a
generic XML format.

4. Report Post-processing and Formatting.The last process converts the generic report into a
specific format like ASCII, PDF, HTML but other kind of post-processing (like charts generation)
can also be accomplished in this stage.

Before going into a more detailed description of each of these procesesses, we’ll introduce some of the
common design’s patterns that you’ll find throughout the Lire’s framework.

Lire’s Design Patterns
At the center of each of these processes is an XML based file format. Having things specified in data files
makes it easier to extend. For example, the reports are built using a generic report builder which finds the
instructions on how to build the reports in XML files. So this makes it easy to add new information to a
report: you just have to write an XML file. The fact that there are a lot of tools to process XML files is
also an interesting aspect. For example, emacs lovers will appreciate the help that its psgml module gives
them in writing report specifications.

Another important aspects is that we tried to interoperate and to build upon other standards while
defining our XML formats . The best illustration of this is that in all the XML file formats that Lire use, a
DocBook subset is used for all elements related to narrative descriptions.

Another common aspect you’ll encounter is that each of these processes and XML file formats come
with an API to manipulate them, making it easy to add functionalities at each processing stage. APIs are
also a good thing because, even if in theory an open file format somewhat constitutes an API, having
libraries that provide convenient access to the file formats makes it a lot easier to write new components
providing new functionalities.

2

Chapter 1. Architecture Overview

Log File Normalisation

Figure 1-2. The Log Normalisation Process

The first process of the Lire log analysis framework is the log file normalisation process. That process is
summarized in theFigure 1-2figure. This process is centered around theDLF concept which is kind of a
universal log format. DLF stands for Distilled Log Format. The concept is that each product specific log
file is transformed into a log format that can be common to all the products providing similar
functionalities. In Lire’s terminology, a class of applications providing similar functionality (e.g. MTA’s
supplying email) is called asuperservice. Still in Lire’s terminology, theservicefrom which the super is

3

Chapter 1. Architecture Overview

derived (e.g. postfix or sendmail) refers to the native log format that is converted in the superservice’s
DLF. One can view the DLF as a table where the rows are the logged events and the fields are logged
information related to each event.

Since the information logged by an email server is totally different from a web server, each superservice
should have its own data models. In Lire, the data model is called a DLFschema. The DLF schemas are
defined in XML files using the DLF Schema Markup Language. The schema describes what fields are
available for each logged events.

One interesting aspect of Lire, is that altough the email DLF is used by all email servers, the email DLF
data model isn’t restricted to the lowest common denominator across the log formats supported by each
email servers. In the Lire’s architecture, the superservice’s schema can represent the information logged
by the most sophisticated product. When some part of the information isn’t available in one log format,
the DLF log file will contain this information and the reports that needs this information won’t be
included.

This architecture means that to support a new service, i.e. a new log format, in Lire you just need to write
a plugin, called a DLF converter. This is just a simple perl module that parses the native log format and
maps the information according to the schema.

Log Analysis
After normalisation, comes the analysis process. The analysis process responsability is to extracts, infers
or derives other information from the logged data. Since the superservice’s logged data is in a standard
format, the analysers are generic in the sense that they can operate for all the superservice’s supported
log formats, if the product’s was clever enough to log the information required by the analyser. The
analysis process is shown in theFigure 1-3figure.

4

Chapter 1. Architecture Overview

Figure 1-3. The Log Analysis Process

Since each analyser can add information to or create a new DLF, each analyser will generate data
according to special kind of schemas.

Lire’s framework include two kind of analysers. The difference between the two resides in the mapping
between the source data and the new data they generate. Extended analysers generate new data for each
DLF record whereas derived analysers are used when the new data doesn’t have a one-to-one mapping
with the source data.

The analysers produce data according to a data model which is specified in other DLF schemas. There
areextendedschemas andderivedschemas. An extended schema simply adds new fields to the base
superservice’s schema. For example, in the web superservice’s schema, a lot of information can be

5

Chapter 1. Architecture Overview

obtained from the referer field. From this information, it is possible to guess the user’s browser, language
or operating system. Those fields are specified in the www-referer extended schema; one analyser is
responsible for extracting this information from the referer field.

But sometimes the analysis cannot just simply add information to each event record, an altogether
different schema is needed then. For those cases, there is the derived schema. An example of the use of
such a schema in the current Lire distribution is the analyser which creates user sessions based on the
logged client IP address and user agent. This analyser defines the www-session derived schema.

Report Generation
Once you have all this data, it’s time to generate some useful reports out of it. Lire’s framework includes
a generic report builder. What Lire calls areport is actually acollectionof what one may understand as
reports; Lire however speaks about asubreports. For example, the proxy’s superservice report will
contain subreports about the top visited sites, another subreport on the cache hit ratio, as well as several
others. The subreports are defined using theReport Specification Markup Language. This markup
language contains elements for several things: information regarding the schema on which it operates;
descriptions that should be included in the generated report to help in the interpretation of the data;
parameters that can be used to modify the generated report (for example, to generate a top 20 subreport
instead of a top 10); a filter that selects the records that will be used for the subreport; and finally the
operations that make up the subreport: grouping, summing, counting, etc. The report markup language
covers most simple needs and there is an extension element as well as an API that can be used to hook in
more fancy computations. There are no subreport specifications in the current distribution that make use
of this feature yet, however. You can see an overview of this process in theFigure 1-4figure.

6

Chapter 1. Architecture Overview

Figure 1-4. Report Generation Process

The generated report is another XML file that uses another markup language, this time called the Lire’s
Report Markup Language. An actual report contains the help descriptions from the report specifications,
information on the subreport specifications used, as well as the actual subreport’s data.Using another
intermediary XML file as output format makes all sort of things possible in the formatting and
post-processing stage.

7

Chapter 1. Architecture Overview

Report Formatting and Other Post-Processing
The last process works with the generic XML report. Using a domain-specific XML format for the
generated format makes it easy for the framework to support multiple different formats. Supporting a
new output format is just a matter of writing a new module that processes the XML report file.

Figure 1-5. Processing of the XML Report Using The APIs

As shown in theFigure 1-5figure, you can also process the XML files using the APIs to the XML report
format.

8

Chapter 1. Architecture Overview

Going Further
As you can see form this overview, the Lire framework provides a powerful architecture to use for your
log analysis needs. The architecture provides extensibility from log normalisation to post-processing of
the reports. Exactly how to use the framework is the topic of the next part.

9

II. Using the Lire Framework
In this part, you’ll learn how to leverage the Lire’s framework for your own log analysis need. The most
common use cases are developing a converter for a new log format and developping new reports.

The first chapterChapter 2explains how to write a converter for a new log format.

The responsibility of the converter is to map the information contained in a log file to the data model of a
specific DLF schema. When developping a converter for a log format which doesn’t fall in the domain
one of the existing DLF schema, you’ll need to write a new one. This is the topic of the following chapter
Chapter 3.

The chaperChapter 4gives information on how to write DLF analysers that can adds data to the base log
information.

The chapterChapter 5this part gives some notes on how to develop new reports.

Chapter 2. Writing a New DLF Converter
Before Lire can do various analysis and generate reports on the data contained in your various log files, it
must first be converted to a common data model. This is specifically the job of the DLF converter.

So if you want to generate the same reports for your RealServer log files (currently unsupported) than for
you web server, you only need to develop a DLF converter which maps the RealServer content to the
www DLF schema.

Note: If no existing DLF schemas represent correctly the domain of your application log file, it is easy
to develop a new one. Consult the chapter Chapter 3 for the whole story.

This chapter will show you through an example how to develop a new DLF converter for a kind of
useless log format: the common log format encapsulated in syslog. (It is useless because there is not
many reasons to make your web server logs it requests through syslog. And it would be probably be
simpler to just use thecut command to remove the syslog header.)

Note: The doc/examples in the source distribution contains another commented example which
could serve as a starting point for your converters.

Prerequisites
Developing a new DLF converter requires some basic programming skills in perl. Altough not strictly
necessarily, you should be familiar with perl object-oriented programming model. If you aren’t, you
should read perltoot(1) before continuing.

The common_syslog Log Format
The log format supported by our DLF converter is simply the standard Common Log Format supported
by most web servers with a syslog header prepended to each line. Here is an example of what such a log
file might contain:

May 10 11:13:10 hibou httpd[12344]: Apache/1.3.26 (Unix) Debian GNU/Linux Embperl/1.3.3 PHP/4.1.2 mod_perl/1.26 configured -- resuming normal operations
May 10 11:13:11 hibou httpd[12345]: 192.168.250.10 - - \

[10/May/2003:11:13:11 +0200] "GET /" HTTP/1.1 200 1523
May 10 11:13:12 hibou httpd[12346]: 192.168.250.10 - - \

[10/May/2003:11:13:11 +0200] "GET /images/logo.png" HTTP/1.1 200 1201
May 10 11:13:12 hibou httpd[12348]: 192.168.250.10 - - \

[10/May/2003:11:13:11 +0200] "GET /images/corner.png" HTTP/1.1 200 1021

2

Chapter 2. Writing a New DLF Converter

Remember that the other layer is a syslog log file and could contains other things than only the web
server’s requests. The first line in the example isn’t a request record but really what usually ends up in
the “error_log” and is a message about the server starting.

Creating the DLF Converter Skeleton
Put simply, a DLF converter is a perl object which implements a set of predefined methods (aka an
“interface” in the object-oriented jargon).

Since a DLF converter is a perl object, it must be instantiated from a class. Classes in perl are defined in
packages. We’ll name the package which implements our converter
MyConverters::SyslogCommonConverter . To create such a package, you need to create a file
namedMyConverters/SyslogCommonConverter.pm in a directory searched by perl.

• You can obtain perl’s default search list by running the command $ perl -V .

• This search list can be modified by setting the PERL5LIB environment variables.

Here is a first cut of our DLF converter:

package MyConverters::SyslogCommonConverter;

use base qw/Lire::DlfConverter/;

1;

The first line declare that the code is in theMyConvertersw::SyslogCommonConverter package.
The second one specifies that objects in this package are subclasses of theLire::DlfConverterpackages.
The last line fullfill perl’s requirement that package returns a true value once they are initialized.

This is a complete DLF, altough useless, DLF Converter. In fact, it isn’t complete because if you tried to
register an instance of that class, you’ll get “unimplemented method” errors. Besides, we don’t even yet
have a formal way to create instance of our converter. This is our next task.

Adding a Constructor
The Lire framework doesn’t place any restrictions on your DLF converter constructor. In fact, the
constructor isn’t used by the framework at all, it will only be used by your DLF converter registration
script (the Section calledRegistering Your DLF Converter with the Lire Framework).

We will follow perl’s convention of using a method namednew for our constructor and of using an hash
reference to hold our object’s data.

3

Chapter 2. Writing a New DLF Converter

Here is our complete constructor:

use Lire::Syslog;

sub new {
my $pkg = shift;

my $self = bless {}, $pkg;

$self->{syslog_parser} = new Lire::Syslog();

return $self;
}

Since our log format is based on syslog, we will reuse the syslog parsing code included in Lire. This is
the reason we instantiate aLire::Syslog object and save a reference to it in our constructor.

The Meta-Data Methods
The Lire::DlfConverter interface requires two kinds of methods. First, it requires methods which provide
information to the framework on your converter. Second, it requires methods which will actually
implement the conversion process. It this the format that this section documents.

The DLF Converter Name
The methodname() should returns the name of our DLF converter. It is this name that is passed to the
lr_log2report command. This name must be unique among all the converters registered and it should be
restricted to alphanumerical characters (hyphens, period and underscores can also be used).

We will name our convertercommon_syslog :

sub name {
return "common_syslog";

}

4

Chapter 2. Writing a New DLF Converter

Providing Information To Users
The next two required methods are used to give more verbose information on your converter to the users.
The converter’stitle() anddescription() can be use to display information about your converter
from the user interface or to generate documentation.

The title() should simply returns a string:

sub title {
return "Common Log Format embedded in Syslog DLF Converter";

}

Thedescription() method should returns a DocBook fragment describing your converter and the log
formats it support. If you don’t know DocBook just restrict yourself to using thepara elements to make
paragraphs:

sub description {
return <<EOD;

<para>This DLF Converter extracts web server’s requests and error
information from a syslog file.
</para>
<para>The requests and errors should be logged under the
<literal>httpd</literal> program name. The errors are mapped to the
<type>syslog</type> schema, the requests are mapped to the
<type>www</type> schema.
</para>
<para>Syslog records from another program than
<literal>httpd</literal> are ignored.
</para>
EOF
}

Providing Information to the Framework
Two other meta-data methods are used by the framework itself. The first one specifies to what DLF
schemas your DLF converter is converting to:

sub schemas {
return ("www", "syslog");

}

5

Chapter 2. Writing a New DLF Converter

In our case, we are converting to the syslog and www schemas. Like we described it in our converter’s
description, we will map the web server’s error message to the syslog schema and the request logs to the
www schema. Other alternatives would have been to only map the requests information to www schema
or map all the non-request records to the syslog schema. The rationale behind the current choice (besides
this being an example) is that it make it convenient to process one log file to obtain a report containing
the requests and errors from our web server. For that use case, it is best to ignore the non-web server
related stuff.

The other method affects how the conversion process will be handled. Lire offers two mode of
conversion, the line oriented one and the file oriented one. (Both will be described in the next section). If
your log file is line-oriented (each lines is one log record) like most log files are, you should use the
line-oriented conversion mode:

sub handle_log_lines {
return 1;

}

The Conversion Methods
The actual conversion process is handled through three methods:init_dlf_converter ,
finish_conversion() and eitherprocess_log_file() or process_log_line() depending on
the conversion mode (as determined byhandle_log_lines() ’s return value.

Conversion Initialization

The methodinit_dlf_converter() will be called once before the log file is processed. It should be
use to initialize the state of your converter. Since our DLF Converter doesn’t need any initialization and
doesn’t need any configuration, the method is simply empty:

sub init_dlf_converter {
my ($self, $process) = @_;

return;
}

The$process parameter which is passed to all the processing methods is an instance of
Lire::DlfConverterProcess . This is the object which is driving the conversion process and it
defines several methods which you will use in the actual conversion process.

6

Chapter 2. Writing a New DLF Converter

Conversion Finalization

The methodfinish_conversion() will be called once after the log file has been completely
processed. This method will be mostly of use to stateful converter, that is DLF converters which
generates DLF records from more than one line. Since this is not our case, we simply leave the method
empty:

sub finish_conversion {
my ($self, $process) = @_;

return;
}

The DLF Conversion Process

Whether you are using the file-oriented or line-oriented conversion mode, the principles are the same.
You extract information from the log file and creates DLF records from it. Your DLF converter
communicates with the framework by calling methods on theLire::DlfConverterProcess object
which is passed as parameter to your methods.

Here is the complete code of our conversion method:

use Lire::Apache qw/parse_common/;

sub process_log_line {
my ($self, $process, $line) = @_;

my $sys_rec = eval { $self->{syslog_parser}->parse($line) };
if ($@) {

$process->error($@, $line);
return;

} elsif ($sys_rec->{process} ne ’httpd’) {
$process->ignore_log_line($line, "not an httpd record");
return;

} else {
my $common_dlf = {};
eval { parse_common($sys_rec->{content}, $common_dlf) };
if ($@) {

$sys_rec->{message} = $sys_rec->{content};
$process->write_dlf("syslog", $sys_rec);

} else {
$process->write_dlf("www", $common_dlf);

}
}

}

7

Chapter 2. Writing a New DLF Converter

The first thing that should be noted is that in the line-oriented conversion mode, the method
process_log_line() will be called once for each line in the log file.

Secondly, the actual parsing of the line is done using two functions:parse_common and
Lire::Syslog ’s parse . These methods simply uses regular expressions to extract the appropriate
information from the line and put it in an hash reference. What is important is that these methods already
uses as key names the schema’s field names.

Finally, you can see that there are four different methods used on the$process object to report different
kind of information:

Reporting Error

The example uses theeval statement to trap errors during the syslog record parsing. If the line
cannot be parsed as a valid syslog record, it is an error and it is reported through theerror()

method. The first parameter is the error message and the second one is the line to which the error is
associated. This last parameter is optional.

Ignoring Information

When the syslog event doesn’t come from thehttpd process, we ignore the line. Ignored line are
reported to the framework by using theignore_log_line() method. The first parameter is the
line which is ignored. The second optional parameter gives the reason why the line was ignored.

Creating DLF Records

Finally, DLF records are created by using thewrite_dlf() method. Its first parameter is the
schema to which the DLF record complies. This schema must be one that is listed by your
converter’sschemas() method. The second parameter is the DLF data contained in an hash
reference. The DLF record will be created by taking for each field in the schema the value under the
same name in the hash. (Since in the syslog schema, the field which contains the actual log message
is calledmessage , this is the reason we are assigning the content value to the message key.)
Missing fields or fields whose value isundef will contains the specialLR_NAmissing value marker.
Keys in the hash that don’t map to a schema’s field are simply ignored.

In our example, we distinguish between the server’s error message (mapped to the syslog schema)
and the request information (mapped to the www schema) based on whetherparse_common

succeeded in parsing the line.

Saving Log Line

Another possibility, not shown in our example, is to ask that the line be saved for a later processing.
This is mostly of use to converters who maitains state between lines. In the cases, it is quite the case
that there are related lines that are missing from the end of the log file. In that case, you save the line
and they will automatically seen by the next run of your converter on the same DLF store. This
option is only available in the line-oriented mode of conversion.

8

Chapter 2. Writing a New DLF Converter

File-Oriented Conversion

The same principles apply when you are using the file-oriented mode of conversion. This mode will
usually be used for binary log formats or format which aren’t line-oriented like XML.

