PostgreSQL 7.4.2 Documentation

The PostgreSQL Global Development Group

PostgreSQL 7.4.2 Documentation
by The PostgreSQL Global Development Group
Copyright © 1996-2003 by The PostgreSQL Global Development Group

Legal Notice

PostgreSQL is Copyright © 1996-2002 by the PostgreSQL Global Development Group and is distributed under the terms of the license of the
University of California below.

Postgres95 is Copyright © 1994-5 by the Regents of the University of California.

Permission to use, copy, modify, and distribute this software and its documentation for any purpose, without fee, and without a written agreement
is hereby granted, provided that the above copyright notice and this paragraph and the following two paragraphs appear in all copies.

IN NO EVENT SHALL THE UNIVERSITY OF CALIFORNIA BE LIABLE TO ANY PARTY FOR DIRECT, INDIRECT, SPECIAL, INCI-
DENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING LOST PROFITS, ARISING OUT OF THE USE OF THIS SOFTWARE AND ITS
DOCUMENTATION, EVEN IF THE UNIVERSITY OF CALIFORNIA HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

THE UNIVERSITY OF CALIFORNIA SPECIFICALLY DISCLAIMS ANY WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IM-
PLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE SOFTWARE PROVIDED HERE-
UNDER IS ON AN “AS-IS” BASIS, AND THE UNIVERSITY OF CALIFORNIA HAS NO OBLIGATIONS TO PROVIDE MAINTENANCE,
SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS.

Table of Contents

L (=] = Lo =SOSR i
1. What iS POSIOrES QL 2....ceeieieeceetesie s s et r e ae st e e e e seesestesbesae e eneenenaesaessenen i
2. A Brief History Of POSIGreSQL........ccoiiieirieerieesie et ii

2.1. The Berkeley POSTGRES PrOJECL......cccocirierreeseesee st ii
2.2, POSIGIESO5.....e ettt et r e r e e iii
2.3, POSIGIESQL . ettt r e e iii
B T @0 1= o1 (o] o 1SS iii
o N 1 g Tl [(o] g T= LT o RS iv
5. BUg RepOrting GUIAEIINES.........c.oriiiiiiriiriere e iv
5.1, 1deNtifYiNG BUGS......c.eiueiirieiirietenesieisteene ettt b bbbt %
5.2, WRALETO FEPOLL. ...ttt %
5.3. WHETE 10 rePOIT DUGS....c.ecuiieiiieiiieiiisterie ettt Vi
TR 1o] = 1 SRS 1
T 11 o Lo RS =T (=T o PSPPSR 1
R 1 51 2= 11 = o o USSR PSSR 1
1.2. Architectural FUNDAmMENTALS........ccoiiiiiiee e 1
1.3. Creating @ Database..........ccoveicice e e e s 2
1.4. ACCESSING @ DAADASE.......ccveiveeiieiece ettt st 3
A 1 0 TSI O L I = T To T - Vo T S 6
A% I [1 7o o [o 1o o FOU OSSO TR PP 6
A ©10] g Te1=T o] £ F PRSPPSO 6
2.3. Creating @ NEW Table.........ccoiieee et 6
2.4, Populating a Table With ROWS..........cciieierieeces sttt s 7
2.5, QUEINYING @ TADIE......ee et b et st neeneens 8
2.6.30INS BEIWEEN TADIESot 9
A A Yo To | (=To F= L (= U] od 1T 4 L= PSR 11
B2 T U o o - = PSR 13
2.9, DEIEBLIONS ...ttt ettt e bbb e bt neas 13
3. AQVANCEA FEAIUMNBS....c.eeueeeeeteiteseirieeee ettt te s s ae e te e e e eseetesteseeseeneeneesenneseeseeseneeneens 15
8 700 I T 1 oo [T 1o o PSR 15
G T Y= PSR 15
3.3 FOrEIGN KEYS...c.eieieeee ettt st e b et 15
O I - g 7= od 1T L= PSSR 16
G TR 0] 0= 41 = g = SRR 17
0 7L T O o 1 (o [113 o T SRS PSRSO 19

[I. THE SQL LANGUAGE.c.ectieetiietiiteest ettt ettt ettt b e bt s b e bbb bbbt n b e 20

4. SQL SYNTAX.....ciuiiriiresiereeieee sttt e et et r e e e r e r e 22

O I (o= 1 0T U =P 22
4.1.1. Identifiers and KeY WOIAS.........ooirriririiinere et 22
o R 0] 11 = | < T OO TSP 23
4.1.2.1. StriNg CONSIANLS......ccuiiieeeeeierierie et 23

4.1.2.2. Bit-String CONSLANIS......c.cooeriiiiiieerieieeen e 24

4.1.2.3. NUMEIC CONSLANES......coieieeiirierie et 24

4.1.2.4. Constants of Other TYPES.....ccocv v 25

R T @ 011 = | (0] =SSR 26

4.1.4. Special CRArACLELS.....c.oieuereeriireiree e 26

o I ST 011 010 1= o USSP 27
4.1.6. LeXiCal PreCeUENCE. ..ot 27

4.2, ValUB EXPIESSIONS......civeuirietireetirieteseetee sttt re bt b st s bbb sb e e s e s s 28
4.2.1. ColUMN REFEIENCES.ot 29
4.2.2. POSItioNal PAramMeterS........cccoeiiiieieireee st 29
A TS T o1] o] £SO 30
4.2.4. Field SEIECHON......cciiieeeeeeee e e e e 30
4.2.5. Operator INVOCALIONS......ccccairerieriiieerere sttt sb e 31
4.2.6. FUNCLION CallS.......ooiiiiieeeeiee et e 31
4.2.7. Aggregate EXPreSSIQNS.ot 31
4.2.8. TYPE CASHES. ..ottt sttt b e b e re e e sneenre e 32
4.2.9. Scalar SUDQUETIES.........ccveiece ettt s 33
4.2.10. Array CONSIIUCTIOIS......ciiiiiiiiiiee sttt st nre e sre e 33
4.2.11. Expression Evaluation RULES.........cccccveiiri e 34

5. DAta DEFINITION.....cc.iiiiiieeeeerer e ettt st b et e bbb b e e 36
5.1, TADIE BASICS....c.eiieeeeeieete ettt b e e 36
5.2, SYSEM COIUMNS.....cuiiiiiee ettt st e s re st e st e e seeresteseesrennenens 37
5.3, DEFAUIL VAIUES.......oeuieiieeteeee ettt st sttt 38
L 0] £ 1 1= 11 | £~ TSRS STRRPTRPN 39
5.4.1. CheCK CONSIIAINLS......cccieirieirieierieie sttt et st st st see e 39
5.4.2. NOt-NUII CONSEIAINTScceiirieiirieiirieie et 40
5.4.3. UNIQUE CONSIIAINES......ccveeeeeeereserieseeeeese e see e et seeseee e sse s ssensenenns 41
5.4 4. PrIMAY KEYS. ..o ciriitiieieerie sttt sttt st st et 42
5.4.5. FOr@IgN KBYS. ..ottt sttt st st 43