For demonstration purpose, the following code could be added to transform our line-oriented converter
into a file-oriented one:

sub handle_log_lines {
return 0;

}

sub process_log_file {
my ($self, $process, $fh) = @_;

my $line;
while (defined($line = <$fh>) {

chomp $line;
$self->process_log_line($process, $line);

}
}

The difference between the above code and using the line oriented mode is that the framework won’t be
aware of the number of log lines processed and your converter might have troubles when processing log
files which uses a different line-ending convention than the host you are runnig on. Bottom line is that
you should use the line-oriented conversion mode when your log format is line oriented.

Registering Your DLF Converter with the Lire Framework
We first said that DLF converters are perlobjectswhich implements the Lire::DlfConverter interface.
What we did is write aclasswhich implements the said interface. Creating the object from that class is
the responsability of theDLF converter registration script. This is simply a snippet of perl code which
instantiates your object and registers it with the Lire::PluginManager:

use Lire::PluginManager;
use MyConverters::SyslogCommonConverter;

Lire::PluginManager->register_plugin(
MyConverters::SyslogCommonConverter->new());

9

Chapter 2. Writing a New DLF Converter

That’s all there is to it, really. You put this snippet in a file namedsyslog_common_init in one of the
directories listed in theplugins_init_path configuration variable.

Note: Some other notes on this topic:

1. The file can actually be named anything you want, the name service _init just make it clear
what is the purpose of the file.

2. The initial value of the plugins_init_path contains the directories sysconfdir /lire/plugins

and HOME/.lire/plugins . You can change this list by using the lire tool.

3. Your registration script can create and register more than one object.

You can now generate a www report for log files in that format using the commandlr_log2report

common_syslog < file.log .

DLF Converter API
The complete DLF Converter API documentation is included in POD format in the Lire distribution. It is
usually formatted as man pages. You can alway read it using theperldoc command.

The following packages documentation should be consulted: Lire::DlfConverter(3),
Lire::DlfConverterProcess(3) and Lire::PluginManager(3).

10

Chapter 3. Writing a DLF Schema
If you want to develop a DLF converter for an application whose logging data model isn’t adequately
represented by one of the existing DLF schema, you’ll need to develop a new one.

If you are familiar with SQL, a DLF schema is similar to a table schema description. A DLF file can be
seen as a table, where each log record is represented by a table row. Each log record in the same DLF
schema shares the same fields.

Designing the ftpproto schema
In this chapter, we will create a new schema for logging of FTP session. That DLF schema could serve
for an improved DLF converter for log files generated by Microsoft Internet Information Server. Lire
currently has a DLF converter for these log files but the current ftp DLF schema is modelled after the
xferlog log file which only represents file transfers whereas the log generated by Microsoft Internet
Information Server contains more detailed information on the ftp session.

Here is an example of such a log file:

#Software: Microsoft Internet Information Server 4.0
#Version: 1.0
#Date: 2001-11-29 00:01:32
#Fields: time c-ip cs-method cs-uri-stem sc-status
00:01:32 10.0.0.1 [56]created spacedat/091001092951LGW_Data.zip 226
00:01:32 10.0.0.1 [56]created spacedat/html/bx01g01.gif 226
00:01:32 10.0.0.1 [56]created spacedat/html/catlogo.gif 226
00:01:32 10.0.0.1 [56]QUIT - 226
00:03:32 10.0.0.1 [58]USER badm 331
00:03:32 10.0.0.1 [58]PASS - 230

As you can see, this log file contains other information beyond the simple upload/download represented
in the standard FTP schema. It a session identifier, the command executed, as well as the result code of
the action. Our new schema should be able to represent these things.

Creating The Schema File
To create a DLF schema, you have to create a XML file named after your schema identifier:
ftpproto.xml . Schema name should be made of alphanumeric characters. This schema identifier is
case sensitive. You schema identifer shouldn’t contains hyphens (-) or underscore characters (_). (The
hyphen is used for a special purpose).

All DLF schemas starts and ends the same way:

<?xml version="1.0" encoding="ascii"?>
<!DOCTYPE lire:dlf-schema PUBLIC

"-//LogReport.ORG//DTD Lire DLF Schema Markup Language V1.1//EN"
"http://www.logreport.org/LDSML/1.1/ldsml.dtd">

<lire:dlf-schema xmlns:lire="http://www.logreport.org/LDSML/"

11

Chapter 3. Writing a DLF Schema

superservice=" ftpproto "
timestamp=" time "

>
<!-- Other elements will go here -->
</lire:dlf-schema>

The first lines contains the usual XML declaration and DOCTYPE declarations, you’ll find in many
XML documents. The real stuff starts at thelire:dlf-schema . What is important for your schema are
the value of thesuperservice andtimestamp attributes. The first one contains your schema identifier.
It is called “superservice” for historical reasons. The other one should contains the name of the field
which order the record by their event type. (Seethe Section calledThe Field Typesfor more information.)

The last line in the above excerpt would be the last thing in the file and closes thelire:dlf-schema

element.

Adding the Schema’s Description
The next things that goes into the schema file are the schema’s title and description. Both are intended for
developers to read and should be informative of the scope of the schema:

<!-- Starting lire:dlf-schema element was omitted -->

<lire:title>DLF Schema for FTP Protocol</lire:title>

<lire:description>
<para>This DLF schema should be used for FTP servers that have

detailed information on the FTP connection in their log
files.

</para>
<para>Each record represents a command done by the client during

the FTP session.
</para>

</lire:description>

The content of thelire:description elements are DocBook elements. If you don’t know DocBook,
you just need to know that paragraphs are delimited using thepara elements.

12

Chapter 3. Writing a DLF Schema

Defining the Schema’s Fields
The only remaining things in the schema definitions are the field specifications. Here is the definition of
the first one:

<lire:field name="time" type="timestamp" label="Timestamp">
<lire:description>

<para>This field contains the timestamp at which the command was
issued.

</para>
</lire:description>

</lire:field>

As you can see, the fields are defined using thelire:field element which has three attributes:

name

This attribute contains the name of the field. This name should contains only alphanumeric
characters. It can also make use of the underscore character.

type

This attribute contains the type of the field. The available types will described shortly.

label

This should contains the column label that should be used by default in your report for data coming
from this field. This label should be short but descriptive.

The field’s description is held in thelire:description element which contains DocBook markup.
The field’s description should be descriptive enough so that someone implementing a DLF converter for
this schema knows what goes where.

The Field Types

The main types available for fields are:

timestamp

This should be use for field which contains a value to indicate a particular point in time. All
timestamp values are represented in the usual UNIX convention: number of seconds since January
1st 1970.

Each DLF schema must contains at least one field of this kind and its name should be in the
lire:dlf-schema ’s timestamp attribute.

13

Chapter 3. Writing a DLF Schema

hostname

This type should be used for fields which contains an hostnameor IP address.

It is important to mark such fields, because it will possible eventually to resolve automatically IP
addresses to hostname.

bool

Type for boolean values.

number

Type for numeric values.

Important: You shouldn’t use this type when the values are limited in number and are
semantically related to an enumeration like result code. You should use the string type for this.

You should only use the number type for values which you’ll want to report in classes instead on
the individual values.

bytes

This type should be use for numeric values which are quantities in bytes. The more specific typing
is useful for display purpose.

duration

This type should be use for numeric values which are quantities of time. The more specific typing is
useful for display purpose.

string

This is the type which can be use for all other purpose.

Note: If you read the specifications, you’ll find other types which are used. These additional types
don’t bring anything over the basic ones defined above and you shouldn’t use them.

In addition to the time field defined above, here are the remaining field defintions which make our
complete ftpproto schema:

<lire:field name="sessid" type="string" label="Session">
<lire:description>

<para>This field should contains an identifier that can used
to related the commands done in the same FTP session. This
identifier can be reused, but shouldn’t be while the FTP session
isn’t closed.
</para>

</lire:description>

14

Chapter 3. Writing a DLF Schema

</lire:field>

<lire:field name="command" type="string" label="Command">
<lire:description>

<para>This field contains the FTP command executed. The FTP
protocol command names (STOR, RETR, APPE, USER, etc.) should be used.

</para>
</lire:description>

</lire:field>

<lire:field name="result" type="string" label="Result">
<lire:description>

<para>This should contains the FTP result code after executing
the command.
</para>

</lire:description>
</lire:field>

<lire:field name="cmd_args" type="string" label="Argument">
<lire:description>

<para>This field should contains the parameters to the FTP command.
</para>

</lire:description>
</lire:field>

<lire:field name="size" type="bytes" label="Bytes Transferred">
<lire:description>

<para>When the command involves a transfer like for the RETR or STOR
command, it should contains the number of bytes transferred.

</para>
</lire:description>

</lire:field>

<lire:field name="elapsed" type="duration" label="Elasped">
<lire:description>

<para>This field contains the number of seconds executing the
command took.

</para>
</lire:description>

</lire:field>

Installing The Schema
Making available the new schema to the Lire framework is pretty easy: just copy the file to one of the
directories set in thelr_schemas_path configuration variable. By default, this variable contains the

15

Chapter 3. Writing a DLF Schema

directoriesdatadir /lire/schemas andHOME/.lire/schemas . Like all other configuration variables,
its value can be changed using thelire tool.

Since we want our schema to be available for other users as well, we will install it in the system directory:

&root-prompt; install -m 644 ftproto.xml /usr/local/share/lire/schemas

(In this case, Lire was installed under/usr/local .

16

Chapter 4. Writing a New DLF Analyser
In Lire, a DLF Analyser is a plugin that can extract or derived data from other DLF data. The idea is that
these analysis do not depends on the underlying log format but that it can be found simply by using the
data normalised in the DLF schema.

For example, an analyser could assign category based on the url that was visited (like assigning the
’Public’ or ’Private’ category). This categorising operation doesn’t depends on the log format but only on
the presence of therequested_page field in the schema. This would be an example of a special kind of
analyser, a Lire DLF Categoriser. This is a simpler analyser that can create new fields based on one DLF
record.

Note: The doc/examples in the source distribution contains the complete code for this categoriser.

There is a more generic kind of analysers that create data in another dlf streams based on arbitrary
queries on the source DLF schema. An example of this kind is an analyser that construct session
summary from the www requests. It reads the DLF records of the www DLF schema and creates
www-user_session DLF records from that.

Writing an analyser is similar to writing a DLF converter, so consultChapter 2for the details converning
registration and using configuration.

Writing a Categoriser
The simplest form of analyser are categorisers. In this section, we will show an example of how to write
a categoriser that can assign categories using regular expressions to each www requested page.

Defining The Extended Schema
A categoriser writes DLF in an extended schema. An extended schemas is an extension of a base
schema. If you are familiar with SQL you can see it as an inner join with the main schema. That is each
fields in the main schema will have the extension fields of the extended schema.

In our case our extended schema is very simple, it only adds onecategory field to the www schema.

Defining an extended schema is identical to writing a DLF Schema with exception that we use a different
top-level element. You should consultChapter 3for all the details. Here is the extended schema that our
categoriser will use:

<?xml version="1.0"?>
<!DOCTYPE lire:extended-schema PUBLIC

"-//LogReport.ORG//DTD Lire DLF Schema Markup Language V1.1//EN"
"http://www.logreport.org/LDSML/1.1/ldsml.dtd">

<lire:extended-schema id="www-category" base-schema="www"
xmlns:lire="http://www.logreport.org/LDSML/">

<lire:title>Category Extended Schema for WWW service</lire:title>

17

Chapter 4. Writing a New DLF Analyser

<lire:description>
<para>This is an extended schema for the WWW service which adds a

category field based on the regexp matched by the requested_page.
</para>

</lire:description>

<lire:field name="category" type="string" label="Category">
<lire:description>

<para>This fields contain the page category.</para>
</lire:description>

</lire:field>
</lire:extended-schema>

The difference with a regular DLF schema is that it starts with theextended-schema tag which has a
base-schema attribute which should contain the DLF schema or derived DLF schema that is extended.

Defining the Categoriser
Like a DLF Converter, the categoriser s an object deriving from a base class which defines the
categoriser interface. In the categoriser case, that interface isLire::DlfCategoriser. The categoriser also
has to provide some meta-information to the framework. Here is the code for all of this:

package MyAnalysers::PageCategoriser;

use base qw/Lire::DlfCategoriser/;

sub new {
return bless {}, shift;

}

sub name {
return ’page-categoriser’;

}

sub title {
return "A page categoriser";

}

sub description {
return "<para>A categoriser that assigns categories based on a map
of regular expressions to categories.</para>";

}

sub src_schema {
return "www";

}

18

Chapter 4. Writing a New DLF Analyser

sub dst_schema {
return "www-category";

}

The methods different from the DLf converter case are thesrc_schema which specifies the schema
which to which fields are added and thedst_schema which gives the schema specifying the fields that
will be added.

Categoriser Configuration
Our categoriser will assign categories based on a mapping from regular expression to category names. To
be useful, this mapping should be configurable. Like all plugins in Lire, DLF categorisers can use the
Lire Configuration Specification Markup Language to defines the configuration data they use (see
Chapter 8for the full details). The convention is that if there is a parameter named
yourname _propeties , this is considered the configuration specification for the pluginyourname . This
will mean that a little button will appear in thelire user interface so that the user can configure your
plugin data.

In our categoriser case, we will define a list of records which will enable the user to define many pairs of
regular expression and category name:

<?xml version="1.0"?>
<!DOCTYPE lrcsml:config-spec PUBLIC

"-//LogReport.ORG//DTD Lire Report Configuration Specification Markup Language V1.0//EN"
"http://www.logreport.org/LRCSML/1.1/lrcsml.dtd">

<lrcsml:config-spec xmlns:lrcsml="http://www.logreport.org/LRCSML/"
xmlns:lrcml="http://www.logreport.org/LRCML/">

<lrcsml:list name="page-categoriser_properties">
<lrcsml:summary>Page Categoriser Configuration</lrcsml:summary>

<lrcsml:description>
<para>This is a list of regexp that will be apply in this order

along the category that should be applied when the regexp match.
</para>

</lrcsml:description>

<lrcsml:record name="regex2category">
<lrcsml:summary>The Regexp-Category Association</lrcsml:summary>
<lrcsml:string name="regex">

<lrcsml:summary>Regex</lrcsml:summary>
<lrcsml:description>

<para>The regular expression to test.</para>
</lrcsml:description>

</lrcsml:string>

19

Chapter 4. Writing a New DLF Analyser

<lrcsml:string name="category">
<lrcsml:summary>Category</lrcsml:summary>
<lrcsml:description>

<para>This field contains the category that should be assigned.</para>
</lrcsml:description>

</lrcsml:string>
</lrcsml:record>

</lrcsml:list>
p <lrcml:param name="page-categoriser_properties">

<lrcml:param name="regex2category">
<lrcml:param name="regex">. * </lrcml:param>
<lrcml:param name="category">Unknown</lrcml:param>

</lrcml:param>
</lrcml:param>
</lrcsml:list>

</lrcsml:config-spec>

This specification also sets a list containing one catchall regex with the category ’Uknown’. The user
could add other values before that. An alternative implementation could define a field specifying the
default category to assign when no regular expression matches.

Categoriser Implementation
Two methods are needed to implement the categoriser. The first is an initialisation method called
initialise . This method receives as parameter the configuration data entered by the user.

In our case, we will compile the regular expressions for faster processing later on :

sub initialise {
my ($self, $config) = @_;

foreach my $map (@$config) {
$map->[0] = qr/$map->[0]/;

}

$self->{’categories’} = $config;
return;

}

The categorising is made in thecategorise method. This method receives as parameter the DLF
record to which the extended fields should be added. This DLF record is an hash reference containing
one key for each of the fields defined in the source DLF schema. We simply assign the extended fields by
adding new keys to the hash reference :

20

Chapter 4. Writing a New DLF Analyser

sub categorise {
my ($self, $dlf) = @_;

foreach my $map (@{$self->{’categories’}}) {
if ($dlf->{’requested_page’} =~ /$map->[0]/) {

$dlf->{’category’} = $map->[1];
return;

}
}
return;

}

That’s all. Like for the DLF converter you’ll need to register this analyser with the
Lire::PluginManager (seethe Section calledRegistering Your DLF Converter with the Lire
Frameworkin Chapter 2for more information.

Writing an Analyser
When a categoriser isn’t sufficient for your needs, you can write anLire::DlfAnalyser which gets
complete control on the analysis process. The main difference with at categoriser is that the
dst_schema method will contain refer to a derived schema instead of an extended schema.

The core of the analyser is done in theanalyse method that takes a reference to the store onto which
data will be analysed and to aLire::DlfAnalyserProcess callback object which should be use to
write new DLF records and report errors. The method also receives the plugin configuration data. The
analyser should create aLire::DlfQuery to select the records necessary for its analysis.

Thedoc/examples in the source distribution contains the a boiler plate for witing an Analyser.

DLF Analyser API
The complete DLF Analyser API documentation is included in POD format in the Lire distribution. It is
usually formatted as man pages. You can alway read it using theperldoc command.

The following packages documentation should be consulted: Lire::DlfAnalyser(3),
Lire::DlfAnalyserProcess(3), Lire::DlfCategoriser(3), Lire::DlfQuery(3) and Lire::PluginManager(3).

21

Chapter 5. Writing a New Report
Writing a new report involves writing a report specification, e.g.
/service/<superservice>/reports/top-foo-by-bar.xml , and adding this report along with
possible configuration parameters to<service>.cfg . E.g., to create a new report, based upon
email/from-domain.xml : copy the file/usr/local/etc/lire/email.cfg to
~/.lire/etc/email.cfg . Copy the file
/usr/local/share/lire/reports/email/top-from-domain.xml to e.g.
~/.lire/reports/reports/email/from-domain.xml . Edit the last file to your needs, and enable
it by listing it in your ~/.lire/etc/email.cfg .

Beware! The name of the report generally consists of alphanumerics and ’-’, but the name of parameters
maynot contain any ’-’ characters. It generally consists of alphanumerics and ’_’ characters.

Filter Specification
For now, you’ll have to refer to the example filters as found in the current report specification files. We’ll
give one other example here: specifying a time range.

Suppose you want to be able to report on only a specific time range. You could build a (possibly global
and reused) filter like:

<lire:filter-spec>
<lire:and>

<lire:ge arg1="$timestamp" arg2="$period-start"/>
<lire:le arg1="$period-end" arg2="$timestamp"/>

</lire:and>
</lire:filter-spec>

When trying your new filter, you could install it in~/.lire/filters/your-filter-name.xml .
When lr_dlf2xml looks up a filter which was mentioned in the report configuration file, it looks first in
~/.lire/filters/ , and then in.../share/lire/filters/ .

22

III. Developer’s Reference

Chapter 6. Lire Data Types

Lire Textual Elements
This DTD module defines elements related that contains human-readable content in all the Lire DTDs.

This module will also imports some DocBook XML V4.1.2 elements for richer semantic tagging.

This module is also namespace aware and will honor the setting ofLIRE.pfx to scope its element

The latest version of that module is 2.0 and its public identifier is -//LogReport.ORG//ELEMENTS Lire
Textual Elements V2.0//EN.

<!--
Make sure LIRE.pfx is defined. This declaration will be
ignored if it was already defined.

-->
<!ENTITY % LIRE.pfx "lire:" >

<!ENTITY % LIRE.title "%LIRE.pfx;title" >
<!ENTITY % LIRE.description "%LIRE.pfx;description" >

title element
The title element contains a descriptive title.

This element represent some title in Lire. It can be used to give a title to a report specification or to
specifify the title of a report or subreport.

The content of this element should be localized.

This element doesn’t have any attribute.

<!ELEMENT %LIRE.title; (#PCDATA) >

DocBook Elements
The standardpara , formalpara and admonition elements (note , tip , warning , important and
caution) are used as well as their content may be used.

<!ENTITY % docbook-block.mix
"para|formalpara|warning|tip|important|caution|note">

24

Chapter 6. Lire Data Types

<!ENTITY % DocBookDTD PUBLIC
"-//OASIS//DTD DocBook XML V4.1.2//EN"
"http://www.oasis-open.org/docbook/xml/4.1.2/docbookx.dtd">

%DocBookDTD;

description element
Thedescription element is used to describe an element. It can be used to describe DLF fields,
describe a report specification or include descriptions in the generated reports.

This element can contains one or more of the block-level DocBook elements we use.

The content of this element should be localized.

This element doesn’t have any attributes.

<!ELEMENT %LIRE.description; (%docbook-block.mix;)+>

25

Chapter 7. Common Textual Elements to All
XML Formats

Lire Data Types Parameter Entities
This module contains the parameter entity declarations for the data types used by all Lire DTDs.

All defined data types have a<type>.type parameter entity which defines their type as an XML type
valid in an attribute declaration and a<type>.name parameter entity that declare their name.

Additionally, this module declares <name>.types parameter entities that group related types together.

The latest version of that module is 1.0 and its public identifier is -//LogReport.ORG//ENTITIES Lire
Data Types V1.0//EN.

Boolean Type
The bool type. It contains a boolean value, either0, 1, f , t , false or true .

<!ENTITY % bool.type "0 | 1 | f | t | false | true | yes | no">
<!ENTITY % bool.name "bool" >

Integer Type
The int type can contains positive or negative 32 bits integer.

<!ENTITY % int.type "CDATA" >
<!ENTITY % int.name "int" >

Number Type
The number type can contains any number either integral or floating point.

<!ENTITY % number.type "CDATA" >
<!ENTITY % number.name "number" >

26

Chapter 7. Common Textual Elements to All XML Formats

String Type
The string type contains any displayable text string.

<!ENTITY % string.type "CDATA" >
<!ENTITY % string.name "string" >

Timestamp type
The timestamp type contains a time representation which contains the date and time informations. It can
be represented in UNIX epoch time.

<!ENTITY % timestamp.type "CDATA" >
<!ENTITY % timestamp.name "timestamp" >

Time Type
The time type contains a time representation which contains only the time of the day, not the date. For
example, this data type can represent 12h00, 15:13:10, etc.

<!ENTITY % time.type "CDATA" >
<!ENTITY % time.name "time" >

Date Type
The date type contains a time representation which contains only a date.

<!ENTITY % date.type "CDATA" >
<!ENTITY % date.name "date" >

Duration Type
The duration type contains a quantity of time. For example :5s , 30h , 2days , 3w, 2M, 1y . (The
authoritive list of supported duration types is coded inLire::DataTypes::duration2sec .)

27

Chapter 7. Common Textual Elements to All XML Formats

<!ENTITY % duration.type "CDATA" >
<!ENTITY % duration.name "duration" >

IP Type
The ip type contains an IPv4 address.

<!ENTITY % ip.type "CDATA" >
<!ENTITY % ip.name "ip" >

Port Type
The port type contains a port as used in the TCP to name the ends of logical connections. See also RFC
1700 and http://www.iana.org/numbers.htm. Commonly found in /etc/services on Unix systems.

<!ENTITY % port.type "CDATA" >
<!ENTITY % port.name "port" >

Hostname Type
The hostname type contains an DNS hostname. (It can also contains the IPv4 address of the host).

<!ENTITY % hostname.type "NMTOKEN" >
<!ENTITY % hostname.name "hostname" >

URL Type
The url type represents URL.

<!ENTITY % url.type "CDATA" >
<!ENTITY % url.name "url" >

28

Chapter 7. Common Textual Elements to All XML Formats

Email Type
The email type can be used to represent an email address.

<!ENTITY % email.type "CDATA" >
<!ENTITY % email.name "email" >

Bytes Type
The bytes type can be used to represent quantity of data. (5m, 1.2g , 300bytes, etc.)

<!ENTITY % bytes.type "CDATA" >
<!ENTITY % bytes.name "bytes" >

Filename Type
The filenametype can be used to Represent the name of a file or directory.

<!ENTITY % filename.type "CDATA" >
<!ENTITY % filename.name "filename" >

Field Type

Important: This type should be considered internal to Lire and shouldn’t be used as a parameter or
DLF field type.

The field type can contains a DLF field name. It is used in the parameter specification to represent a
choice of sort field for example.

<!ENTITY % field.type "NMTOKEN" >
<!ENTITY % field.name "field" >

29

Chapter 7. Common Textual Elements to All XML Formats

Superservice Type

Important: This type should be considered internal to Lire and shouldn’t be used as a parameter or
DLF field type.

<!ENTITY % superservice.type "NMTOKEN" >
<!ENTITY % superservice.name "superservice" >

Related Types

<!ENTITY % basic.types "%bool.name; | %int.name; |
%number.name; | %string.name;" >

<!ENTITY % internet.types "%email.name; | %url.name; |
%ip.name; | %hostname.name; |
%port.name;" >

<!ENTITY % misc.types "%filename.name; | %bytes.name; " >
<!ENTITY % time.types "%date.name; | %time.name; |

%timestamp.name; | %duration.name;" >

<!ENTITY % lire.types "%basic.types; | %time.types; |
%internet.types; | %misc.types;" >

30

Chapter 8. The Lire Report Configuration
Specification Markup Language

The Lire Report Configuration Specification Markup
Language

Document Type Definition for the Lire Report Configuration Specification Markup Language.

This DTD defines a grammar that is used to specify the configuration parameters used by the Lire
framework. Besides the framework parameters, this DTD can be used by extensions writers to register
their parameters with the framework. The configuration specifications are usually stored in
prefix /share/lire/config-spec .

Currently, Lire’s configuration namespace is flat, which means that two different specification documents
cannot define parameters of the same names.

Elements of this DTD uses the http://www.logreport.org/LRCSML/ namespace that is usually mapped to
the lrcsml prefix.

The latest version of that DTD is 1.1 and its public identifier is -//LogReport.ORG//DTD Lire Report
Specification Markup Language V1.1//EN. Its canonical system identifier is
http://www.logreport.org/LRCSML/1.1/lrcsml.dtd.

<!--
-->

<!-- Namespace prefix for validation using the
DTD -->

<!ENTITY % LRCSML.xmlns.pfx "lrcsml" >
<!ENTITY % LRCSML.pfx "%LRCSML.xmlns.pfx;:" >
<!ENTITY % LRCSML.xmlns.attr.name "xmlns:%LRCSML.xmlns.pfx;" >
<!ENTITY % LRCSML.xmlns.attr

"%LRCSML.xmlns.attr.name; CDATA #FIXED ’http://www.logreport.org/LRCSML/’">

<!ENTITY % LRCML.xmlns.pfx "lrcml" >
<!ENTITY % LRCML.pfx "%LRCML.xmlns.pfx;:" >
<!ENTITY % LRCML.xmlns.attr.name "xmlns:%LRCML.xmlns.pfx;">
<!ENTITY % LRCML.xmlns.attr

"%LRCML.xmlns.attr.name; CDATA #FIXED ’http://www.logreport.org/LRCML/’">

<!-- For the modules which we are including -->
<!ENTITY % LIRE.pfx "%LRCSML.pfx;" >

This DTD uses the common lire-desc.mod module which is used to include a subset of DocBook in
description and text elements.

31

Chapter 8. The Lire Report Configuration Specification Markup Language

<!ENTITY % lire-desc.mod PUBLIC
"-//LogReport.ORG//ELEMENTS Lire Description Elements V2.0//EN"
"lire-desc.mod">

%lire-desc.mod;

Each configuration specification is a XML document which has oneconfig-spec as its root element.

<!ENTITY % LRCSML.config-spec "%LRCSML.pfx;config-spec" >
<!ENTITY % LRCSML.summary "%LRCSML.pfx;summary" >
<!ENTITY % LRCSML.boolean "%LRCSML.pfx;boolean" >
<!ENTITY % LRCSML.integer "%LRCSML.pfx;integer" >
<!ENTITY % LRCSML.string "%LRCSML.pfx;string" >
<!ENTITY % LRCSML.dlf-schema "%LRCSML.pfx;dlf-schema" >
<!ENTITY % LRCSML.dlf-streams "%LRCSML.pfx;dlf-streams" >
<!ENTITY % LRCSML.dlf-converter "%LRCSML.pfx;dlf-converter" >
<!ENTITY % LRCSML.command "%LRCSML.pfx;command" >
<!ENTITY % LRCSML.file "%LRCSML.pfx;file" >
<!ENTITY % LRCSML.executable "%LRCSML.pfx;executable" >
<!ENTITY % LRCSML.directory "%LRCSML.pfx;directory" >
<!ENTITY % LRCSML.select "%LRCSML.pfx;select" >
<!ENTITY % LRCSML.option "%LRCSML.pfx;option" >
<!ENTITY % LRCSML.list "%LRCSML.pfx;list" >
<!ENTITY % LRCSML.object "%LRCSML.pfx;object" >
<!ENTITY % LRCSML.output-format "%LRCSML.pfx;output-format" >
<!ENTITY % LRCSML.plugin "%LRCSML.pfx;plugin" >
<!ENTITY % LRCSML.record "%LRCSML.pfx;record" >
<!ENTITY % LRCSML.reference "%LRCSML.pfx;reference" >
<!ENTITY % LRCSML.report-config "%LRCSML.pfx;report-config" >

<!ENTITY % LRCML.param "%LRCML.pfx;param" >

<!ENTITY % LRCSML.summary "%LRCSML.pfx;summary" >
<!ENTITY % types-spec "%LRCSML.boolean;|%LRCSML.integer;|

%LRCSML.string;|%LRCSML.dlf-schema;|
%LRCSML.dlf-converter;|%LRCSML.dlf-streams;|
%LRCSML.command;|%LRCSML.file;|
%LRCSML.executable;|%LRCSML.directory;|
%LRCSML.select;|%LRCSML.list;|%LRCSML.object;|
%LRCSML.output-format;|
%LRCSML.plugin;|%LRCSML.record;|%LRCSML.reference;
|%LRCSML.report-config;

">
<!ENTITY % common.mix "(%LRCSML.summary;)?,(%LIRE.description;)?">
<!ENTITY % default "(%LRCML.param;)?" >
<!ENTITY % common.mix.default "(%common.mix;, %default;)" >

<!ELEMENT %LRCML.param; (#PCDATA|%LRCML.param;) * >
<!ATTLIST %LRCML.param;

32

Chapter 8. The Lire Report Configuration Specification Markup Language

name NMTOKEN #REQUIRED
value CDATA #IMPLIED >

config-spec element
Root element of a configuration specification document. It contains a list of parameter specifications..

This element doesn’t have any attributes.

<!ELEMENT %LRCSML.config-spec; ((%types-spec;)+) >
<!ATTLIST %LRCSML.config-spec;

%LRCSML.xmlns.attr;
%LRCML.xmlns.attr; >

summary element
This element is used for a short one description of the parameter’s purpose. Use thedescription

element for longer help text.

This element doesn’t have any attribute.

<!ELEMENT %LRCSML.summary; (#PCDATA) >

Parameter Specifiations Elements

Common Attributes

These attributes are common to all parameters specification elements:

name

Contains the name of the parameter to which this specification apply.

required

Determines if a valid value is required to make the container validates. Defaults to true.

33

Chapter 8. The Lire Report Configuration Specification Markup Language

section

This attribute can be used to set a menu section which can be used by configuration frontends to
group parameters together.

summary

This attribute is equivalent to thesummary element.

obsolete

This attribute can be used to mark a parameter as obsolete. Obsolete parameters will be removed
from the specification in a future Lire release.

<!ENTITY % common.attr "
name NMTOKEN #REQUIRED
required NMTOKEN ’1’
section CDATA #IMPLIED
summary CDATA #IMPLIED
obsolete NMTOKEN ’0’">

boolean element

This element is used to define a boolean parameter which can takes ayes or no value.

This element doesn’t have any specific attributes.

<!ELEMENT %LRCSML.boolean; (%common.mix.default;) >
<!ATTLIST %LRCSML.boolean;

%common.attr;
>

integer element

This element is used to define an integer parameter.

This element doesn’t have any specific attributes.

<!ELEMENT %LRCSML.integer; (%common.mix.default;) >
<!ATTLIST %LRCSML.integer;

%common.attr;
>

34

Chapter 8. The Lire Report Configuration Specification Markup Language

string element

This element is used to define an string parameter. These parameters can contains any value.

This can have avalid-re attribute which specify a regular expression that the value must match.

<!ELEMENT %LRCSML.string; (%common.mix.default;) >
<!ATTLIST %LRCSML.string;

%common.attr;
valid-re CDATA #IMPLIED

>

dlf-converter element

This element is used to select a registered DlfConverter.

This element doesn’t have any specific attributes.

<!ELEMENT %LRCSML.dlf-converter; (%common.mix.default;) >
<!ATTLIST %LRCSML.dlf-converter;

%common.attr;
>

dlf-schema element

This element is used to select an available DlfSchema.

If this element has thesuperservices set, only superservices can be selected.

<!ELEMENT %LRCSML.dlf-schema; (%common.mix.default;) >
<!ATTLIST %LRCSML.dlf-schema;

%common.attr;
superservices NMTOKEN ’0’

>

dlf-streams element

This element is used to configure Lire::DlfStream in Lire::DlfStore.

This element has no attribute.

35

Chapter 8. The Lire Report Configuration Specification Markup Language

<!ELEMENT %LRCSML.dlf-streams; (%common.mix.default;) >
<!ATTLIST %LRCSML.dlf-streams;

%common.attr;
>

commandelement

This element is used to define a command parameter. To be accepted as valid the parameter’s value must
point to an executable file or an executable file with the specified value must exist in a directory of the
PATH environment variable.

This element doesn’t have any specific attributes.

<!ELEMENT %LRCSML.command; (%common.mix.default;) >
<!ATTLIST %LRCSML.command;

%common.attr;
>

file element

This element is used to define a file parameter. To be accepted as valid, the parameter’s value must point
to an existing file.

This element doesn’t have any specific attributes.

<!ELEMENT %LRCSML.file; (%common.mix.default;) >
<!ATTLIST %LRCSML.file;

%common.attr;
>

directory element

This element is used to define a directory parameter. To be accepted as valid, the parameter’s value must
point to an existing directory.

This element doesn’t have any specific attributes.

<!ELEMENT %LRCSML.directory; (%common.mix.default;) >
<!ATTLIST %LRCSML.directory;

%common.attr;
>

36

Chapter 8. The Lire Report Configuration Specification Markup Language

executable element

This element is used to define an executable parameter. To be accepted as valid, the parameter’s value
must point to an existing executable file.

This element doesn’t have any specific attributes.

<!ELEMENT %LRCSML.executable; (%common.mix.default;) >
<!ATTLIST %LRCSML.executable;

%common.attr;
>

select element

This element is used to define a parameter for which the value is selected among a set of options. The
allowed set of options is specified usingoption elements.

This element doesn’t have any specific attributes.

<!ELEMENT %LRCSML.select; (%common.mix;,(%LRCSML.option;)+, %default;) >
<!ATTLIST %LRCSML.select;

%common.attr;
>

option element

This element is used to define the valid values for aselect parameter.

This element doesn’t have any specific attributes.