LT 0] =1 - g (= PSR 45
5.6. MOAIfyiNg TADIES......oiiiirctire et 48
5.6.1. AddING @ COIUMN......coiiiiiiiieeeee et e 48
5.6.2. ReMOVING @ COIUMI.......ccoiiiiiiiriete ettt 48
5.6.3. AddiNg @ CONSIIAINT........ccoruiiriiiriee e 49
5.6.4. RemoViNg @ CONSIIAINL.......ccoiuiiiiiriee ettt 49
5.6.5. Changing the Defaull..........cccoiinee e 49
5.6.6. Renaming @ COIUMMN.........ccoiiiiiiiieereeereee et 49
5.6.7. Renaming @ Table.........ccoviiiiiieireee e 50

LT = €1V (=T TSRS PRRRR 50
5.8 SCNEMAS ... et bbb b e e 51
5.8.1. Creating @ SChemM@.........ccooiiiiiee e s 51
5.8.2. The PUDIIC SCheMaL......c.coiiie s 52
5.8.3. The Schema Search Path...........cocooiiiiii e 52
5.8.4. Schemas and PrivilEges..........ccoiiiriiiineneeee s 54
5.8.5. The System Catalog Schema.........cccccveviiiececiiece e 54
5.8.6. USAQE PAlBINS.....cciiiiieciiicie sttt st re e s s re b e 54
LR C T o 5 = o111 /S 55

5.9. Other Database ODJECLS.....c.cci et s re e e 55
5.10. Dependency TraCKimQ.......cccovecereieeiesieieseeseeseeseesae e sseeste e esee e ae e sseeneesreensennes 55
SR = 1Y F= LT o101 = L o] o RS 57
(ST I 1S T o o = = PR 57
(oI WL T -1 (] o N - 7= PR 58

6.3, DEIEING DALA.......coeeuereeiereetereeteree ettt e 59

A 81T 1= 3RS 60
A0 T O =T o T OSSPSR 60
7.2. TabIE EXPrESSIONS. ..ottt ettt b e s b e e b e eb e sb e 60

7.2. 1. TREFROMCIAUSE......ccuiiiiieeieieete ettt st sr et 61
7.2.1.1. 30INEA TADIES......eeiieiie e e 61

7.2.1.2. Table and Column AlIASES.cceveierereerere e e 64

7.2.1.3. SUDQUETIES. ...ttt e 65

7.2.1.4. Table FUNCHIONS......cii i e 66

7.2.2. TRAWHERECIAUSE.......oviieeeeeieetesie ettt s s 67
7.2.3. ThHeGROUP BYNAHAVINGCIAUSES......cecoeeieieiesiecteete sttt 68

7.3 SEIECT LISES.....eieieeeeeee ettt ettt s b et e et e b e eb e b e e eneas 70
7.3.1. SeIECE-LISt IIEIMS.....ciuiieiieieeee et s 70
7.3.2. COlUMN LADELS.....coiiiiieeee e e 71

S TR T T 1S I 1N PSR RR 71

A o] g q] o] g1 a1 IO LU T=T 1= 71
TS Yo 1] o L0 72
7.6.LIMIT AGNAOFFSET...c.cccteiiteitesieietesestestesteaesseeesestestesaessessssessessessessensesessssessessessensenens 73

S T B L= = B Y/ 01T TSP SP PP 75

8.1, NUMEIIC TYPES...cueeueeueeueetistesiesieeeseesestessestasseseeseesestestesaessassssessessessessensensesessessessessensenens 76
S 0t O O 1 1 =T 0T Y] 1= 77
8.1.2. Arbitrary PreciSion NUMDELS.......ccveieirere e 78
8.1.3. Floating-POINt TYPES....cccieeeeeereriereeeetese e e e 78
8.1.4. SErIAl TYPES . ctireetireeteeeteerte ettt sttt st e b et r e 79

8.2, MONETAIY TYPES. . ittt sttt st sb e r e s et e r b e e e eneas 80

8.3, CharACler TYPES.....cuirieiireetereetees ettt ettt s bbbt et neas 80

8.4, BINArY DAtA TYPES....covcuireetiresteisieisteie sttt sttt sttt st et st sttt nnas 82

8.5. DALE/TIME TYPES....cuireeiereeterietereeie sttt sttt e bbbt ettt sbe e 84
8.5.1. DA/ TIME INPUL ..ottt e 85

85,10, DALES....ccti ittt bbbt nas 85
o IR0 T2 I 31 86
8.5.1.3. TIME STAMPS. ..ottt 87
8.5. 1.4, INTEIVAIS. ...ttt ettt 87
8.5.1.5. Special ValUES.........coiiiiieiicree s 88
8.5.2. DALe/TIME OULPUL.....ceiieieiee ettt n e e 88
8.5.3. TIME ZONEBS ...ttt s b b bt a e s bt n s 89
8.5 4. INTEINAIS.....ceieeeee bbb et b e 20

T I = To o] [ST= T g I 1Y o = USSP 90

8.7. GEOMELIIC TYPES. .. ettt sttt bbb et et ae bt bt b e et et e st ebesbesbesee e eneas 91
B.7. 0. POINES ...ttt sttt sttt et et e e re e e 92
8.7.2. LINE SEUMENLS.......ecuieii ettt rae st sre e e s tesre e testeeneennas 92
8. 7.3, BOXES... ittt e r e a e e e e n e r e e e 92
B.7. 4. PANS.....oiiiiie e bbb nas 93
8.7.5. POIYQONS ...ttt sttt st e sr e et e s ne e e p e e e nas 93
B.7.6. ClICIES. ..ttt ettt e 93

8.8. NetWOrk AAAreSS TYPES....ciuiiceeeeeeie st stee ettt esae e e sre st et e seerestesresrennenens 94
BLBLLlUINBL i b e re b nres 94
S TR T2 o o | RO PRPRPR 94

TS T 1= A £ o (o |G 95

SRS T 4= To- Vo [o [U 95

8.9, Bt SIHNG TYPES ettt ittt bbbt bbb e bbb e 96
810, AITAYS ..ottt ettt et R e n et r e r e r e e n e 96
8.10.1. Declaration Of Array TYPES......ccocereereerieeresiee et 96
8.10.2. Array Value INPUL.......ccoeiiieiieeieriete ettt r e 97
8.10.3. ACCESSING AITAYS....cuiieeeeeeueeterteseeseeeesessesaeseesseses e et esesbeseeseeeenessesaessessansanes 99
8.10.4. MOIfYING AITAYS.....ciuiiteieeeeeiesie ettt b e be e e e ae e eas 100
8.10.5. Searching iN AITAYS. ..ot b e sre s 103
8.10.6. Array Input and OULPUL SYNEAX.......ccereriereririenieree e 103
8.11. Object Identifier TYPES. ..o i ettt bbb e 104
8.12. PSEUAO-TYPES ...ttt ettt sttt bbb e se e et s bt s be b e b e e e e ebeebesbeseen 105
9. FUNCLIONS N OPEIALOLS.....ccviiuieeeciecieste et st e rte st e e te e e e s reeee e ssa e tesseesessesnnesressnensesrenns 107
Lo I o o [Tor= I @ 0= = oSS 107
9.2. CoMPAriSON OPEIALAIS......cceeiueeeeeieeieeieeseseeste e eseessesreessesesaesteeseessesseeseeseessaessessenns 107
9.3. Mathematical FUNCtions and OPEeratorS........cccuccereicereseeieseeeese e see e se e 109
9.4. String FUNCLIONS and OPEratQrS........ccccevievieiiiseeiesesreesesesae e esae e sae e sae e sreens 112
9.5. Binary String Functions and OPEratorS.........ccccccveeveiesiecieieeieeeses e seseeseeessessesnens 120
LS B o= 1 (=T g IR\, = o] 11 o S 122
9.6, L.LIKE .eeteriuiereeereeee sttt n e 122
9.6.2.SIMILAR TO and SQL99 Regular EXPresSsions.......ccccevvvvenereeressesessenes 123
9.6.3. POSIX Regular EXPreSSIONS......ccccvvvrereeierereseseseesesesseseseesesssesessessessesses 124
9.6.3.1. Regular Expression DetailS........ccoceevceveieveeneeenese e 125

9.6.3.2. Bracket EXPreSSIONS........ccovcerriirniereneesieesie sttt seseenens 127

9.6.3.3. Regular EXpression ESCAIES........coouvreereerieereereee st 128

9.6.3.4. Regular EXpression MetasyntaX...........cccveeveereerenenesenesienenieens 131

9.6.3.5. Regular Expression Matching RuUles...........ccccveviniinninninneene 132

9.6.3.6. Limits and CompatibDility............ccoerrerreineireeree e 133

9.6.3.7. Basic Regular EXPreSSiONS........ccouerreerieenieenieieseere s 134

9.7. Data Type FOormatting FUNCHONS..........ccoiirieireeneeicesieeseee et 134
9.8. Date/Time Functions and OPEratQrS..........cocereerrieneriererieeree st 139
O0.8. 1. EXTRACT AE_PANM ceceieeeeeerieeeesiesieeiesteeueesee e e seeseesaeesbesaeasesaeeeeseesneeneesseans 142
0.8.2.0AE_trUNC oottt ettt e bbb b b e e e ae b b en 145
O9.8.3.AT TIME ZONE......iiiiiotiestireie et esteeseesaessteesseessesssteesseessesssseenseessessssesnsesnseese 146
9.8.4. CUIMENt DA/ TIME ... ettt st st seeeas 146

9.9. Geometric FUNCLIONS aNd OPEIatQrS........coereeierererie et 148
9.10. Network Address Type FUNCLIONS.........ccoiirirerene e 151
9.11. Sequence-Manipulation FUNCLIONS.........cooreirirere et 153
9.12. CoNnditioNal EXPrESSIONS.coueeeiiriiriisiesiesie ettt st se e e st se e sbeseeseens 154
0.12. L. CASE ..ttt et b bRt b bt 155
O0.12. 2. COALESCEttiititiie et stesste sttt see e st sbe e sbe e s e e nae e s b e s be e beenbe e saeeereeree e 156

9.1 2. 3INULLIF 1.ttt ettt ettt bttt bbbt eb bt 156
9.13. Miscellan@ous FUNCLIONS.ccueiriireereeeree s 157
9.14. Array FUNCLIONS and OPEIatOrS......cccceieieeiiertieeesteeeesesesae e esae e sas e see e sreens 162
9.15. Aggregate FUNCHONS.coii ettt saesne e eennenns 164
9.16. SUDQUETY EXPreSSIONS.....cueiveieeieiieteiestestese e seeteste s e saesteaeesseesestestesseseeneesessesseseens 165
0.18. LEEXISTS e tterreereneirm e er ettt b et n et neren e 166
D.18.2.IN ettt r e 166

Vi

O.16.3.INOT IN ettt et r e sr e erens 167

0.16. 4. ANYSOME.......cciteiteitieiteeteeee ettt e ste st e et e s te e besaeestesbesasesbesbeansesteennesaesaeetesteans 167

LS TR X TSRO 168
9.16.6. ROW-WiSE COMPAIISON...c..cuiiieiirierireetereetereerene st se et seebe e b e nesrenens 169
9.17. Row and Array COMPAIISODNS.ccueerueuerierereerereereseesesesseessesessesesseseseesesessesessenessenens 169
LS 50 [TSRS 169
O.17.2.NOT INuututitetiiietirieteseetestetesestesessesesaesesaeteseeseseetesessasessesessasessesesaesesensesensensssanens 169
9.17.3. ANYSOMEAITAY). .. cueeverteeererersertesieseesseessessessessesseseesessessessessessassensssessessesses 170

.17 4ALL (BITAY). et teeueeueruerueetestasieseeeesestesieseesesessesaesaesbestesessessesbessesseseansenssnessessesas 170
9.17.5. ROW-WIiS€ COMPANISQN....c.eiuiruirtirierierieieieresiestesieseeseeesseseeseesseeeesaessessessas 170