<!ELEMENT %LRCSML.option; (%common.mix;) >
<!ATTLIST %LRCSML.option;

%common.attr;
>

37

Chapter 8. The Lire Report Configuration Specification Markup Language

list element

This element is used to define a parameter that can contains an ordered set of values. The type of values
which can be contained is specified using other parameters elements. Any number of parameters of the
type specified by the children elements can be contained by the defined parameter.

This element doesn’t have any specific attributes.

<!ELEMENT %LRCSML.list; (%common.mix;,(%types-spec;)+,%default;) >
<!ATTLIST %LRCSML.list;

%common.attr;
>

object element

This element is used to define a parameter that will instantiate an object. The object will be instantiated
by calling the "new_from_config()" class method defined in the package specified by the element’s
class attribute. The constructor will receive the hash instantiated from the parameter’s components as
parameter.

The label attribute can be used to specify the contained element that should be used to represent this
object in lists.

<!ELEMENT %LRCSML.object; (%common.mix;,(%types-spec;)+,%default;) >
<!ATTLIST %LRCSML.object;

%common.attr;
class NMTOKEN #REQUIRED
label NMTOKEN #IMPLIED

>

output-format element

This element is used to select an available OutputFormat.

This element doesn’t have any specific attributes.

<!ELEMENT %LRCSML.output-format; (%common.mix.default;) >
<!ATTLIST %LRCSML.output-format;

%common.attr;
>

38

Chapter 8. The Lire Report Configuration Specification Markup Language

record element

This element is used to define a parameter that holds record-like data.

The label attribute can be used to specify the contained element that should be used to represent this
record in lists.

<!ELEMENT %LRCSML.record; (%common.mix;,(%types-spec;)+, %default;) >
<!ATTLIST %LRCSML.record;

%common.attr;
label NMTOKEN #IMPLIED

>

record element

This element is used to define a parameter that holds record-like data.

The label attribute can be used to specify the contained element that should be used to represent this
record in lists.

<!ELEMENT %LRCSML.record; (%common.mix;,(%types-spec;)+,%default;) >
<!ATTLIST %LRCSML.record;

%common.attr;
label NMTOKEN #IMPLIED

>

reference element

This element is used to select from an index. The index in which the available values is taken is specified
in the index attribute.

<!ELEMENT %LRCSML.reference; (%common.mix.default;) >
<!ATTLIST %LRCSML.reference;

%common.attr;
index CDATA #REQUIRED

>

39

Chapter 8. The Lire Report Configuration Specification Markup Language

report-config element

This element is used to configure a report configuration.

This element doesn’t have any attribute. Each superservice can define a default report configuration using
this element with a name ofsuperservice _default .

<!ELEMENT %LRCSML.report-config; (%common.mix.default;) >
<!ATTLIST %LRCSML.report-config;

%common.attr;
>

plugin element

This element is used to define a parameter for which the value is selected among a set of options. The
allowed set of options is specified usingoption elements. The element will also contain additional
parameters based on the selected value. The available paramaters should be defined in arecord or
similar specification namedname_properties . For example, the additional parameters when the
option_1 option is selected will be found in the specification namedoption_1_properties .

This element doesn’t have any specific attributes.

<!ELEMENT %LRCSML.plugin; (%common.mix;,(%LRCSML.option;)+, %default;) >
<!ATTLIST %LRCSML.plugin;

%common.attr;
>

40

Chapter 9. The Lire Report Configuration
Markup Language

The Lire Report Configuration Markup Language
Document Type Definition for the Lire Report Configuration Markup Language.

This DTD defines a grammar that is used to store the Lire configuration. The configuration is stored in
one or more XML files. Parameters set in later configuration files override the ones set in the formers.
The valid parameter names as well as their description and type are specified using configuration
specification documents.

Elements of this DTD use the http://www.logreport.org/LRCML/ namespace, which is usually mapped
to thelrcml prefix.

The latest version of the DTD is 1.0 and its public identifier is -//LogReport.ORG//DTD Lire Report
Specification Markup Language V1.0//EN. Its canonical system identifier is
http://www.logreport.org/LRCML/1.0/lrcml.dtd.

<!--
-->

<!-- Namespace prefix for validation using the
DTD -->

<!ENTITY % LRCML.xmlns.pfx "lrcml" >
<!ENTITY % xmlns.colon ":" >
<!ENTITY % LRCML.pfx "%LRCML.xmlns.pfx;%xmlns.colon;" >
<!ENTITY % LRCML.xmlns.attr.name "xmlns%xmlns.colon;%LRCML.xmlns.pfx;" >
<!ENTITY % LRCML.xmlns.attr

"%LRCML.xmlns.attr.name; CDATA #FIXED ’http://www.logreport.org/LRCML/’">

<!-- For the module which we are including -->
<!ENTITY % LIRE.pfx "%LRCML.pfx;" >

Each configuration specification is an XML document which has oneconfig as its root element.

<!ENTITY % LRCML.config "%LRCML.pfx;config" >
<!ENTITY % LRCML.global "%LRCML.pfx;global" >
<!ENTITY % LRCML.param "%LRCML.pfx;param" >

41

Chapter 9. The Lire Report Configuration Markup Language

config element
Root element of a configuration document. It contains presently only oneglobal element which is used
to hold the global configuration parameters.

This element doesn’t have any attributes.

<!ELEMENT %LRCML.config; (%LRCML.global;) >
<!ATTLIST %LRCML.config;

%LRCML.xmlns.attr; >

global element
This element starts the global configuration data. (This is the only scope currently defined). It contains a
list of param elements.

<!ELEMENT %LRCML.global; (%LRCML.param;)+ >

param element
This element contains the parameter’s value. The parameter’s name is defined in thename attribute.

Thevalue attribute can be used to store scalar’s value.

When the parameter’s type is a list, the values are stored in childrenparam elements.

Warning
This element has a mixed content type. We should probably use a value attribute
to hold scalar values.

<!ELEMENT %LRCML.param; (#PCDATA|%LRCML.param;) * >
<!ATTLIST %LRCML.param;

name NMTOKEN #REQUIRED
value CDATA #IMPLIED >

42

Chapter 10. The Lire DLF Schema Markup
Language

The Lire DLF Schema Markup Language
The Lire DLD Schema Markup Language (LDSML) is used describe the fields used by DLF records of a
specific schema like www, email or msgstore.

DLF schemas are defined in one XML document that should be installed in one of the directories that is
included in the schema path (usuallyHOME/.lire/schemas andprefix /share/lire/schemas).
This document must conforms to the LDSML DTD which is described here. Elements of that DTD are
defined in the namespace http://www.logreport.org/LDSML/ which will be usually mapped to the lire
prefix (altough other prefixes may be used).

The latest version of that DTD is 1.1 and its public identifier is -//LogReport.ORG//DTD Lire DLF
Schema Markup Language V1.1//EN. Its canonical system identifier is
http://www.logreport.org/LDSML/1.1/ldsml.dtd.

<!-- Namespace prefix for validation using the
DTD -->

<!ENTITY % LIRE.xmlns.pfx "lire" >
<!ENTITY % LIRE.pfx "%LIRE.xmlns.pfx;:" >
<!ENTITY % LIRE.xmlns.attr.name "xmlns:%LIRE.xmlns.pfx;" >
<!ENTITY % LIRE.xmlns.attr

"%LIRE.xmlns.attr.name; CDATA #FIXED
’http://www.logreport.org/LDSML/’">

This DTD uses the common modules lire-types.mod which defines the data types recognized by Lire and
lire-desc.mod which is used to include a subset of DocBook in description and text elements.

<!ENTITY % lire-types.mod PUBLIC
"-//LogReport.ORG//ENTITIES Lire Data Types V1.0//EN"
"lire-types.mod">

%lire-types.mod;

<!ENTITY % lire-desc.mod PUBLIC
"-//LogReport.ORG//ELEMENTS Lire Description Elements V2.0//EN"
"lire-desc.mod">

%lire-desc.mod;

The top-level element in XML documents describing a DLF schema will be either adlf-schema ,
extented-schema or derived-schema depending on the schema’s type.DLF schemasare used as

43

Chapter 10. The Lire DLF Schema Markup Language

base schema for one superservice. For example, the DLF schema of the www superservice is named
www. An extended schemais used to define additional fields which values are to be computed by an
analyser.

Extended schemas are named after the schema which they extend. For example, the www-attack
extended schema adds anattack field which contains, if any, the “attack” that was attempted in that
request.

Derived schemasare used by another type of analysers which defines an entirely different schema.
Whereas in the extended schema the new fields will be added to all the DLF records of the base schema,
the derived schema will create new DLF records based on the DLF records of the base schema. An
example of this is the www-session schema which computes users’ session information based on the web
requests contained in the www schema. Like for theextended-schema case, derived schemas are
named after the base schema from which they are derived.

The fields that makes each schema are defined usingfield elements.

<!-- Prefixed names declaration. -->
<!ENTITY % LIRE.dlf-schema "%LIRE.pfx;dlf-schema" >
<!ENTITY % LIRE.extended-schema "%LIRE.pfx;extended-schema" >
<!ENTITY % LIRE.derived-schema "%LIRE.pfx;derived-schema" >
<!ENTITY % LIRE.field "%LIRE.pfx;field" >

The dlf-schema element
Thedlf-schema element is used to define the base schema of a superservice. It should contains optional
title anddescription elements followed byfield elements describing the schema structure.

The title is an optional text string that will be used to in the automatic documentation generation that
can be extracted from the schema definition. Thedescription element should describe what is
represented by each DLF records (one web request, one email delivery, one firewall event, etc.)

dlf-schema ’s attributes

superservice

This required attribute contains the name of the superservice described by this schema. This will
also be used as the base schema’s identifier.

timestamp

This required attribute contains the name of the field which contains the official event’s timestamp.
This field will be used to sort the DLF records for timegroup and timeslot report operations.

<!ELEMENT %LIRE.dlf-schema; ((%LIRE.title;)?, (%LIRE.description;)?,
(%LIRE.field;)+) >

<!ATTLIST %LIRE.dlf-schema;

44

Chapter 10. The Lire DLF Schema Markup Language

superservice %superservice.type; #REQUIRED
timestamp IDREF #REQUIRED
%LIRE.xmlns.attr; >

extended-schema element
This is the root element of an extended DLF Schema. Extended-schema defines additional fields that will
be added to the base schema. It contains an optional title, an optional description and one or more field
specifications.

dlf-schema ’s attributes

id

This required attribute contains the identifier of that schema. This identifier should be composed of
the superservice’s name followed by an hypen (-) and then an word describing the extended schema.

base-schema

This required attribute contains the identifier of the schema that is extended.

required-fields

This optional attribute contains a space delimited list of field names that must be available in the
base schema for the analyser to do its job. If any of the listed field is missing in the DLF, extended
fields for the base schema cannot be computed.

module

This required attribute contains the name of the analyser that is used to compute the extended fields.
This is a perl module that should be installed in perl’s library path.

<!ELEMENT %LIRE.extended-schema;
((%LIRE.title;)?, (%LIRE.description;)?,

(%LIRE.field;)+) >
<!ATTLIST %LIRE.extended-schema;

id NMTOKEN #REQUIRED
base-schema NMTOKEN #REQUIRED
module NMTOKEN #REQUIRED
required-fields NMTOKENS #IMPLIED
%LIRE.xmlns.attr; >

45

Chapter 10. The Lire DLF Schema Markup Language

derived-schema element
This is the root element of a derived DLF Schema. The difference between a normal schema and a
derived schema is that the data is generated from another DLF instead of a log file.

derived-schema ’s attributes

id

This required attribute contains the identifier of that schema. This identifier should be composed of
the superservice’s name followed by an hypen (-) and then an word describing the derived schema.

base-schema

This required attribute contains the identifier of the schema from which this derived schema’s data
is derived.

required-fields

This optional attribute contains a space delimited list of field names that must be available in the
base schema for the analyser to do its job. If any of the listed field is missing in the DLF, the derived
records cannot be computed.

module

This required attribute contains the name of the analyser that is used to compute the derived records.
This is a perl module that should be installed in perl’s library path.

timestamp

This required attribute contains the name of the field which contains the official event’s timestamp.
This field will be used to sort the DLF records for timegroup and timeslot report operations.

<!ELEMENT %LIRE.derived-schema;
((%LIRE.title;)?, (%LIRE.description;)?,

(%LIRE.field;)+) >
<!ATTLIST %LIRE.derived-schema;

id NMTOKEN #REQUIRED
base-schema NMTOKEN #REQUIRED
module NMTOKEN #REQUIRED
required-fields NMTOKENS #IMPLIED
timestamp IDREF #REQUIRED
%LIRE.xmlns.attr; >

field element
The field is used to describe the fields of the schema. Each field is specified by its name and type. The
field element may contain an optionaldescription element which gives more information on the data

46

Chapter 10. The Lire DLF Schema Markup Language

contained in the field. Description should be used to give better information to the DLF converter
implementors on what should appears in that field.

field ’s attributes

name

This required attribute contains the name of the field.

type

This required attribute contains the the field’s type.

default

Warning
This attribute is obsolete and will be removed in a future Lire release.

label

This optional attribute gives the label that should be used to display this field in reports. Defaults to
the field’s name when omitted.

<!ELEMENT %LIRE.field; (%LIRE.description;)? >
<!ATTLIST %LIRE.field;

name ID #REQUIRED
type (%lire.types;) #REQUIRED
default CDATA #IMPLIED
label CDATA #IMPLIED >

47

Chapter 11. The Lire Report Specification
Markup Language

The Lire Report Specification Markup Language
Document Type Definition for the Lire Report Specification Markup Language.

This DTD defines a grammar that is used to specify reports that can be generated by Lire. Elements of
this DTD uses the http://www.logreport.org/LRSML/ namespace that is usually mapped to thelire

prefix.

The latest version of that DTD is 2.1 and its public identifier is -//LogReport.ORG//DTD Lire Report
Specification Markup Language V2.1//EN. Its canonical system identifier is
http://www.logreport.org/LRSML/2.1/lrsml.dtd.

<!--
-->

<!-- Namespace prefix for validation using the
DTD -->

<!ENTITY % LIRE.xmlns.pfx "lire" >
<!ENTITY % LIRE.pfx "%LIRE.xmlns.pfx;:" >
<!ENTITY % LIRE.xmlns.attr.name "xmlns:%LIRE.xmlns.pfx;" >
<!ENTITY % LIRE.xmlns.attr

"%LIRE.xmlns.attr.name; CDATA #FIXED ’http://www.logreport.org/LRSML/’">

<!ENTITY % LRCML.xmlns.pfx "lrcml" >
<!ENTITY % LRCML.pfx "%LRCML.xmlns.pfx;:" >
<!ENTITY % LRCML.xmlns.attr.name "xmlns:%LRCML.xmlns.pfx;">
<!ENTITY % LRCML.xmlns.attr

"%LRCML.xmlns.attr.name; CDATA #FIXED ’http://www.logreport.org/LRCML/’">

This DTD uses the common modules lire-types.mod which defines the data types recognized by Lire and
lire-desc.mod which is used to include a subset of DocBook in description and text elements.

<!ENTITY % lire-types.mod PUBLIC
"-//LogReport.ORG//ENTITIES Lire Data Types V1.0//EN"
"lire-types.mod">

%lire-types.mod;

<!ENTITY % lire-desc.mod PUBLIC
"-//LogReport.ORG//ELEMENTS Lire Description Elements V2.0//EN"
"lire-desc.mod">

%lire-desc.mod;

48

Chapter 11. The Lire Report Specification Markup Language

Each report specification is a XML document which has onereport-spec as its root element. This
DTD can also be used for filter specification which have oneglobal-filter-spec as root element.

<!ENTITY % LIRE.report-spec "%LIRE.pfx;report-spec" >
<!ENTITY % LIRE.global-filter-spec "%LIRE.pfx;global-filter-spec">
<!ENTITY % LIRE.display-spec "%LIRE.pfx;display-spec" >
<!ENTITY % LIRE.param-spec "%LIRE.pfx;param-spec" >
<!ENTITY % LIRE.param "%LIRE.pfx;param" >
<!ENTITY % LIRE.chart-configs "%LIRE.pfx;chart-configs" >
<!ENTITY % LRCML.param "%LRCML.pfx;param" >
<!ENTITY % LIRE.filter-spec "%LIRE.pfx;filter-spec" >
<!ENTITY % LIRE.report-calc-spec "%LIRE.pfx;report-calc-spec" >

<!ELEMENT %LRCML.param; (#PCDATA|%LRCML.param;) * >
<!ATTLIST %LRCML.param;

name NMTOKEN #REQUIRED
value CDATA #IMPLIED >

report-spec element
Root element of a report specification. It contains descriptive elements about the report specification
(title , description). It contains the display elements that will be in the generated report
(display-spec).

It contains specification for the parameters that can be used to customize the report generated from this
specification (param-spec). Finally, it contains elements to specify a filter expression which can be used
to select a subset of the records (filter-spec) and the expression to build the report
(report-calc-spec).

report-spec ’s attributes

id

the name of the superservice for which this report is available : i.e. email, www, dns, etc.

schema

The DLF schema used by the report. This defaults to the superservice’s schema, but can be one of
its derived or extended schema.

joined-schemas

A whitespace delimited list of additional schemas that will be joined for this report. This will make
all fields define in these schemas available for the operators. The schemas that can be joined
depends on the specification’s schema.