10. TYPE CONVEISION. ...cuuititiieeeeeieete ettt eie i st besbe e et ebesbesbeseessensese e st eaesbesbeseeneeneenesbesaeseens 172
L0, 1. OVEIVIBW ...ttt ettt st se et be b e e b et e st ebesbesbese et e bt e b e bt se et e e e e et eaenbe b nes 172
O T @ =] -1 0] £ ST SRR 173
10,3, FUNCHONS ...ttt sttt s b et et et b bt s b et e b et ebenb et es 176
10.4. ValUB SEOTAQE.cceeceeieeee e seete st erte st rae s e s e et e e te e e s te s e e testeenaesseennesaesnnensenrenns 179
10.5.UNION CASE aNdARRAYCONSIIUCES......ccuirtiieeeeriestesiesie st 179
L. INAEXES. ..ttt bbb et h e b bt e et e Rt R e e bbb e e R e b e e 182
5000 O T 1 o To (U T i o 1o SRS 182
2 1 o o e 1Y/ 1= 183
11.3. MUIICOIUMN INAEXES.....cneiiiiiieiereet ettt st 183
B L o 1o U= o = T 184
11.5. INAEXES ON EXPrESSIONS....ccveieieeeeeeiestestestesteeeessestesesteseeseesessessessessesesesssesessesseses 185
11.6. OPEratOr ClaSSES. . cueereeisiesiesiereeesesestestesteeeeeesre s e steseeeesessessessessenseeessesessesseses 185
11.7. Partial INAEXES......ccueeeeeieeeesesee et ettt e e e te e e e enessenseses 186
11.8. EXxamining INAeX USAQE......c.ccuriiirrirre ettt 189
12. CONCUITENCY CONIQL...ciiiiiitiiitiriere bbb bbb 191
2 R 1 To 11 o3 1T o TS 191
12.2. TranSaction ISOIAtION.c.cvie e e 191
12.2.1. Read Committed 1Solation LEVEL.........ccccvvvvviinereeecese e 192
12.2.2. Serializable 1S0lation LEVEL............coe e 193
12.3. EXPlICIE LOCKING ...ceitiiiteeiteeriee ettt 193
12.3.1. Table-LeVel LOCKS.......ooieeee ettt 194
12.3.2. ROW-LEVEI LOCKS.......ciiieiieieee ettt s 195
12.3.3. DEAAIOCKS. ...t e e 196
12.4. Data Consistency Checks at the Application Level...........ccccoiiiieinininenne 196
12.5. LOCKING 8N INAEXES......oiuiiieierieieeeiese sttt sttt sb e e 197
13, PerfOrMANCE TIPS e ueiuirteierieieeeeteste et ee et e e see st se s e be st e be e e se e e e e s aeeaesbesbeseeseeneenesbesaeseans 199
13,2, USINGEXPLAIN ...ooieteietetsteie sttt st e e seste et se st sesaesesaesesesteseste e sbenessesessesessnsansnes 199
13.2. Statistics Used by the PIanner............cooiiinieeee e s 202
13.3. Controlling the Planner with EXplicIDIN ClaUSES..........cccceeeriririnieeeeecsee 204
13.4. Populating @ Database...........cceeieiiieiie ettt s ereens 205
13.4.1. Disable AULOCOMMIUL..........coeierieinere et e 206
13.4.2. USECOPY FROM...cciiieiirieiirinieresiesestesesteeste e ste e ssssesestesessesessesessessssssessssenenns 206
13.4.3. REMOVE INUEXES....ccueiuiieiieieeeie ettt sb s bt s sne b e 206
G I 0 N [g Tod (== T o 4 A 4411 SR 206
13.4.5. RUMANALYZEAREIWAITS......co ettt 206

Vi

1. Server AAMINISIIATIONcoiciiiieii et cee et e e e e s e e s eaa e e sbeessabessstesssaseesasseesasesesabeessabesesasnessreesas 207

14, INStallation INSIFUCHIONSccoieieeee ettt sttt e s resnesnens 209
I S T T AV =T] T o TSR 209
14.2. REQUITEMEINES.cuiiieiiitierteese ettt 209
14.3. GEettiNg THE SOUICE ...ttt 211
14.4. 1f YOU Are UPGrading......cccoeeieiereneeieeeeiesieseeseeesese sttt se e st seeseensenesnesneseeseas 211
14.5. INStallation PrOCEAULE.........coiiieeeeeeete ettt e 213
14.6. PoSt-INStallation SETUP........coiiireeeeeeiee et e 218

14.6.1. Shared LiDrari@s...... .ottt 218
14.6.2. Environment Variables..........ccocooiiieniinnene s 219
14.7. SUpported PIAtfOrMmS..... ... e 220

15. Installation 0N WINAOWS........c.coiiiiiieeeecne st s s sae e 225

16. Server RUN-tiMe ENVIFONMENL. ..ot 227
16.1. The PostgreSQL USEr ACCOURNL........ceccueieieeiestieee e eeeseseestesreeee e eeeseeseeneessenns 227
16.2. Creating a Database CIUSLEN........cccvviie e 227
16.3. Starting the Database SEIVEN..........ccocvece i 228

16.3.1. Server Start-up FaIlUreS........ccccocviiveieeceee e 229
16.3.2. Client Connection ProbIEMmIS. ... 230
16.4. RUN-tIME CONfIQUIALION........cce et sre e e 231
16.4.1. Connections and AuthentiCation...........c.cccoevrrennennenseree e 232
16.4.1.1. ConNNEeCtion SEHNGS......cccivereerere e e 232
16.4.1.2. Security and Authentication...........cccvceveereinienie s 233
16.4.2. ResSource CONSUMPLION.......coiiirrerereesiee sttt s 234
16.4.2. 0. MEIMOIY. .ttt e 234
16.4.2.2. Free SPace Map.......ccccvvvreeeeiresisiesesie e s 235
16.4.2.3. Kernel RESOUICE USAQE.......cceurieirieirieie et 235
16.4.3. Write AREA LOG. ... coveuiieeiricie et 235
16.4.3.1. SELNGS ..cveerieiereeie ettt e 236
16.4.3.2. CheCKPOINIS........cereeeireeiereierese e 236
16.4.4. QUENY PIANNINGccoiviiriiiieeie ettt e 237
16.4.4.1. Planner Method ConfiguratiQn.............cccvevernenneneneieneeseeene 237
16.4.4.2. Planner Cost CONSLANES........ccccerererieriereeeecrene e 238
16.4.4.3. Genetic QUEry OPtIMIZEL.......ccveireireenereseeieese e 239
16.4.4.4. Other Planner OPtioNS.......ccooeoererenenereeeeere e 239
16.4.5. Error Reporting and LOGQING.........coereeeererererienieeeeee e sie e seseseesieseens 240
16.4.5.1. SYSIOQ. i ettt bbb s 240
16.4.5.2. WHEN TO LOG ...ttt s s 240
16.4.5.3. What TO LOG......cueereireeierieienesiee sttt s 242
16.4.6. RUNIIME StAtISHCS.....cce i e e 243
16.4.6.1. StatisticS MONItOIING........cccereieese e 243
16.4.6.2. Query and Index Statistics Collectar..........cccccvevevvvieeveveeciennee 243
16.4.7. Client Connection Defaults..........cccoeriinininieee e 244
16.4.7.1. Statement BEhaviar...........cccoreiiiinineeee e 244
16.4.7.2. Locale and FOrmatting.........cccoceevevereneeieese s esee e seese s e 245
16.4.7.3. Other Defaults.........ccoeiireieceeeee e 246
16.4.8. LOCK MaN@QEMENL..........cceieeeeeeesie e et ae et ste st e e sne s snens 247
16.4.9. Version and Platform Compatibility.........ccccoevvvrereieiesrsese s 247
16.4.9.1. Previous PostgreSQL VErSIONS........cccceveeeeereresesenieneesesesreseenes 247

viii

16.4.9.2. Platform and Client Compatibility...........c.cccorrennenneineiennenn 248

16.4.10. Developer OPLIONS........ccvcirrernereree et 248

16.4.11. SNOI OPLIONS...ccuiiiteiirieie ettt 249

16.5. Managing Kernel RESOUICES........ccco it 250
16.5.1. Shared Memory and Semaphores..........cccoevrrernennennee e 250

16.5.2. RESOUICE LIMItS....cciiiieeceeeeese ettt 254

16.5.3. Linux Memory OVEIrCOMMIL.........cccuiererererteriesienieeeese st see e see e esaeseeseens 255

16.6. Shutting DOWN the SEIVE.......coeeeieireeee et 256
16.7. Secure TCP/IP Connections With SSL........ccccveiiii e 256
16.8. Secure TCP/IP Connections with SSH TuNNEIS........cccccovieieviccece e, 257

17. Database USers and PriVIIEgES ..ot 259
17.1. DAtAbASE USEIS. ...ttt bbb e bbb e et sbe b b e 259
17.2. USEI ALIDULES ...t bbb e 259
G TR 1 (01U o ST RRR 260
A e 41V =T o TSP 260
AT U Tor 1o g FS3R= T To I I o o =T S 261

18. Managing Databases........ccoceeiiiiee e 262
18,0, OVEIVIEW.. ettt sttt sttt sttt sttt st et se et e et e et e sttt se e be e es 262
18.2. Creating a Database. ..o veveceeise e e 262
18.3. Template DatabasES.......ccccivveiereeieise sttt sre e s 263
18.4. Database ConfiguratiQn..........ccccueceeerieiiniseneese st sre e s 264
18.5. AlternNative LOCALIONS........ccivieiriee ettt e 265
18.6. DeStroying @ Database.........cccveveeerereiirireeee e e 266

19. Client AUtNENTICALION.ciiiiiecieete ettt ebe et b e sre e beebe e e ereens 267
19.1. Thepg_hba.conf fil@ .cuevveeeeeee e e 267
19.2. Authentication MEthOUS.........coi it re e 272
19.2.1. Trust aUtheNntiCAtiQN.......c.cceeeeciiee et 272

19.2.2. Password authentiCation............ceccviieeieeie e 272

19.2.3. Kerberos authentiCatian..........c.cceeciiiiieeie e 273

19.2.4. Ident-based authentiCatiQn............coceveeeireie e 274

19.2.4.1. Ident Authentication over TCP/P........ccccooriiiiiieeeeeeee 274

19.2.4.2. Ident Authentication over Local Sockets.........ccccovviennceeenenene 274

19.2.4.3. 1AENE MBScuirieiirietereetere ettt 274

19.2.5. PAM AUtheNntiCatiON........ccceeieiicie e 275

19.3. Authentication ProbIEMS. ..o e 275

P24 O I o Tor= 112 11 o] o SRS 277
b0 I I o o= 1T ST U]] o 1 VOO 277
DO T N B @ Y=Y o= RS S 277

20.1.2. BENEFIES . .teiieetireeierietesis ettt sttt sttt et 278

20.1.3. PrODIBMIS....ceeeeee et bt sr s 279

20.2. CharacCter SEt SUPPOLL.....c.ccceeeeie e seee sttt e st e e e st reesae s e saesresneneesreens 279
20.2.1. Supported Character SEtS........ccovevecieeere e e 279

20.2.2. Setting the CharacCter Sel.......ccviriericiere e 280

20.2.3. Automatic Character Set Conversion Between Server and Client....... 281

20.2.4. FUIther REAMING......ccceiieeeerieieeseseeesteeeeste e sae s sae e reee e e e e e naesneens 283

21. Routine Database Maintenance TaSKS........ccoccverierreiineie s 285
21.1. ROULING VACUUMINGceiiiiteiteseeeeeeteseestestesteseeseesessessessessessesessessessessessessensesensessessens 285
21.1.1. RecoVvering diSK SPaACE.......ccceivrieierereereeerestes e eseesee e s e stesseaeesse e srenes 285

21.1.2. Updating planner StatiStiCS........cccureerrierriniseeree st 286

21.1.3. Preventing transaction ID wraparound failures.........c.ccceoevvennennecns 287

21.2. ROULINE REINAEXING. .. c.ectieetieeieirieerieiereete sttt s b e st s eb e b e b 288
21.3. Log File MAINTENANCE. ..ottt 288

22. BaCKUP AN RESIOIE.... ..ottt ettt st 290
22.1. SQL DUMP.cuiiiiiiiieiiiieesietesietesee et stesestesesaesesaetesaeteseetesessesessesessesessesesseseseesesensenessenens 290
22.1.1. Restoring the dUMI. ..o 290

22.1.2. USINEG_dUMPAIL .ot e 291

22.1.3. Large Databases........ccccoerireriie e s 292

22,04, CAVEALSoiuieeeteetiete ettt e et e e bbbt n e ae e e e nrenreen 292

22.2. File system leVel DACKUP..........ccoiiiiiiee et 293
22.3. Migration Between REICASES........ccii i 293

23. Monitoring Database ACHVILY.........ecceiieiere et nreens 295
23.1. Standard UNiX TOOIS.......coiiiiririrere sttt be s e 295
23.2. The StatiStiCS COIECLOL.iiieeerere e 295
23.2.1. Statistics Collection Configuration............cccceveeverienienienisie e se s 296

23.2.2. Viewing Collected StatiStiCS.........cueverireere e e 296

23.3. VIEWING LOCKS. ... cveeeiectictisiestesteeee s sttt e ettt ste st esae e sesaesbesteste e e e esensesnesnens 300

24, MONItOriNG DISK USAQE.......cvciriiiiiiieees ettt st see s enaese s e snesrennn 302
24.1. Determining DiSK USAQE.......cocccveiiiresereseseeeetese e st aeae st e e sae e ssessesnens 302
24.2. DISK FUII FAIIUFE ..ottt st st st 303