49

Chapter 11. The Lire Report Specification Markup Language

id

An unique identifier for the report specification

<!ELEMENT %LIRE.report-spec;
(%LIRE.title;, %LIRE.description;,

(%LIRE.param-spec;)?, %LIRE.display-spec;,
(%LIRE.filter-spec;)?, (%LIRE.chart-configs;)?,
%LIRE.report-calc-spec;)

>
<!ATTLIST %LIRE.report-spec;

id ID #REQUIRED
superservice %superservice.type; #REQUIRED
schema NMTOKEN #IMPLIED
joined-schemas NMTOKENS #IMPLIED
%LIRE.xmlns.attr;
%LRCML.xmlns.attr; >

global-filter-spec element
Root element of a filter specification. It contains descriptive elements about the filter specification
(title , description). It contains the display elements that will be used when that filter is used in a
generated report (display-spec). It contains specification for the parameters that can be used to
customize the filter generated from this specification (param-spec). Finally, it contains element to
specify the filter expression which can be used to select a subset of the records (filter-spec).

global-filter-spec ’s attributes

superservice

the name of the superservice for which this filter is available : i.e. email, www, dns, etc.

schema

the DLF schema used by the report. This defaults to the superservice’s schema, but can be one of its
derived or extended schema.

joined-schemas

A whitespace delimited list of additional schemas that will be joined for this report. This will make
all fields define in these schemas available for the operators. The schemas that can be joined
depends on the specification’s schema.

id

An unique identifier for the filter specification

<!ELEMENT %LIRE.global-filter-spec;

50

Chapter 11. The Lire Report Specification Markup Language

(%LIRE.title;, %LIRE.description;,
(%LIRE.param-spec;)?, %LIRE.display-spec;,

(%LIRE.filter-spec;))
>

<!ATTLIST %LIRE.global-filter-spec;
id ID #REQUIRED
superservice %superservice.type; #REQUIRED
schema NMTOKEN #IMPLIED
joined-schemas NMTOKENS #IMPLIED
%LIRE.xmlns.attr; >

display-spec element
This element contains the descriptive element that will appear in the generated report.

It contains one title and may contains one description which will be used as help message

This element has no attribute.

<!ELEMENT %LIRE.display-spec; (%LIRE.title;, (%LIRE.description;)?) >

param-spec element
This element contains the parameters than can be customized in this report specification.

This element doesn’t have any attribute.

<!ELEMENT %LIRE.param-spec; (%LIRE.param;)+ >

param element
This element contains the specification for a parameter than can be used to customize this report.

This element can contains adescription element which can be used to explain the parameter’s
purpose.

It is an error to define a parameter with the same name than one of the superservice’s field.

51

Chapter 11. The Lire Report Specification Markup Language

param ’s attributes

name

the name of the parameter.

type

the parameter’s data type

default

the parameter’s default value

<!ELEMENT %LIRE.param; (%LIRE.description;)? >
<!ATTLIST %LIRE.param;

name ID #REQUIRED
type (%lire.types;) #REQUIRED
default CDATA #IMPLIED >

chart-configs element
This element contains one or more chart configurations that should be copied to the generated subreport.
These chart configurations are specified using the Lire Report Configuration Markup Language.

This element has no attribute.

<!ELEMENT %LIRE.chart-configs; (%LRCML.param;)+ >

Filter expression elements

<!ENTITY % LIRE.eq "%LIRE.pfx;eq" >
<!ENTITY % LIRE.ne "%LIRE.pfx;ne" >
<!ENTITY % LIRE.gt "%LIRE.pfx;gt" >
<!ENTITY % LIRE.ge "%LIRE.pfx;ge" >
<!ENTITY % LIRE.lt "%LIRE.pfx;lt" >
<!ENTITY % LIRE.le "%LIRE.pfx;le" >
<!ENTITY % LIRE.and "%LIRE.pfx;and" >
<!ENTITY % LIRE.or "%LIRE.pfx;or" >
<!ENTITY % LIRE.not "%LIRE.pfx;not" >
<!ENTITY % LIRE.match "%LIRE.pfx;match" >
<!ENTITY % LIRE.value "%LIRE.pfx;value" >

<!ENTITY % expr "%LIRE.eq; | %LIRE.ne; |

52

Chapter 11. The Lire Report Specification Markup Language

%LIRE.gt; | %LIRE.lt; | %LIRE.ge; | %LIRE.le; |
%LIRE.and; | %LIRE.or; | %LIRE.not; |
%LIRE.match; | %LIRE.value;" >

filter-spec element

This element is used to select the subset of the records that will be used to generate the report. If this
element is missing, all records will be used to generate the report.

The content of this element are expression element which defines an expression which will evaluate to
true or false for each record. The subset used for to generate the report are all records for which the
expression evaluates to true.

The value used to evaluate the expressions are either literal, value of parameter or value of one of the
field of the record. Parameter and field starts with a $ followed by the name of the parameter or field. All
other values are interpreted as literals.

This element doesn’t have any attribute.

<!ELEMENT %LIRE.filter-spec; (%expr;) >

value element

This expression element to false if the ’value’ attribute is undefined, the empty string or 0. It evaluate to
true otherwise.

value ’s attributes

value

The value that should be evaluated for a boolean context.

<!ELEMENT %LIRE.value; EMPTY >
<!ATTLIST %LIRE.value;

value CDATA #REQUIRED >

eq element

<!ELEMENT %LIRE.eq; EMPTY >
<!ATTLIST %LIRE.eq;

arg1 CDATA #REQUIRED

53

Chapter 11. The Lire Report Specification Markup Language

arg2 CDATA #REQUIRED >

ne element

<!ELEMENT %LIRE.ne; EMPTY >
<!ATTLIST %LIRE.ne;

arg1 CDATA #REQUIRED
arg2 CDATA #REQUIRED >

gt element

<!ELEMENT %LIRE.gt; EMPTY >
<!ATTLIST %LIRE.gt;

arg1 CDATA #REQUIRED
arg2 CDATA #REQUIRED >

ge element

<!ELEMENT %LIRE.ge; EMPTY >
<!ATTLIST %LIRE.ge;

arg1 CDATA #REQUIRED
arg2 CDATA #REQUIRED >

lt element

<!ELEMENT %LIRE.lt; EMPTY >
<!ATTLIST %LIRE.lt;

arg1 CDATA #REQUIRED
arg2 CDATA #REQUIRED >

54

Chapter 11. The Lire Report Specification Markup Language

le element

<!ELEMENT %LIRE.le; EMPTY >
<!ATTLIST %LIRE.le;

arg1 CDATA #REQUIRED
arg2 CDATA #REQUIRED >

match element

The match expression element tries to match a POSIX 1003.2 extended regular expression to a value and
return true if there is a match and false otherwise.

match ’s attributes

value

the value which should matched

re

A POSIX 1003.2 extended regular expression.

case-sensitive

Is the regex sensitive to case. Defaults to true.

<!ELEMENT %LIRE.match; EMPTY >
<!ATTLIST %LIRE.match;

value CDATA #REQUIRED
re CDATA #REQUIRED
case-sensitive (%bool.type;) ’true’ >

not element

<!ELEMENT %LIRE.not; (%expr;) >

55

Chapter 11. The Lire Report Specification Markup Language

and element

<!ELEMENT %LIRE.and; (%expr;)+ >

or element

<!ELEMENT %LIRE.or; (%expr;)+ >

Report Calculation Elements

<!ENTITY % LIRE.timegroup "%LIRE.pfx;timegroup" >
<!ENTITY % LIRE.group "%LIRE.pfx;group" >
<!ENTITY % LIRE.rangegroup "%LIRE.pfx;rangegroup" >
<!ENTITY % LIRE.timeslot "%LIRE.pfx;timeslot" >
<!ENTITY % LIRE.field "%LIRE.pfx;field" >
<!ENTITY % LIRE.sum "%LIRE.pfx;sum" >
<!ENTITY % LIRE.avg "%LIRE.pfx;avg" >
<!ENTITY % LIRE.min "%LIRE.pfx;min" >
<!ENTITY % LIRE.max "%LIRE.pfx;max" >
<!ENTITY % LIRE.first "%LIRE.pfx;first" >
<!ENTITY % LIRE.last "%LIRE.pfx;last" >
<!ENTITY % LIRE.count "%LIRE.pfx;count" >
<!ENTITY % LIRE.records "%LIRE.pfx;records" >

<!-- Empty group operator -->
<!ENTITY % LIRE.empty-ops "%LIRE.sum; | %LIRE.avg; | %LIRE.count; |

%LIRE.min; | %LIRE.max; | %LIRE.first; |
%LIRE.last; | %LIRE.records;" >

<!-- Group operations that are also aggregators -->
<!ENTITY % LIRE.nestable-aggr

"%LIRE.group; | %LIRE.timegroup; |
%LIRE.timeslot; | %LIRE.rangegroup;" >

<!-- Group operations -->
<!ENTITY % LIRE.group-ops "%LIRE.empty-ops;| %LIRE.nestable-aggr;" >

<!-- Containers for group operations -->
<!ENTITY % LIRE.aggregator "%LIRE.nestable-aggr;" >

56

Chapter 11. The Lire Report Specification Markup Language

report-calc-spec element

This element describes the computation needs to generate the report.

It contains one aggregator element.

This element doesn’t have any attributes.

<!ELEMENT %LIRE.report-calc-spec; (%LIRE.aggregator;) >

Common Attributes

All elements which will create a column in the resulting report have a label attribute that will be used as
the column label. When this attribute is omitted, the name attribute content will be used as column label.

<!ENTITY % label.attr "label CDATA #IMPLIED">

All operation elements may have a name attribute which can be used to reference that column. (It is
required in the case of aggrage functions). The primary usage is for controlling the sort order of the rows
in the generated report.

<!ENTITY % name.attr "name ID #IMPLIED">
<!ENTITY % name.attr.req "name ID #REQUIRED">

group element

The group element generates a report where records are grouped by some field values and aggregate
statistics are computed on those group of records.

It contains the field that should be used for grouping and the statistics that should be computed.

The sort order in the report is controlled by the ’sort’ attribute.

group ’s attributes

name

An identifier that can be used to reference this operation from other elements. This name will most
often be used in the parent’s sort attribute. If omitted a default name will be generated.

57

Chapter 11. The Lire Report Specification Markup Language

sort

whitespace delimited list of fields name that should used to sort the records. Field names can be
prefixed by- to specify reverse sort order, otherwise ascending sort order is used. The name can
also refer to the name attribute of the statistics element.

limit

limit the number of records that will be in the generated report. It can be either a positive integer or
the name of a user supplied param.

<!ELEMENT %LIRE.group; ((%LIRE.field;)+, (%LIRE.group-ops;)+) >
<!ATTLIST %LIRE.group;

%name.attr;
sort NMTOKENS #IMPLIED
limit CDATA #IMPLIED >

timegroup element

The timegroup element generates a report where records are grouped by time range (hour, day, etc.).
Statistics are then computed on these records grouped by period.

timegroup ’s attributes

name

An identifier that can be used to reference this operation from other elements. This name will most
often be used in the parent’s sort attribute. If omitted a default name will be generated.

label

Sets the column label that will be used for column generated by this element. If omitted a default
label will be generated.

field

the name of the field which is used to group records. This should be a field which is of one of the
time types (timestamp, date, time). It defaults to the default timestamp field if unspecified.

period

This is the timeperiod over which records should be grouped. Valid period looks like (hour, day, 1h,
30m, etc). It can also be the name of a user supplied param.

<!ELEMENT %LIRE.timegroup; (%LIRE.group-ops;)+ >
<!ATTLIST %LIRE.timegroup;

%name.attr;
%label.attr;

field NMTOKEN #IMPLIED

58

Chapter 11. The Lire Report Specification Markup Language

period CDATA #REQUIRED >

timeslot element

The timeslot element generates a report where records are grouped according to a cyclic unit of time.
The duration unit used won’t fall over to the next higher unit. For example, this means that using a unit
of 1d will generate a report where the stats will be by day of the week, 8h will generate a report by third
of day, etc. The statistics are then computed over the records in the same timeslot.

Example 11-1. timeslot with 1d unit

Using a specification like:

<lire:timeslot unit="1d">
...

</lire:timeslot>

would generate a report like:

Table 11-1. weekly overview

Sunday ...

Monday ...

Tuesday ...

... ...

Saturday ...

where data will be summed over all Sunday’s, Monday’s, ..., and Saturdays found in the log.

Example 11-2. timeslot with 2m unit

Specifyingunit="2m" would generate a line for each two months, giving a yearly view.

timeslot ’s attributes

name

An identifier that can be used to reference this operation from other elements. This name will most
often be used in the parent’s sort attribute. If omitted a default name will be generated.

59

Chapter 11. The Lire Report Specification Markup Language

label

Sets the column label that will be used for column generated by this element. If omitted a default
label will be generated.

field

the name of the field which is used to group records. This should be a field which is of one of the
time types (timestamp, date, time). It defaults to the default ’timestamp’ field if unspecified.

unit

This is the cyclic unit of time in which units the records are aggregated. It can be any duration
value. (hour, day, 1h, 30m, etc). It can also be the name of a user supplied param.

<!ELEMENT %LIRE.timeslot; (%LIRE.group-ops;)+ >
<!ATTLIST %LIRE.timeslot;

%name.attr;
%label.attr;

field NMTOKEN #IMPLIED
unit CDATA #REQUIRED >

rangroup element

Therangegroup element generates a report where records are grouped into distinct class delimited by a
range. This element can be used to aggregates continuous numeric values like duration or bytes.
Statistics are then computed on these records grouped in range class.

rangegroup ’s attributes

name

An identifier that can be used to reference this operation from other elements. This name will most
often be used in the parent’s sort attribute. If omitted a default name will be generated.

label

Sets the column label that will be used for column generated by this element. If omitted a default
label will be generated.

field

the name of the field which is used to group records. This should be a field which is of a continuous
numeric type (bytes, duration, int, number). Time types aggregation should use the timegroup
element or timeslot.

range-start

The starting index of the first class. Defaults to 0. This won’t be used a the lower limit of the class.
It is only used to specify relatively at which values the classes delimitation start. For example, if the

60

Chapter 11. The Lire Report Specification Markup Language

range-start is 1, and the range-size is 5, a class ranging -4 to 0 will be created if values are in that
range. It can be supplied in any continuous unit (i.e 10k, 5m, etc.) This can also be the name of a
user supplied param.

range-size

This is the size of class. It can be supplied in any continuous unit (i.e 10k, 5m, etc.) It can also be
the name of a user supplied param.

min-value

All value lower then this boundary value will be considered to be equal to this value. If this
parameter isn’t set, the ranges won’t be bounded on the left side.

max-value

All value greater then this boundary value will be considered to be equal to this value. If this
parameter isn’t set, the ranges won’t be bounded on the right side.

size-scale

The rate at which the size scale from one class to another. If it is different then 1, this will create a
logarithmic distribution. For example, setting this to 2, each successive class will be twice larger
then the precedent : 0-9, 10-29, 30-69, etc.

<!ELEMENT %LIRE.rangegroup; (%LIRE.group-ops;)+ >
<!ATTLIST %LIRE.rangegroup;

%name.attr;
%label.attr;

field NMTOKEN #REQUIRED
range-start CDATA #IMPLIED
range-size CDATA #REQUIRED
min-value CDATA #IMPLIED
max-value CDATA #IMPLIED
size-scale CDATA #IMPLIED >

field element

This element reference a DLF field which value will be displayed in a separate column in the resulting
report. Its used to specify the grouping fields in thegroup element and to specify the fields to output in
therecords element.

field ’s attribute

name

The name of the DLF field that will be used as key for grouping.

61

Chapter 11. The Lire Report Specification Markup Language

label

Sets the column label that will be used for column generated by this element. If omitted a default
label will be generated.

<!ELEMENT %LIRE.field; EMPTY >
<!ATTLIST %LIRE.field;

name NMTOKEN #REQUIRED
%label.attr; >

sum element

Thesum element sums the value of a field in the group.

sum’s attributes

name

An identifier that can be used to reference this operation from other elements. This name will most
often be used in the parent’s sort attribute.

label

Sets the column label that will be used for column generated by this element. If omitted a default
label will be generated.

field

the field that should be summed.

ratio

This attribute can be used to display the sum as a ratio of the group or table total. If the attribute is
set togroup the resulting value will be the ratio on the group’s total sum. If the attribute is set to
table , it will be expressed as a ratio of the total sum of the table. The defaults isnone which will
not convert the sum to a ratio.

weight

This optional attribute can be used to create a weighted sum. It should contain a numerical DLF
field name. The content of that field will be used to multiply each field value before summing them.

<!ELEMENT %LIRE.sum; EMPTY >
<!ATTLIST %LIRE.sum;

%name.attr.req;
%label.attr;
ratio (none | group |table) ’none’

field NMTOKEN #REQUIRED
weight NMTOKEN #IMPLIED >

62

Chapter 11. The Lire Report Specification Markup Language

avg element

The avg element calculate average of all value of a field in the group. The average will be computed
either on the number of records if the by-field attribute is left empty, or by the number of different values
that there are in the by-fields.

avg ’s attributes

name

An identifier that can be used to reference this operation from other elements. This name will most
often be used in the parent’s sort attribute.

label

Sets the column label that will be used for column generated by this element. If omitted a default
label will be generated.

field

the field that should be averaged. If left unspecified the number of record will be counted.

by-fields

the fields that will be used to dermine the count over which the average is computed.

weight

This optional attribute can be used to create a weighted average. It should contain a numerical DLF
field name. The content of that field will be used to multiply each field value before summing them.
Its that weighted sum that will be used to calculate the average.

<!ELEMENT %LIRE.avg; EMPTY >
<!ATTLIST %LIRE.avg;

%name.attr.req;
%label.attr;

field NMTOKEN #IMPLIED
by-fields NMTOKENS #IMPLIED

weight NMTOKEN #IMPLIED >

max element

The max element calculates the maximum value for a field in all the group’s records.

63

Chapter 11. The Lire Report Specification Markup Language

max’s attributes

name

An identifier that can be used to reference this operation from other elements. This name will most
often be used in the parent’s sort attribute.

label

Sets the column label that will be used for column generated by this element. If omitted a default
label will be generated.

field

the field for which the maximum value should found.

<!ELEMENT %LIRE.max; EMPTY >
<!ATTLIST %LIRE.max;

%name.attr.req;
%label.attr;

field NMTOKEN #REQUIRED >

min element

Themin element calculates the minimum value for a field in all the group’s records.

min ’s attributes

name

An identifier that can be used to reference this operation from other elements. This name will most
often be used in the parent’s sort attribute.

label

Sets the column label that will be used for column generated by this element. If omitted a default
label will be generated.

field

the field for which the minimum value should found.

<!ELEMENT %LIRE.min; EMPTY >
<!ATTLIST %LIRE.min;

%name.attr.req;
%label.attr;

field NMTOKEN #REQUIRED >

64

Chapter 11. The Lire Report Specification Markup Language

first element

The first element will display the value of the value of one field of the first DLF record within its
group. The sort order is controlled through the sort attribute..

first ’s attributes

name

An identifier that can be used to reference this operation from other elements. This name will most
often be used in the parent’s sort attribute.

label

Sets the column label that will be used for column generated by this element. If omitted a default
label will be generated.

field

the DLF field which will be displayed.

sort

whitespace delimited list of fields name that should used to sort the records. Field names can be
prefixed by- to specify reverse sort order, otherwise ascending sort order is used. If this attribute is
omitted, the records will be sort in ascending order of the default timestamp field.

<!ELEMENT %LIRE.first; EMPTY >
<!ATTLIST %LIRE.first;

%name.attr.req;
%label.attr;

field NMTOKEN #REQUIRED
sort NMTOKENS #IMPLIED

>

last element

The last element will display the value of the value of one field of the last DLF record within its group.
The sort order is controlled through the sort attribute..

last ’s attributes

name

An identifier that can be used to reference this operation from other elements. This name will most
often be used in the parent’s sort attribute.

65

Chapter 11. The Lire Report Specification Markup Language

label

Sets the column label that will be used for column generated by this element. If omitted a default
label will be generated.

field

the DLF field which will be displayed.

sort

whitespace delimited list of fields name that should used to sort the records. Field names can be
prefixed by- to specify reverse sort order, otherwise ascending sort order is used. If this attribute is
omitted, the records will be sort in ascending order of the default timestamp field.

<!ELEMENT %LIRE.last; EMPTY >
<!ATTLIST %LIRE.last;

%name.attr.req;
%label.attr;

field NMTOKEN #REQUIRED
sort NMTOKENS #IMPLIED

>

count element

Thecount element counts the number of records in the group if the fields attribute is left empty.
Otherwise, it will count the number of different values in the fields specified.

count ’s attributes

name

An identifier that can be used to reference this operation from other elements. This name will most
often be used in the parent’s sort attribute.

label

Sets the column label that will be used for column generated by this element. If omitted a default
label will be generated.

fields

Which fields to count. If unspecified all records in the group are counted. If not, only different
fields’ value will be counted.

ratio

This attribute can be used to display the frequency as a ratio of the group or table total. If the
attribute is set togroup the resulting value will be the ratio on the group’s total frequency. If the

66

Chapter 11. The Lire Report Specification Markup Language

attribute is set totable , it will be expressed as a ratio of the total frequency of the table. The
defaults isnone which will not convert the frequency to a ratio.

<!ELEMENT %LIRE.count; EMPTY >
<!ATTLIST %LIRE.count;

%name.attr.req;
%label.attr;

ratio (none | group |table) ’none’
fields NMTOKENS #IMPLIED >

records element

Therecords element will put the content of selected fields in the report. This can be used in reports that
shows events matching certain criteria. The fields that will be included in the report for each record is
specified by thefield element.

records ’s attribute

fields

whitespace delimited list of fields name that should included in the report.

<!ELEMENT %LIRE.records; EMPTY >
<!ATTLIST %LIRE.records;

fields NMTOKENS #REQUIRED >

67

Chapter 12. The Lire Report Markup Language

The Report Markup Language
Document Type Definition for the XML Lire Report Markup Language as generated bylr_dlf2xml .

Elements of that DTD are defined in the namespace http://www.logreport.org/LRML/ which will be
usually mapped to the lire prefix.

The latest version of that DTD is 2.1 and its public identifier is -//LogReport.ORG//DTD Report Markup
Language V2.1//EN. Its canonical system identifier is http://www.logreport.org/LRML/2.1/lrml.dtd
(http://www.logreport.org/LDSML/2.1/lrml.dtd).

<!-- Namespace prefix for validation using the
DTD -->

<!ENTITY % LIRE.xmlns.pfx "lire" >
<!ENTITY % LIRE.pfx "%LIRE.xmlns.pfx;:" >
<!ENTITY % LIRE.xmlns.attr.name "xmlns:%LIRE.xmlns.pfx;" >
<!ENTITY % LIRE.xmlns.attr

"%LIRE.xmlns.attr.name; CDATA #FIXED ’http://www.logreport.org/LRML/’">

<!ENTITY % LRCML.xmlns.pfx "lrcml" >
<!ENTITY % LRCML.pfx "%LRCML.xmlns.pfx;:" >
<!ENTITY % LRCML.xmlns.attr.name "xmlns:%LRCML.xmlns.pfx;" >
<!ENTITY % LRCML.xmlns.attr

"%LRCML.xmlns.attr.name; CDATA #FIXED ’http://www.logreport.org/LRCML/’">

This DTD uses the common modules lire-types.mod which defines the data types recognized by Lire and
lire-desc.mod which is used to include a subset of DocBook in description and text elements.

<!-- Include needed modules -->
<!ENTITY % lire-types.mod PUBLIC

"-//LogReport.ORG//ENTITIES Lire Data Types V1.0//EN"
"lire-types.mod">

%lire-types.mod;

<!ENTITY % lire-desc.mod PUBLIC
"-//LogReport.ORG//ELEMENTS Lire Description Elements V3.0//EN"
"lire-desc.mod">

%lire-desc.mod;

Each report is an XML document of which the top-level element is thereport element. The report’s
data is contained insubreport elements (these hold the results of each report specification that was
used to generate the report).

68

Chapter 12. The Lire Report Markup Language

<!-- Parameter entities which defines qualified
names of the elements -->

<!ENTITY % LIRE.report "%LIRE.pfx;report" >
<!ENTITY % LIRE.section "%LIRE.pfx;section" >
<!ENTITY % LIRE.subreport "%LIRE.pfx;subreport" >
<!ENTITY % LIRE.missing-subreport "%LIRE.pfx;missing-subreport" >
<!ENTITY % LIRE.table "%LIRE.pfx;table" >
<!ENTITY % LIRE.table-info "%LIRE.pfx;table-info" >
<!ENTITY % LIRE.group-info "%LIRE.pfx;group-info" >
<!ENTITY % LIRE.column-info "%LIRE.pfx;column-info" >
<!ENTITY % LIRE.group-summary "%LIRE.pfx;group-summary" >
<!ENTITY % LIRE.entry "%LIRE.pfx;entry" >
<!ENTITY % LIRE.group "%LIRE.pfx;group" >
<!ENTITY % LIRE.name "%LIRE.pfx;name" >
<!ENTITY % LIRE.value "%LIRE.pfx;value" >
<!ENTITY % LIRE.date "%LIRE.pfx;date" >
<!ENTITY % LIRE.timespan "%LIRE.pfx;timespan" >
<!ENTITY % LIRE.chart-configs "%LIRE.pfx;chart-configs" >
<!ENTITY % LRCML.param "%LRCML.pfx;param" >

<!ELEMENT %LRCML.param; (#PCDATA|%LRCML.param;) * >
<!ATTLIST %LRCML.param;

name NMTOKEN #REQUIRED
value CDATA #IMPLIED >

report element
A report starts with the report’s meta-informations: title, timespan and description.

The report’s actual data is contained in one or more subreports.

report ’s attributes

version

The version of the DTD to which this report complies. New report should use the2.1 value.

<!ELEMENT %LIRE.report; ((%LIRE.title;)?, (%LIRE.date;)?,
(%LIRE.timespan;)?, (%LIRE.description;)?,
(%LIRE.section;)+) >

<!ATTLIST %LIRE.report;
version %number.type; #REQUIRED
%LIRE.xmlns.attr;
%LRCML.xmlns.attr; >

69

Chapter 12. The Lire Report Markup Language

Meta-information elements

date element

Thedate element contains the date on which the report was generated.

The content of this element should be the timestamp in a format suitable for display.

’s attribute

time

The date in epoch time.

<!ELEMENT %LIRE.date; (#PCDATA) >
<!ATTLIST %LIRE.date;

time %number.type; #REQUIRED>

timespan element

The timespan element contains the starting and ending date which delimits the period of the report.

The content of this element should be formatted for display purpose. The starting and ending time of the
timespan can be read in epoch time in the attributes. Theperiod attribute contains the timespan period.

timespan ’s attributes

period

Optional attribute which contains the period for which the report was generated.

start

The start time of the timespan in epoch time.

end

The end time of the timespan in epoch time.

<!ELEMENT %LIRE.timespan; (#PCDATA) >
<!ATTLIST %LIRE.timespan;

period (hourly|daily|weekly|monthly|yearly) #IMPLIED
start %number.type; #REQUIRED
end %number.type; #REQUIRED >

70

Chapter 12. The Lire Report Markup Language

section element
Thesection element group common subreports together. The section’s description will usually
contains informations about the filters that were applied in this section.

It contains atitle , adescription if some global filters were applied and the section’s subreports.

This element doesn’t have any attribute.

<!ELEMENT %LIRE.section; (%LIRE.title;, (%LIRE.description;)?,
(%LIRE.subreport;|%LIRE.missing-subreport;) *) >

subreport element
Thesubreport element contains data for a certain report.

It can contains meta-information elements, it they are different from the one of the report.

Example of subreports for the email superservice are :

• Message delay by relay in seconds.

• Per hour traffic summary.

• Top 10 messages delivery.

• etc.

The data is contains in atable element.

If charts should be generated from the table’s data, their configuration is contained in the
chart-configs element.

subreport ’s attributes

id

A unique identifier that can be used to link to this element.

superservice

the name of the superservice from which the report’s data comes from : i.e. email, www, dns, etc.

type

This is the name of the report specification that was used to generated this subreport.

71

Chapter 12. The Lire Report Markup Language

schemas

A space delimited list of the schemas used by this subreport.

<!ELEMENT %LIRE.subreport; (%LIRE.title;, (%LIRE.description;)?,
%LIRE.table;, (%LIRE.chart-configs;)?) >

<!ATTLIST %LIRE.subreport;
id ID #REQUIRED

superservice %superservice.type; #REQUIRED
type CDATA #REQUIRED
schemas NMTOKENS #REQUIRED >

missing-subreport element

missing-subreport ’s attributes

id

A unique identifier that can be used to link to this element.

superservice

the name of the superservice from which the report’s data comes from : i.e. email, www, dns, etc.

type

This is the name of the report specification that was used to generated this subreport.

schemas

A space delimited list of the schemas used by this subreport.

reason

The reason why this subreport is missing.

<!ELEMENT %LIRE.missing-subreport; (EMPTY) >
<!ATTLIST %LIRE.missing-subreport;

id ID #IMPLIED
superservice %superservice.type; #REQUIRED
reason CDATA #IMPLIED
type CDATA #REQUIRED
schemas NMTOKENS #REQUIRED >

72

Chapter 12. The Lire Report Markup Language

table element
The table element contains the data of the subreport. It starts by atable-info element which
contains information on the columns defined in the subreport. Following the table structure, there is a
group-summary element which contains values computed over all the records.

A table element can contains the subreport data directly or the data can be subdivided into groups.

An example of a subreport which would contains directly the data would be "messages per to-domain,
top-10". This would contains ten entries, one for each to-domain.

An example of a subreport which would contains data in group would be "deliveries to users, per
to-domain, top 30, top 5 users". It would contain 30 groups (one per to-domain) and each group would
contain 5 entries (one per user).

Group can be nested to arbitrary depth (but logic don’t recommend to nest too much).

table ’s attributes

show

the number of entry to display. By default all entries should be displayed.

<!ELEMENT %LIRE.table; (%LIRE.table-info;, %LIRE.group-summary;,
(%LIRE.entry;) *) >

<!ATTLIST %LIRE.table;
show %int.type; #IMPLIED >

table-info element
The table-info element contains information on the table structure. It contains onecolumn-info

element for each columns defined. It will also contains onegroup-info element for every grouping
operation used in the report specification.

This element doesn’t have any attribute.

<!ELEMENT %LIRE.table-info; (%LIRE.column-info;|%LIRE.group-info;)+ >

group-info element
Thegroup-info element play a similar role to thetable-info element. Its used to group the columns
defined by particular subgroup.

73

Chapter 12. The Lire Report Markup Language

group-info ’s attribute

name

This attribute holds the name of the operation in the report specification which was responsible for
the creation of this group data.

row-idx

Specify the row index of the table header in which this group’s categorical labels should be
displayed.

<!ELEMENT %LIRE.group-info; (%LIRE.column-info;|%LIRE.group-info;)+ >
<!ATTLIST %LIRE.group-info;

name NMTOKEN #REQUIRED
row-idx %int.type; #REQUIRED >

column-info element
Thecolumn-info element describes a column of the table. It holds information related to display
purpose (label, class, col-start, col-end, col-width) as well as information needed to use the content of the
column as input to other computation (type, name).

The col-start, col-end and col-width can be used to render the data in grid.

column-info ’s attributes

name

This attribute contains the name of the operation in the report specification which was used to
generata data in this column.

type

The Lire data type of this column.

class

This attribute can either becategorical or numerical . Categorical data is held inname element
and numerical data is held invalue element. Also, numerical column will havecolumn-summary

element associated to them.

label

This optional attribute contains the column’s label. If omitted, the name attribute’s content will be
used.

col-start

The column number in which this column start. The first column being column 0.

74

Chapter 12. The Lire Report Markup Language

col-end

The column number in which this column ends. The first column being column 0. Spans are used to
cover “padding columns” to indent grouped entries under their parent entry.

col-width

The suggested column width (in characters) to use for this column.

max-chars

The maximum entry’s length in that column (this includes the label).

avg-chars

The average entry’s length in that column (this includes the label). This value is rounded up to the
nearest integer.

<!ELEMENT %LIRE.column-info; EMPTY >
<!ATTLIST %LIRE.column-info;

name NMTOKEN #REQUIRED
class (categorical|numerical) #REQUIRED
type (%lire.types;) #REQUIRED

label CDATA #IMPLIED
col-start %int.type; #REQUIRED
col-end %int.type; #REQUIRED
col-width %int.type; #IMPLIED
max-chars %int.type; #IMPLIED
avg-chars %int.type; #IMPLIED >

group-summary element
Thegroup-summary contains onevalue element for all the columns that contains numerical data.
These elements will contains the statistics computed over all the DLF records which were processed by
the group or the subreport.

group-summary ’s attribute

nrecords

The number of DLF records that were processed by this group or subreport.

missing-cases

This attribute contains the number ofLIRE_NOTAVAIL values found when computing the statistic.
This number represents the number of records which didn’t have the required information to group
the records appropriately. If ommited or equals to 0, it means that all records had all the required
information.

75

Chapter 12. The Lire Report Markup Language

row-idx

Specify the row index in the table at which the group’s summaryvalue should be displayed. If this
is attribute is omitted, the summary values won’t be displayed.

<!ELEMENT %LIRE.group-summary; (%LIRE.value;) * >
<!ATTLIST %LIRE.group-summary;

nrecords %int.type; #REQUIRED
missing-cases %int.type; #IMPLIED

row-idx %int.type; #IMPLIED >

group element
Thegroup element can be used to subdivide logically a report. It’s used for aggregate reports like
message per user per domain.

It contains agroup-summary element which contains the group’s values for the whole group followed
by the entries that makes the group.

Groups can be nested more than once, but too much nesting augments information clutter and isn’t useful
for the user.

group ’s attributes

id

A unique identifier that can be used to link to this element.

show

the number of entry to display. By default all entries should be displayed.

<!ELEMENT %LIRE.group; (%LIRE.group-summary;, (%LIRE.entry;) *)>
<!ATTLIST %LIRE.group;

id ID #IMPLIED
show %int.type; #IMPLIED >

entry element
Theentry contains the data from the report. It is similar to a row in a table altough one entry may
represents several rows when it includes nested groups.

Thename elements contain categorical items of data like user name, email, browser type, url. Note that
numeric ranges (like time period for example) are also considered categorical data items.

76

Chapter 12. The Lire Report Markup Language

Thevalue elements contain numericical data which are the result of a descriptive statistical operation:
message count, bytes transferred, average delay, etc.

entry ’s attribute

id

A unique identifier that can be used to link to this element.

row-idx

Specify the row index in the table at which this entry’sname andvalue elements should be
rendered. If this is attribute is omitted, the entry won’t be displayed.

<!--
-->

<!ELEMENT %LIRE.entry; (%LIRE.name;,
(%LIRE.name;|%LIRE.value;|%LIRE.group;)+)>
<!ATTLIST %LIRE.entry;

id ID #IMPLIED
row-idx %int.type; #IMPLIED >

name element
Thename elements contains categorical data column value. Its also used for numerical values that
represents a class of values (like produced by therangegroup or timegroup operations for example.)

name’s attributes

id

A unique identifier that can be used to link to this element.

col

The column’s name. It should be the same than the one in the correspondingcolumn-info

element.

value

When the displayed format is different from the DLF representation, this attribute contains the DLF
representation.

range

In some cases (like in report generated by thetimegroup , timeslot or rangegroup specification),
this attribute will contains the range’s length from the starting value which is in the ’value’ attribute.