25. Write-Ahead LOgging (WAL).....eieieeeeeere e seeseeseetese e st ea e sse st st seenaesaenessesneseeneen 304
25.1. BENETItS Of WAL.....oiiiieieeieete ettt st st st 304
25.2. FULUIE BENETILS. ..ottt sttt nnens 304
25.3. WAL CONFIQUIALION.eeitiiitiieiecrieeriee ettt st st s sbe s sbene 305
AT] (=1 = | S 306

26. REQIESSION TOSIS...c.eitiieeterietererie ettt ettt et b e e b et b et b et bt bbbt ebe s 308
26.1. RUNNING the TESIS.....c.iiiiiriitiieieriee ettt s b e s 308
26.2. TSt EVAIUALION......ceiieieiieie et sttt se e nae e neens 309
26.2.1. Error message differenCeS......coccoiviiriinrinneeree e 309

26.2.2. Locale differENCES.......cooeeeeeeese et 309

26.2.3. Date and time differenCeS.........covvvirereeece s 310

26.2.4. Floating-point differenCes........c.cooveireinniisccee e 310

26.2.5. Row ordering differenCeS........coeireireineeieeeee e 311

26.2.6. The “random” tESL......cce et 311

26.3. Platform-specific comparison fileS........ccooereirniie e 311

[V, CHENEINLEITACES ...ttt ettt st b et b e b e b e e e e e e s e e aesaesbeeas 313
A 11o] o 1o I O3 I o] = Y/ PP UURTTO 315
27.1. Database Connection Control FUNCLONS..........ccooiiiiieieineesee e 315
27.2. Connection Status FUNCHIQNS.........cooiiiiiieeeeeeese et 321
27.3. Command EXeCUtiON FUNCHONS ..ot 324
27.3.1. MaIN FUNCLONS.....cot ittt 324

27.3.2. Retrieving Query Result Information............ccccevvveevenieiinieece e 329

27.3.3. Retrieving Result Information for Other Commands..........cccccceevevenenee. 333

27.3.4. Escaping Strings for Inclusion in SQL Commands..........cccceeevvrcerienrennnn 333

27.3.5. Escaping Binary Strings for Inclusion in SQL Commands..................... 334

27.4. Asynchronous Command ProCESSING......cccereeeriviieiererieesesestes e saeseeseeessesensnens 335

27.5. The Fast-Path INTEITACE........ooi ettt sttt s s e e ae e saaeas 339

27.6. ASynchronous NOEICAtION..........coecereiieiree e 340
27.7. Functions Associated with tIEPYCoOMMANG...........ccooereiririeesere e 341
27.7.1. Functions for SENdiMOPYDALA..........cccererriririeirieeriee et 342
27.7.2. Functions for ReceiVimOPYDALA.........cccceerrreerieerieeseeie st 343
27.7.3. Obsolete FUNCHONS FOIOPY.......ccoiiiieeireeesese e 344
27.8. CONIOI FUNCHIONS. ..ottt sttt st sttt se e s ebesae e 346
27.9. NOLICE PrOCESSING......ccueitiieieeieeieere sttt s e e e e bbb sbe e e e e sesbesaeseens 346
27.10. Environment Variables..........co it 348
27.11. The PaSSWOIA FilB......ccoiiiiiee et 349
27.12. Behavior in Threaded Programs...........cocoeoeerene e 349
27.13. Building [IDpg ProgramisS.........coceeiiiieeseeeeiesese st 350
27.14. EXaMPIE PrOgramsS.......ccceciiieie e se sttt ste e ste s ae st sseete e enaesnesnnensesneens 351
B T I T o [T @] o= o1 £SO 360
< TN N 1] (] Y 2SS 360
28.2. Implementation FEALUIES.........cccv et s 360
28.3. ClIENT INTEITACES. ... coeieiitirie ettt sbe e e 360
28.3.1. Creating a Large ObJECL......ccciv it 360
28.3.2. Importing a Large ODJECL.......cco i 361
28.3.3. Exporting a Large ODJECL.......ccovvivvereeere s 361
28.3.4. Opening an Existing Large ODbjJecCt........ccocvvvvevieverececece e 361
28.3.5. Writing Data to a Large ObJECL......ccccovecevevirerereereeese e 361
28.3.6. Reading Data from a Large ObJECL.......ccocvvvvivvieveereceee e 362
28.3.7. Seeking on @ Large ODJECL.........ccocirrircinreeeee e 362
28.3.8. Obtaining the Seek Position of a Large Object.........c.cccvvvernennennnnene 362
28.3.9. Closing a Large ODbject DESCIPIOL. ...t 362
28.3.10. Removing a Large ODJECL........cccoeirriinrinreree et 362
28.4. Server-Side FUNCLOMS..........coveeeeere ettt ere e e 363
28.5. EXaMPIE PrOGIaM.....c.ciiiuiiitiieieirieeseee ettt sttt st s eb e be e srene 363
29. pgtcl - TCl BiNAING LIDIAIY....c.coiiiieieiriee ettt e 369
DA TR O AT QT SRR 369
29.2. Loading pgtcl into an ApplCAtiON............ccoiiiriiniisereree e 369
29.3. pgtcl Command REFEIENCE.......ccoiirieirietereet e 370
PO_CONNEBCL.... ..ot e e e s s e s 370

[oTo e [E=Tod0] g1 1= o! ST USTURN 372
PG_CONNAETAUILS.......oeeeeieie bbb e 373

T8 =3 ST o 3PP U U PSRRI 374

PO TESUIL ...ttt bbbttt b e b b e et ae b e 375
PO_SEIBCL......ee et bbb e a e e 377
PO_EXECULR......eteeteeteeieete ettt sttt b et e st sb e b e e e e b e e be e e e sae e e shesae e benbeenrennenaes 379

o7 115 (= o 1S 381

[oTo [o] g oo o] 0 T=Tox 1 o] o I (01730 382

o7 [[0 T o (== | 383

o7 R [T o) 1= o VS 384

o7 [[T o o 1 =S 385

o1 TR (o T (== o PO TSRS 386

o1 T Lo T 1 (=SS 387

o1 TR Lo T == SRS 388

Xi

P10 TEI1e b e 389

P10 UNTINK ..ot e 390
PO TMPOIT. .ttt 391
PO_I0_ BXPO. ..ttt e e e 392

29.4. EXAMPIE PrOGIAML.....cciiitiriitiieieiriee sttt ettt sb e sr e s be s eb e e b e sne b 393
30. ECPG - Embedded SQL IN.C......oooiiieeierietrieereet ettt eb e 394
L0 5 I I oI o] ot o) USSR 394
30.2. Connecting to the Database SEIVEL...........ccco i 394
30.3. ClOSING 8 CONNECHQAN.ccui ettt st e e sbe e e 395
30.4. RUNNING SQL COMMEANGS.....cciiiiirieriiriiniere et e e bbb e e sbesee e 396
30.5. ChoOoSING @ CONNECTIONc.ciieiieiirieie ettt sttt bbb seen 397
30.6. USING HOSE VariabI@s.......cc.oouiiiiiieie et 397
30.6. 1. OVEIVIEW.....cueviiiieeieteeresesie bbbttt sttt bbbt st sb bt ne e 397
30.6.2. DECIAre SECHONS........coveerreeerreitreee et 398
30.6.3.SELECT INTOQNAFETCH INTO...cecieetieiereeseerensiesaesiesseesesneesaeseesseessessenns 398
30.6.4. INQICALOLS.......coereerereeriiereerree ettt r e seer e n e nrene s 399

GO T)V = o o] SRS 400
30.8. USING SQL DESCHPLON ATE@S......ceeiiueirieiesierieieetesiesiestessessesesessestestessessessesessessessens 401
GO RS =t Tl =T o |1 o PP 403
30.9.1. Setting CallDacKs........ccccereeeeeeiie e s 403

GO 2 Yo | - T 404
30.9.3.SQOLSTATEVS SQLCODE.......osiciieeeereeeeeseeeeteee et st en s s s ense s neseenas 405
30.10. INCIUAING FIlES .. ettt sttt se e e neeresnennens 408
30.11. Processing Embedded SQL Programs..........ccocerreeneiennieneeneeesesesesenesienens 408
30.12. LIDrary FUNCLIONS.c.ccireiieeerieerieieriet sttt st s sbe st 409
L0 R 11 (= 4 = £ S 410
G N 2T @ [g1 (=T - V= T 412
31.1. Setting UP the IDBEC DIIVEL......ccoiiieririeiereete sttt be s 412
31.1.1. Getting the DIIVEL.....cccciiiieeerieiieee ettt 412
31.1.2. Setting up the Class Path...........cccoeireinninneeeree e 412
31.1.3. Preparing the Database Server for IDBC..........ccccvereinninnienneneneens 412
31.2. INItialiZiNG the DIVEL......c.oiiirieieeree ettt 413
31.2.1. IMPOItiNG JDBC........coiiiirieerieieriee ettt b e eb e 413
31.2.2. Loading the DIVEN.......c.cciieiieeirieie ettt 413
31.2.3. Connecting to the Database...........ccocoeoreniieiere e 414
31.2.4. CloSiNg the CONNECLION........cociiiieieeieeeire e 414
31.3. Issuing a Query and Processing the ReSUIL...........cocooieininiiienire e 415
31.3.1. Getting results based 0N @ CULSOL..........ccocvirirerereeeere s 415
31.3.2. Using the&Statement or PreparedStatement Interface............cccceeeeeeee. 416
31.3.3. Using th@®esultSet INterface.........coeoereiininiecee e 416
31.4. Performing UPAateS.......oceeii ettt sttt a e st sneens 417
31.5. Calling Stored FUNCLOMS.........cccie ettt sa e et sreens 417
31.5.1. Using th&allableStatement INterface......ccovvveveneccece e 417
31.5.2. ObtainingresultSet from a stored function..........cccceceevvveecevcesceseseenns 418
31.6. Creating and Modifying Database ODJectS.........ccoccevvviicesecceece e 418
31.7. Storing BiNary Data........cccccveiueieieise sttt st ene e 419
31.8. PostgreSQL Extensions to the JIDBC APRL........coovviieieieeececese e 422
31.8.1. AccesSiNg the EXIENSIONS........covvvverieeeire et es 422

Xii

31.8.1.1. Classrg.postgresgl.PGCONNECHON ooceeeeeeese e veeeeese e 422

31.8.1.1.1. MEthOUS......coiiireieeeee s 422

31.8.1.2. Classrg.postgresgl.Fastpath = ..coocoiiiereeeeeee e 423

0 S 0 2 I /11 1 T o £ 424

31.8.1.3. Classrg.postgresgl.fastpath.FastpathArg . 425
31.8.1.3.1. CONSIIUCTOLSeiueeiiiteeeeste ettt s s saeas 426

31.8.2. GEOMELIC DAta TYPES .. .eoeeeeuerierie ettt se e seeeas 426
31.8.3. LArge ODJECLS....cciiiieiieeee et 440
31.8.3.1. Classrg.postgresgl.largeobject.LargeObject .o 440
31.8.3.1.1. VariabIes......cccoiiiieieereeesese e e 440