77

Chapter 12. The Lire Report Markup Language

<!ELEMENT %LIRE.name; (#PCDATA) >
<!ATTLIST %LIRE.name;

id ID #IMPLIED
col NMTOKEN #REQUIRED

value CDATA #IMPLIED
range %number.type; #IMPLIED >

value element
The value element contains numerical column value..

value ’s attributes

id

A unique identifier that can be used to link to this element.

col

The column’s name. It should be the same than the one in the correspondingcolumn-info

element.

value

contains the value in numeric format. This is used when the value was scaled (1k, 5M, etc.)

total

for average value, this contains the total used to compute the average.

n

for average value, this contains the n value that was used to compute the average.

missing-cases

This attribute contains the number ofLIRE_NOTAVAIL values found when computing the statistic.
When omitted, its assume to have a value of 0, i.e. that the value was defined in each DLF record.

<!ELEMENT %LIRE.value; (#PCDATA) >
<!ATTLIST %LIRE.value;

id ID #IMPLIED
col NMTOKEN #REQUIRED
missing-cases %int.type; #IMPLIED

value %number.type; #IMPLIED
total %number.type; #IMPLIED
n %number.type; #IMPLIED >

78

Chapter 12. The Lire Report Markup Language

chart-configs element
This element contains one or more chart configurations that should be generated from the table’s. These
chart configurations are specified using the Lire Report Configuration Markup Language.

This element has no attribute.

<!ELEMENT %LIRE.chart-configs; (%LRCML.param;)+ >

79

IV. Lire Developers’ Conventions

Chapter 13. Contributing Code to Lire
The LogReport team invites you to contribute code to Lire. We’re very happy with any code
contributions which work for you: it’ll very likely will make life easier for other people too! We ask you
to consider some points, when writing code to get distributed with Lire.

When adding new scripts, or extending and improving current Lire code, make sure you’re working with
the current Lire code. (When working with old code, the bug you’re working on might be fixed already
by somebody else.) You can get the current code by fetching our CVS from SourceForge, using the
anonymously accessible pserver:

cvs -d:pserver:anonymous@cvs.sourceforge.net:/cvsroot/logreport login

When prompted for a password for anonymous, simply press the Enter key.

cvs -z3 -d:pserver:anonymous@cvs.sourceforge.net:/cvsroot/logreport co service

See also the instructions on the SourceForge website (http://sourceforge.net/cvs/?group_id=5049).
Alternatively, you can peek at the Lire CVS (http://cvs.sourceforge.net/cgi-bin/viewcvs.cgi/logreport/)
using your webbrowser.

When you’d like to change e.g./usr/local/bin/lr_log2report , you’ll have to hack on
cvs/sourceforge/logreport/service/all/script/lr_log2report.in . This file will get
converted tolr_log2report by running./configure . Of course, when adding scripts or extending
scripts, be sure to update the scripts’ manpage too.

If you’d like the LogReport team to distribute your contribution, be sure to offer it to the team under a
suitable software license. Refer to the Licensing section in theLire FAQ
(http://logreport.org/lire/faq.php)for details.

Once you’ve tested your script, you can send it too the LogReport development list on
development@logreport.org. The LogReport team will be happy to ship your contribution with the next
Lire release.

81

Chapter 14. Developers’ Toolbox

Required Tools To Build From CVS
In order to be able to build the program from the CVS tree and make a tarball distribution the following
tools are needed:

• DocBook XML 4.1.2 (http://www.oasis-open.org/docbook/)

• DocBook DSSSL stylesheets (http://docbook.sourceforge.net/projects/dsssl/)

• autotools

• Jade (http://www.jclark.com/jade/) or OpenJade

• lynx (http://lynx.isc.org/)

• GNU make

• Perl’s XML::Parser module

• dia

• epsffit

• epstopdf

• xsltproc

• xmllint

For Debian woody the packages are: docbook-utils
(http://packages.debian.org/testing/text/docbook-utils.html), docbook-xml-stylesheets, autoconf
(http://packages.debian.org/testing/devel/autoconf.html), automake1.4
(http://packages.debian.org/testing/devel/automake.html), autotools-dev
(http://packages.debian.org/testing/devel/autotools-dev.html), jade
(http://packages.debian.org/testing/text/jade.html), lynx
(http://packages.debian.org/testing/web/lynx.html), make
(http://packages.debian.org/testing/devel/make.html) and libxml-parser-perl.

You need automake version 1.4. Building using automake 1.7 will very likely not work.

Accessing Lire’s CVS
Make sure you’ve got an account onSourceForge(http://www.sourceforge.net). Get yourself added to
the logreport project. (Joost van Baal joostvb@logreport.org can do this for you.) Make sure your ssh
public key is on the sourceforge server.

A full backup of the complete LogReport CVS as hosted on SourceForge is made weekly and written to
hibou:/data/backup/cvs/ .

82

Chapter 14. Developers’ Toolbox

CVS primer
If you have a Unix like system, make sure you have this

CVSROOT=:ext:cvs.sourceforge.net:/cvsroot/logreport
CVS_RSH=ssh

in your shell environment.

Of course, you could do something like

$ eval ‘ssh-agent‘
$ ssh-add

to get a nice ssh-agent running.

Now do something like

$ cd ~/cvs-sourceforge/logreport
$ cvs co service

There are also repositories called ’docs’ and ’package’. In the former the webpages are located and in the
latter the package files for Debian GNU/Linux and other distributions are kept.

Files can then be edited and commited:

$ vi somefile
$ cvs commit somefile

and get flamed ;)

Subscribe yourself to the commit list (commit-request@logreport.org), to get all commit messages,
along with unified diffs.

SourceForge

Mailing Lists

83

Chapter 15. Coding Standards
Indentation should be four spaces. No tabs please.

See also Message-Id: <1028238571.1085.185.camel@Arendt.Contre.COM> on the development
mailing list for some rationale on coding standards.

Shell Coding Standards
Shell scripts should run -e. Shell script should be portable. Refer to
http://doc.mdcc.cx/doc/autobook/html/autobook_208.html
(http://doc.mdcc.cx/doc/autobook/html/autobook_208.html).

Perl Coding Standards
Perl scripts should use strict, and run -w. Documentation should come in .pod format, documentation
about script internals should be in perl comments.

No & in function call unless necessary.

Split long lines using hard return; try to respect the 72th column margin (this is kind of a soft limit).

Refer to the Lire::Program manpage for more details.

84

Chapter 16. Making Lire “Test-infected”
Soon after the release of Lire 1.2.1, unit tests were introduced in the source tree. Unit tests help
development in several ways; the most important one being that you can make changes to code and run
the unit tests to make sure that nothing was broken by that changes.

You can find helpful resources on Unit testing on the PerlUnit home page
(http://perlunit.sourceforge.net/) as well as on the JUnit home page (http://perlunit.sourceforge.net/) from
which it was inspired.

Unit Tests in Lire

PerlUnit
Unit tests are written using the PerlUnit framework. You need to install version 0.24 or later of the
Test::Unit to run the unit tests.

Writing Tests
General information on using the PerlUnit framework can be found in the Test::Unit man page.
Information on writing individual test cases can be found in the Test::Unit::TestCase man page.

Tests for individual modules should be defined in tests::module Test package. You can omit the Lire::
prefix and you can inline intermediary package names. For example, the unit tests of the
Lire::ExtendedDlfSchema module are in the tests::ExtendedDlfSchemaTest package and the tests of the
Lire::Timegroup module are in the tests::TimegroupTest package.

The Lire::Tests namespace is reserved for extensions to the PerlUnit framework that will be used to
provide “fixtures” and “assertions” that are of general use for common Lire extensions.

Note: This section will be expanded as common patterns for writing unit test for DLF converters,
analyzers and other common Lire extension are developped.

Running Tests
To run tests, you use theTestRunner.pl script included with the PerlUnit distribution. You’ll need to add
the directory containing the Lire libraries to perl library path. For example, if you haveTestRunner.pl in
your ~/bin directory, you can run a test case from the top level source directory like this:

$ perl -Iall/lib ~/bin/TestRunner.pl tests::ExtendedDlfSchemaTest

85

Chapter 16. Making Lire “Test-infected”

tests::ExtendedDlfSchemaTest can be replaced by your TestCase module.

Some “Best Practices” on Unit Testing
This section lists some tips on how to make effective use of Unit tests in common development situations
on Lire.

Changing interface/implementation.Before changing a module interface or implementation, make
sure that this module has test cases and that it passes its tests before changing the implementation. This
way you can know that your changes didn’t break anything.

Debugging.A good opportunity for writing tests is when bugs are reported. Before trying to chase the
bug using the debugger or addingprint statements, write a test case that will fail as long as the bug isn’t
fixed. This achieves two purpose: first, you’ll know when the bug is fixed as soon as the test pass;
secondly, we now have a test case that will warn us if we regress and the bug reappears.

86

Chapter 17. Commit Policy
Make sure your changes run on your own platform before committing. Try not to break things for other
platforms though. Currently, Lire supported platforms are GNU/Linux (Debian GNU/Linux, Red Hat
Linux, Mandrake Linux), FreeBSD, OpenBSD and Solaris.

Documentation should be updated ASAP, in case it’s obsolete or incomplete by new commits.

CVS Branches
When doing major architectural changes to Lire, branches in CVS are created to make it possible to
continue to fix bugs and to add small enhancements to the stable version while development continues on
the unstable version. This applies mainly to the service repository. The doc and package repositories
generally don’t need branching.

BTW: A nice CVS tutorial is available in the Debian cvsbook package.

Hands-on example
A branching gets announced. Be sure to have all your pending changes commited before the branching
occurs. After a branch has been made, one can do this:

$ cd ~/cvs-sourceforge/logreport
$ mv service service-HEAD
$ cvs co -r lire-20010924 service
$ mv service service-lire-20010924

or (with the same result)

$ mv service service-HEAD
$ cvs co -r lire-20010924 -d service-lire-20010924 service

Now, when working on stuff which should be shipped in the coming release, one should work in
service-lire-20010924. When working on stuff which is rather fancy and experimental, and which needs
a lot of work to get stabilized, one should work in service-HEAD.

Naming, what it looks like
Here is what branches schematically look like:

release-20010629_1 ---> lire-unstable-20010703 ---> HEAD
\

\
lire-20010630 ---> lire-stable-20010701

87

Chapter 17. Commit Policy

In this diagram a branch namedlire-20010630 was created from therelease-20010629_1 tag.
lire-unstable-20010703 is another tag on thetrunk (thetrunk is the main branch).HEADisn’t a real
tag, it always points to latest version on the trunk.

Creating a Branch
To create a branch, one runs the commandcvs rtag -b -r release-tag branch-name module .
Note that this command doesn’t need a checkout version of the repository. For example, to create the
release-20010629_1-bugfixes branch in the service repository, e.g. to backport bugfixes to version
20010629_1, one would usecvs rtag -b -r release-20010629_1

release-20010629_1-bugfixes service . When ready for release, this could get tagged as
release-20010629_2 .

Therelease-tag should exist before creating the branch. In case you want to branch from HEAD, use
-r HEAD . E.g.cvs rtag -b -r HEAD release_1_1-branch service . Once Lire 1.1 gets
released, tag it asrelease_1_1 .

Accessing a Branch
To start working on a particular branch, you docvs update -r branch-name . For example, to work
on therelease_1_1-branch branch, you do in your checked out version,cvs update -r

release_1_1-branch . This will update your copy to the versionrelease_1_1-branch and will
commit all future changes on that branch.

Alternatively, you can also specify a branch when checking out a module usingcvs co -r

branch-name module . For example, you could checkout the stable version of Lire by usingcvs co -r

release_1_1-branch service .

To see if you are working on a particular branch, you can use thecvs status file command. For
example, runningcvs status NEWS could show:

===
File: NEWS Status: Up-to-date

Working revision: 1.74
Repository revision: 1.74 /cvsroot/logreport/service/NEWS,v
Sticky Tag: lire-stable
Sticky Date: (none)
Sticky Options: (none)

The branch is indicated by theSticky Tag: keyword. If its value is(none) you are working on the
HEADbranch.

To work on theHEAD, you remove the sticky tag by using the commandcvs update -A .

88

Chapter 17. Commit Policy

Merging Branches on the Trunk
You can bring bug fixes and small enhancements that were made on a branch into the unstable version on
the trunk by doing a merge. You do a merge by using the commandcvs update -j branch-to-merge

in your working directory of the trunk. Conflicts are resolved in the usual CVS way. For example, to
merge the changes of the stable branch in the development branch, you would usecvs update -j

lire-stable .

You should tag the branch after each successful merge so that future changes can be easily merged. For
example, after merging, you do in a checked out copy of thelire-stable branch:cvs tag

lire-stable-merged-20010715 . In this way, one week later we can merge the week’s changes of the
stable branch into the unstable branch by doingcvs update -j lire-stable-merged-20010715

-j lire-stable .

89

Chapter 18. Testing and debugging

Test before releasing
One week before release the software should be tested on all supported platforms. In between releases
the system gets tested on various platforms on an ad hoc basis. When testing, use the to-be-released
tarball. Runmake distcheck to generate such a tarball.

Especially when changes to the Lire core have been made, the "test" superservice can be handy, for easy
setting up of tests of your code. See also the section on Unit Testing in this document.

Test-installations and test-runs
We give some hints on various ways to debug the Lire code. One can make a test-install by extracting a
tarball and running e.g.

$./configure --prefix=$HOME/local && make && make install
$ PATH=$HOME/local/bin:$PATH; export PATH
$ MANPATH=$HOME/local/share/man; export MANPATH

One can do a test-run by executing:

$ echo ’some bug-triggering log line’ | lr_log2report -o xml <converter> > /tmp/report.xml
$ lr_xml2report -o txt /tmp/report.xml > /tmp/report.txt
$ $HOME/local/libexec/lire/convertors/combined2dlf < /tmp/combined.log > /tmp/dlf

Using the Perl debugger on Lire code
Please use the perl debugger: investing some time to learn is pays back really quick. Here’s a very tiny
howto.

Start the debugger as e.g.

perl -d ‘which lr_log2report‘ -o xml combined < tmp/log > /dev/null

After starting the debugger, run "v" and "c lineno" to make sure all modules are loaded. Once that’s
done, you can fast-forward to a relevant routine using e.g. "c
Lire::DlfAnalysers::ReferrerCategoriser::categorise". Now you can inspect variables and evaluate
expressions by running e.g.

DB<12> x $parsed_url->{’query’}

90

Chapter 18. Testing and debugging

Also, be sure to try the commands "s" and "r". Just these 4 command very likely are enough to get your
job done. (The "y" command might be useful too, though). See perldebug(1) and perldebtut(1) for more
information.

91

Chapter 19. Making a Release
Before making an official Lire release, it should have been tested on all supported platforms. A release
shouldn’t be made unless Lire builds, installs and generates an ASCII report from all supported log files
on all supported platforms. If this is not the case, the release should be delayed untill this is fixed.

Making a new release of Lire involves many steps:

1. Writing the final version number in NEWS.

2. Tagging the CVS tree.

3. Building the "Standard" Lire tarball.

4. Building the Debian GNU/Linux package.

5. Building the RPM package.

6. Making sure the FreeBSD package gets updated.

7. Uploading the tarballs and making packages available.

8. Advertising the release.

Setting version in NEWS file, checking ChangeLog
Inbetween releases, the NEWS file generally reads "version in cvs". This should of course be changed to
e.g. "version 20011205".

We maintain a ChangeLog file. Make sure the ChangeLog in the toplevel directory is not too big. If
needed, split off a chunk and move it to doc/. The ChangeLog is autogenerated from the CVS commits,
using thecvs2cltool. One could e.g. runcvs2cl --prune --stdout -l "-d \>yesterday" -U

../CVSROOT/users .

Tagging the CVS
Run e.g.cvs tag release-20011017 .

Building The Tarball

1. Start from a fresh copy by running the commandmake maintainer-clean-recursive in the
directory where you checked out Lire’s source code.

a. Make sure that there are no tarballs in theextras subdirectory.

2. Set the version and prepare the source tree by running the command./bootstrap . (You can
overwrite the pre-cooked version by doing e.g.echo ‘date +%Y%m%d‘-R-f-jvb-1 >

92

Chapter 19. Making a Release

VERSION . Make sure your version hasn’t got too many characters. Non-GNU tar chokes if
pathnames in the archive are too long.)

3. Generate Makefiles

a. Run ./configure

4. Build Lire and create the tarball by running the commandmake distcheck .

This will build a tarballlire- version .tar.gz and then make sure that the content of this tarball
can be built and installed. If that command fails, Lire isn’t ready to be released. Fix the errors before
making the release.

5. Sign Lire’s tarball with your public key. To do this with GnuPG, rungpg --detach-sign

--armor lire- version .tar.gz .

A file lire- version .tar.gz.asc will be created. Publish this file together with the tarball. Now,
people downloading the tarball can verify its integrity by downloading the .asc as well as your
public key, and runninggpg --verify lire- version .tar.gz.asc .

Building The Debian Package
This is a raw unformatted dump of what we did to build and upload the Lire .deb.

$ cd ~/cvs-sourceforge/logreport/package/debian
$ vi changelog

:r !date --rfc

$ cd /usr/local/src/debian/lire/debian/20010219

Run something like ’DIB_V=20020214 DIB_P=lire DIB_TARDIR=../archive/ ./debian-install-build’.
This does:

$ cd /usr/local/src/debian/lire/debian/20010219
$ cp \

~/cvs-sourceforge/logreport/service/lire-20010219.tar.gz .

$ tar zxf lire-20010219.tar.gz
$ cd lire/20010418
$ mv lire-20010418 lire-20010418.orig
$ tar zxf lire-20010418.tar.gz
$ cd lire-20010418
$ mkdir debian
$ cp \

~/cvs-sourceforge/logreport/package/debian/[^C] * debian/

Export the shell environment variable EMAIL, it should hold your email address, as it is to appear in the
maintainers field of the package. (One could use ’dh_make --copyright gpl -s’ on first time debianizing.)
Build the .deb by running:

93

Chapter 19. Making a Release

$ debuild 2>&1 | tee /tmp/build

Check the .deb:

$ debc | less

You might also want to test wether the Debianized sources build fine on other machines: copy diff.gz,
orig.tar.gz and .dsc. Then do

$ dpkg-source -x lire_ * .dsc
$ cd lire-version
$ dpkg-buildpackage -rfakeroot

After havingreally tested it (dpkg -i, purge, etc.), optionally install it on any local apt-able websites you
might have (Joost has one on http://mdcc.cx/debian/) and upload it to hibou’s apt-able archive:

$ scp lire_20010418-1_all.deb \
hibou.logreport.org:/var/www/logreport.org/pub/debian/dists/local/contrib/binary-all/admin/

$ scp lire_20010418 * .gz \
hibou.logreport.org:/var/www/logreport.org/pub/debian/dists/local/contrib/source/admin/

$ scp lire_20010418 * . * s* \
hibou.logreport.org:/var/www/logreport.org/pub/debian/dists/local/contrib/source/admin/

Move the old debian stuff on hibou to hibou:/pub/archive/debian/ . Update the Packages file by running

$ cd /var/www/logreport.org/pub/debian
$ make

To upload it to the official debian mirrors:

vanbaal@gelfand:/usr...src/debian/lire/20010418% date; \
dupload lire_20010418-1_i386.changes

Thu Apr 19 14:27:38 CEST 2001
Uploading (ftp) to ftp.uk.debian.org:debian/UploadQueue/
[job lire_20010418-1_i386 from lire_20010418-1_i386.changes New dpkg-dev, announcement will NOT be sent

lire_20010418.orig.tar.gz, md5sum ok
lire_20010418-1.diff.gz, md5sum ok
lire_20010418-1_all.deb, md5sum ok
lire_20010418-1.dsc, md5sum ok
lire_20010418-1_i386.changes ok]

Uploading (ftp) to uk (ftp.uk.debian.org)
lire_20010418.orig.tar.gz 163.1 kB , ok (12 s, 13.59 kB/s)
lire_20010418-1.diff.gz 32.6 kB , ok (3 s, 10.88 kB/s)
lire_20010418-1_all.deb 222.4 kB , ok (16 s, 13.90 kB/s)
lire_20010418-1.dsc 0.6 kB , ok (0 s, 0.60 kB/s)
lire_20010418-1_i386.changes 1.2 kB , ok (1 s, 1.22 kB/s)]

94

Chapter 19. Making a Release

check ftp://ftp.uk.debian.org/debian/UploadQueue/

Building The RPM Package

Making sure the FreeBSD port gets updated
Since August 21, 2002, Lire is in the FreeBSD ports collection. Edwin Groothuis has build a FreeBSD
port. Ask him if he’s available for updating his port. Alternatively, Cédric Gross might be able to help. If
not, the LogReport team should take care of it, and submit a Problem Report to the FreeBSD system,
asking for inclusion of the updated port.

Uploading The Release
To release a new distribution, publish the tarball on various places and send an announcement to the
<announcement@logreport.org > mailinglist, stating the most interesting new features. Furthermore,
add a newsitem to the news list of the website. We’ll describe how to upload the tarball to various places.

The LogReport Webserver
Upload the tarball to the pub area on the LogReport server. The area is mirrored automagically by the
download.logreport.org servers; updates are done every 6 hours. Upload like this:

$ scp lire-20001211.tar.gz hibou.logreport.org:/var/www/logreport.org/pub/

On hibou, do:

$ cd /var/www/logreport.org/pub
$ chown .www lire-20010525.tar.gz
$ chmod g+w lire-20010525.tar.gz

$ tar zxf lire-20001211.tar.gz
$ rm current && ln -s lire-20001211 current
$ rm current.tar.gz && ln -s lire-20001211.tar.gz current.tar.gz
$ rm -rf lire-20001205
$ mv lire-20001205.tar.gz archive

Update theREADME.txt file: Run

$ cd /var/www/logreport.org/pub

95

Chapter 19. Making a Release

$ (echo \
’current is the latest official release’; echo; ls -lF c *) > README.txt

Check the symlink to the documentation stuff in the tarball.

Check if the stuff in http://logreport.org/pub/docs is still up to date.

Advertising The Release

SourceForge
In order to release a distribution on SourceForge (SF), you login with your SF account on the SF website.
Once logged in you go to the project webpage (https://sourceforge.net/projects/logreport/) and choose
Admin. Down at the bottom of that page is a a[Edit/Add File Releases]link (click it
(https://sourceforge.net/project/admin/editpackages.php?group_id=5049)).

You are able to edit packages, like the Lire package in the LogReport project. To add a new release,
choose[Add Release]. As a release name uses the date, like 20010407, assign it to the Lire package and
then use theCreate This Releasebutton to makes it effective.

The next page shows 4 steps of which only one (step 2) is not straightforward. In that step you assign
files to a release (.tar.gz, .deb, .rpm). These files should be uploaded to SF’s Upload anonymous FTP site
at ftp://upload.sourceforge.net/incoming/. Make sure the file is placed in the/incoming directory. Click
Refresh Viewin Step 2 to add the files you uploaded to the FTP site. Check the files belonging to the
release and ClickAdd Files. In step 3, set Processor to any. Set file type to .deb and source.gz. Click
update/refresh. Step 4: send notice. Done.

Freshmeat.net
On Freshmeat.net, releases are not released, but get announced only. These announcements attract a lot
of attention. The webpage for the Lire package can be found at http://freshmeat.net/projects/lire/.

To announce a new release go to Lire - development branch (http://freshmeat.net/branches/14593/)
webpage. ChooseAdd Releasefrom the Project pull down menu in the light blue area. The rest is very
straightforward.

96

Chapter 20. Website Maintenance
We give hints on how to upgrade the website: installing stuff from current CVS on http://logreport.org
(http://logreport.org/).

Commits to the CVS tree of the website are automatically propagated to hibou. For more information on
the markup language of the website, see the WJML documentation (http://logreport.org/doc/wjml/).

Documentation on the LogReport Website
Be sure the links to stuff under/pub/current are still alive. E.g. the filesTODO, dev-manual.html

anduser-manual.html are linked to.

Publishing the DTD’s
The DTD’s are published as HTML on the website by using
hibou:/usr/local/src/dtdparse/dtdparse-2.0b2-LogReportPatched.tar.gz , which is a
patched version of Norman Walsh’s dtdparse utility. Before the utility is run, make sure that the
DocBook DTD is not included in the parsing process, because the DocBook DTD should not be
published. This is done by changing the line:

<!ENTITY % load.docbookx "INCLUDE" >

into:

<!ENTITY % load.docbookx "IGNORE" >

The webpages are then generated with:

perl ~/dtdparse-2.0b2-patched/dtdparse.pl --title "XML Lire Report Markup Language" --output lire.xml lire.dtd
perl ~/dtdparse-2.0b2-patched/dtdformat.pl --html lire.xml

The resultinglire directory can be tar-ed, gziped and unpacked again on hibou in the directory
/var/www/logreport.org/pub/docs/dtd/ .

The other two DTD’s are HTML-ized similarly, but remember to change the title when running
dtdparse.pl.

97

Chapter 21. Writing Documentation
Documentation which comes with the Lire tarball is maintained in four formats: plain text, Perl POD,
DocBook XML and UML diagrams. We’ll talk about all four of these here.

Plain Text
Small files likeREADME, NEWS, AUTHORS, doc/BUGS, anddoc/TODO are traditionally maintained in
plain text format. We adhere to this common practice.

Perl’s Plain Old Documentation: maintaining manpages
We use Perl’s pod (plain old documentation) for manpages. Every file installed with Lire in/usr/bin/

must have a manpage. Every file installed in/usr/share/perl5/Lire/ and/usr/lib/lire/

should have a manpage. It would be nice if the files in/etc/lire/ were documented in manpages too.
And perhaps for some files in/usr/share/lire/xml/ , /usr/share/lire/reports/ ,
/usr/share/lire/filters/ and/usr/share/lire/schemas/ manpages could be useful.

Since the files in/usr/bin/ are commands, ran by Lire users, the manpages describing these should
focus on the user perspective. Describing the inner workings and implementations of the commands is
less important than describing why someone would want to run the specific command. If there’s need to
make some remarks on the internals of these scripts, a section called DEVELOPERS could be added to
the manpage. The perl modules installed in/usr/share/perl5/Lire/ and the commands in
/usr/lib/lire/ are not intended as interfaces for the user. Only people wanting to change or study
the operation of Lire itself will interact with these files; therefore, the manpages should explain the inner
workings and implementations of these files. The configuration files in/etc/lire/ might be changed
by users. These should be properly documented: in manpages or in theLire User’s Manual.

Docbook XML: Reference Books and Extensive User
Manuals

The main documentation of the Lire project is done in DocBook XML 4.1.2. E.g. this document is
maintained in DocBook XML, as is theLire User’s Manual. TheLire User’s Manualhas more
information about DocBook.

After editing theLire Developer’s Manualor theLire User’s Manual, you should runmake check-xml

to make sure the document is still a valid DocBook document. You should fix any errors before
committing your changes.

If everything went right, documentation is built in txt, tex, html and pdf format by runningmake dist ,
or justmake in doc/ . We give some hints which might be helpful in case you have to build the
documentation manually.

To generate PDF:

98

Chapter 21. Writing Documentation

$ jade -t tex -d /path/to/DSSSL/docbook/print/docbook.dsl roadmap.xml
$ pdfjadetex roadmap.tex

The last step is actually done two or three times to resolve page numbers.

To generate HTML:

$ jade -t sgml -d html.dsl roadmap.xml

And now you can use thehtml.dsl in thedoc/source directory. (If necessary, adjust it to reflect the
location of your DSSSL stylesheets). Use lynx to generate TXT output from HTML with:

$ lynx -nolist -dump roadmap.html > roadmap.txt

99

V. Implementation Details

Chapter 22. Adding a New Superservice in
Lire’s Distribution

Integrating a new superservice in the Lire’s several things:

1. Making new directories in CVS:

• /service/<superservice>/

• /service/<superservice>/script/

• /service/<superservice>/reports/

2. Adding several files:

• /service/<superservice>/Makefile.am

• /service/<superservice>/reports/Makefile.am

• /service/<superservice>/script/Makefile.am

• /service/<superservice>/<superservice>.cfg

• /service/< superservice>/<superservice>.xml This file specifies the DLF format of
the superservice. Ideally, it should offer a place for each and every snippet of information which
will ever be found in a logfile from a program which offers functionality defined by the
superservice. This file should have documentation embedded; this will show up in this manual.

3. Writing service plugins (2dlf scripts):

• /service/<superservice>/script/<service>2dlf.in

4. Adapting several files:

• /service/configure.in (add the Makefiles and 2dlf script to AC_OUTPUT, to get them
converted from <service>2dlf.in to <service>2dlf.)

• /service/Makefile.am (add the superservice directory to SUBDIRS, so that make gets run
there too, when called from the root source directory.)

• /service/all/etc/address.cf (to make the new service known as a member of a
superservice.)

5. Update Documentation:

• User Manual: Chapter "Supported Applications".

• Add manpages for scripts

6. Update the configuration by writing a custom config spec or extended the current one as well as by
added default values to the defaults configuration files.

101

Chapter 23. Issues with Report Merging
In some cases, a merged report doesn’t display the right information. We outline some worst case
scenarios, and justify our implementation.

Suppose log file 1 (“requests” with “sizes”) looks like:

request size

A 12

B 11

C 10

while log file 2 looks like:

request size

D 3

E 2

F 1

We report on the top 2 biggest requests, so the report from log 1 looks like:

request size

A 12

B 11

while the report from log 2 would look like:

request size

D 3

E 2

Now we change the superservice.cfg file to list the top-4 biggest items. A naive merge would lead to:

request size

A 12

B 11

D 3

E 2

Of course, this should’ve been:

request size

102

Chapter 23. Issues with Report Merging

request size

A 12

B 11

C 10

D 3

This effect does not occur when keeping the top-limit to the same value. However, when we’re not
reporting on distinct values in the log, but are summing, more horrible things might happen. Consider
this: We want to report on the total size by client. Logs look like:

client size

a 12

b 11

c 10

and

client size

d 4

e 4

c 3

Reports from these logs would look like:

client size

a 12

b 11

client size

d 4

e 4

After naively merging, one would get:

client size

a 12

b 11

In fact, the complete report should look like:

client size

103

Chapter 23. Issues with Report Merging

client size

c 13

a 12

Luckily, the Lire merging algorithm is notthisnaive: in fact, the XML reports store a little more records
than actually needed. This heuristic trick leads to sane merged reports in most cases. However, since this
is merely a heuristic trick, it is no waterproof guarantee.

See the description of the guess_extra_entries routine in the Lire::Group manpage for more
implementation details.

104

Chapter 24. Overview of Lire scripts
An overview of the main scripts involved.lr_spoold is the engine behind a Lire Online Responder.
lr_log2report is the main Lire command line interface. Thelr_log2xml command is a helper scripts.
The lr_xml2report command can be used by the user to merge XML reports. Thelr_sql2report is not
yet fully integrated in the Lire system. Thelr_rawmail2mail command manages a Lire client setup. The
lr_cron is fired of bycron, in a cron-driven setup.

lr_spoold
|
_ lr_check_service
_ lr_spool

|
_ lr_processmail

_ lr_getbody
|
_ lr_log2mail

lr_log2report
lr_log2xml
lr_xml2report
lr_rawmail2mail
_ lr_getbody
_ lr_deanonymize
_ lr_xml2mail

lr_cron

lr_spoold monitors a Maildir spool for each responder address. lr_processmail processes an email
message with a compressed log file attached. Refer to the manpages for the gory details.

105

Chapter 25. Source Tree Layout
Service specific scripts should reside in $CVSROOT/service/<service>/script/. Configuration data
should be in <service>/etc/. Service specific documentation in <service>/doc/.

Furthermore, in each subdirectory there should be a Makefile.am.

106

Glossary
Definitions of particular terms used in Lire.

DLF

See:Distilled Log Format

Distilled Log Format

Example 1. DNS DLF Excerpts

1010912574 10.0.0.2 121.68.134.195.in-addr.arpa PTR recurs
1010912574 10.0.0.2 121.68.134.195.in-addr.arpa PTR recurs
1010912592 10.0.0.2 120.67.123.212.in-addr.arpa PTR recurs
1010912600 10.0.0.2 207.7.178.212.in-addr.arpa PTR recurs
1010912600 10.0.0.2 tr16.kennisnet.nl A recurs
1010912616 10.0.0.2 120.67.123.212.in-addr.arpa PTR recurs
1010912630 10.0.0.2 207.7.178.212.rbl.maps.vix.com ANY recurs
1010912630 10.0.0.2 NLnet.nl ANY recurs

This is the generic log format used by Lire to normalise the log files from different products.

Currenlty, this normalised log is a simple ASCII format where each event is represented by one line.
The information about the event is represented by fields separated by spaces. All non-printable
ASCII characters are replaced by?. Spaces in a field’s value are replaced by_ (an underscore).
Each line must have the same number of fields. A DLF file doesn’t contain any header information.
Example 1shows an excerpt of a DNS DLF file.

See Also:Superservice, DLF Schema.

DLF Schema

Information about the order of the fields in a DLF file, their types and what they represent is
specified in the DLF’s schema. Schemas are defined in XML files using the Lire DLF Schema
Markup Language (LDSML). Lire’s offers an API (only in Perl for now) to programmatically
access the information of a schema.

Log files of many different products can share a common DLF schema that makes Lire’sreports
easily comparable.

Report

A report is what is generated by Lire. It consists of severalsubreports. Those subreports can be
grouped into sections. The report is computed from the DLF file (and not the native log file) based
on a configuration file which describes the subreports that make up the final report along with their
parameters. (Consult theLire User’s ManualsectionCustomizing Lirefor more information.)

107

Glossary

Service

Put simply, a service is a specific application that produces log files. It is usually the case that one
application will be equivalent to one service. For example, the mysql service is used to process
MySQL’s log files.

But more precisely, a service is a specific log format. For example, the common service can be used
for all web servers that support the Common Log Format. Similarly, the welf service can be used to
process firewall log files written using WebTrends Enhanced Log Format.

In order to generate areporton it, the native log will be converted to the appropriatesuperservice’s
DLF schema

Subreport

A subreport is a particular view on the DLF log’s data. Subreports are defined in XML files using
the Lire Report Specification Markup Language (LRSML). (Although it defines subreports, it is
called a Report Specification because a report is made up out of several subreports.) Example of a
subreport would beRequests by Hours of the Day.

Subreports are defined for a particularDLF schema.

Superservice

A superservice is a collection of services that share the sameDLF schemaandreport. It is used to
group together applications (services) that offer the same kind of functionality.

Lire currently supports eight superservices: database, dns, email, firewall, ftp, print, proxy, and
www.

108