31.8.3.1.2. MEthOUS......coiiiiieiieieeeee e e 441

31.8.3.2. Classrg.postgresql.largeobject.LargeObjectManager 442
31.8.3.2.1. Variables.........ccocviiiiireeee s 442

31.8.3.2.2. MEthOUS......coeiiieiieieereecee e e e 443

31.9. Using the Driver in a Multithreaded or a Servlet Environment............cccccccveeee. 443
31.10. Connection Pools and Data SOUICES...........cciererernreieneeneesrere s 444
L.10.1. OVEIVIEWeueeeeiiie sttt ettt e et ea s bt se e st eb b b e s e s e e enesaesrenas 444
31.10.2. Application Server€onnectionPoolDataSource cccocevevvereeeeseerennns 444
31.10.3. ApplicatioNSDALASOUICE ...cccvvveriereireeeeereseestese e see e sre e sreseeeeessesnesrenees 446
31.10.4. Data Sources and INDI..........ccveeernnneenneeeees e 447
30 R g1 =T g LT T [V S 448
32. The INformation SCREMIA........ccccvirireriire e 450
32.1. THE SCREMA......ciiieiccerer e 450
32.2. DALA TYPES. .. ittt st sttt sttt b bt b e e et r e r e n e e e r e nnea 450
32.3.information_schema_catalog_Name .coiiieeere e 451
YA - o) o] o7 o] [T (] [T RSP 451
32.5.CheCK_CONSITAINIS ooieeiiciecie ettt sttt er et s neeaesee s e e neenreens 451
32.6.columMN_dOMAIN_USAQE cveeeereieeeirrieeieesiesieeeesteeeesseseeseeseesseessesseesesseeneeseesneensessenns 452
A oo (0143 T o (V71 (=Y o =Y USRS 452
32.8.COUMN_UL_USAGE .eeiieiieiieiie et sttt et sae st b et b e tesaeeeeseesneentenaens 453
G F A I oo] (01131 o USRS 454
32.10.constraint_CoIUMN_USAJE eeriierieerierieeie et et see st sse e sae e seesneeneeseens 458
32.11.constraint_table_USAGE iiceriieriierie sttt e 458
32.12.data_type_priVIIEgES et a e e e nre 459
1 1 S o (o 0 P T T o1 0 1 (= SR 460
1 A o (o o o P 1T T Vo U - Uo [RS 460
I S e [0 ' = 1 L RSP PR 461
32.16.€IEMENE_LYPES eeeveieiieiiee st st rtee st e sttt st b et b b e e e a e r e raennneenres 464
G Y W A=Y = o] [=Yo [o] [SRR 466
32.18.KEY_COIUMN_USAQE .iicviereierieiiiiesieesiessitesstessseesiasstessessbassstesae et s sseesnneebeessaesanesnss 467
B R I o T - 1o =1 (=Y ¢ PRSP 467
32.20.referential_CONSITAINIS oot e e s e e st e e re e e eaneas 470
32.21.r0le_COIUMN_QrantS tovcevceiiiiesieesee et st st s s n et e e s n e et e sbaesaneenrs 471
32.22.10le_roUtiNE_QrantS iiciiiiieieenee et nn s 471
32.23.10le_table_grantS i e e aee e s e e e re e e eaneas 472
G Y o) (Y V1= Vo [T o [= 01 (=SS 473
32.25.10UtiNe_PriVIIEgES eeicee e 473
B2.26.TOULINES +eeeeeeeieesresie ettt r e sn e s s e e e s r e e s e e r e eneen e ene e e e nre s e renreens 474

Xiii

YA R =Te] 1110 1T- = SR 478

YA Rt | I (=T UL 1T TSR PR R RSRPR 479
32.29.sqlimplementation_iNfo oo e 479
A {0 Yo | I - U T U= Vo 1= TSRS 480
32.31.S01_PACKAGES eeerieruerierieriterieete et sttt ae et be st ae e ne e he e beeae e bt ae e sae e tenreeas 481
32.32.S0ISIZING weoeeeeeiterieeie ettt et h et a e e e e b et e b ehe e bt Rt e e sae s e e benreaas 481
32.33.501_SIZING_ProfileS e 482
32.34.1able_CONSIIAINS .eiiiiiiecciec e e et eee e st e e re e e et e e e s ae e e e aee e sneeeenbeeeenreeeeaneas 482
32.35.table_PriVIIEGES oo e 483
B2.36.1ADIES i bt ae b e saeenreenres 484
e A T To =Y £ RSO RRR 484
32.38.USAQE_PrVIIEUES woiiiicie ittt 486
32.39.VIEW_COIUMN_USAQGE .iieveeerieriiiiesieesiessitnestesssesssesssesseesbessssesseesbesssessnsesnsesssessnsesnses 486
32.40.VIEW_tablE_USAJE .iiiieieeriiiieesiee s sie et sttt naaeenrs 487
B2.ALVIBWS eeieieciietee sttt sttt bbb st b g b b gt b e b e e b b e aaenarennres 488
V. SEIVET PrOGIaMIMING ...c.couiieiiiitiieieieeit ettt sttt sttt sttt sb e e e e e e et e st eb et e sbese e e esesbesnesnens 489
G b (=Y o [TV TS T 491
33.1. HOW EXteNSIDIlity WOIKS........ccueeeeeeice ettt 491
33.2. The PostgreSQL TYPE SYSIEML.....cviiiirererieeeteses e ste et se e snens 491
I Tt I = - T T Y/ 1L R 491
33.2.2. COMPOSILE TYPES...uiivireereeeeeerirtesieseeseeeesesessestesseseesessessessessesssssesessessessensen 491

GG 07 R I T 4= 11 1= 492
33.2.4. PSEUAO-TYPES . ..eiertierieerieiesiete sttt sttt aebe e b st st st stenens 492
33.2.5. POIYMOIPhIC TYPES ..ottt 492
33.3. User-Defined FUNCHIONS........coooeeeere et 493
33.4. Query Language (SQL) FUNCHONS.coirririerrierieereeseee st 493
33.4.1. SQL FUNCtioNS 0N BASE TYPES ...eivetireriireriererieeriee sttt 493
33.4.2. SQL Functions on COMPOSItE TYPEScovrvererreerieerieerieiereere s 495
33.4.3. SQL Functions as Table SOUrCES.........ccooririrereneieeese e 497
33.4.4. SQL Functions RetUrNing SetS........ccocirrirneineeiee e 498
33.4.5. Polymorphic SQL FUNCHONS.......cccoeireirieieneesee st 499
33.5. Procedural Language FUNCLIONS.........coeiieereeninieesieesiee st 500
33.6. INterNAl FUNCLIONS......coiitiie ettt st sbe e e 500
33.7. C-Language FUNCLIONS.coiirereie sttt bbb seens 501
33.7.1. DYNAMIC LOAING.......ceeieerieeriesie et s 501
33.7.2. Base Types in C-Language FUNCLIONS...........ccooeverrieneneneneeeeeeee e 502
33.7.3. Calling Conventions Version 0 for C-Language Functions.................... 504
33.7.4. Calling Conventions Version 1 for C-Language Functions.................... 507

K T A STV 41 1] T T O o o = TS 509
33.7.6. Compiling and Linking Dynamically-Loaded Functions...........c.ccccue...... 510
33.7.7. Composite-Type Arguments in C-Language Functions..........cc.cccceeeven. 513
33.7.8. Returning Rows (Composite Types) from C-Language Functians.......514
33.7.9. Returning Sets from C-Language FUNCtians...........ccccevvvieevevvnceeninninnns 516
33.7.10. Polymorphic Arguments and Return TYQRES.......cccccevvvieveveeceresesiesvenns 520

GRS T =¥ o Vo i[o] a I @ Y= (o Vo [T Vo P 522
33.9. User-Defined AQQregates........cocciiiieririerieriereeeseseseesseaesesessesres e ssesseneesessesssssens 522
33.10. USer-DefiNed TYPES......cviviereecise s st e e see ettt sa e ssesnesnens 524

Xiv

33.11. User-Defined OPeratorS........cccueereerieerieiereeie st ie b seereseesesessenesnenens 527

33.12. Operator Optimization INFOrMAatioN............ccoveerrinneireee s 528
33.12. 1.COMMUTATOR....cute et esteeeee et esteeseesae e e esaeesseesteesseessessaseeaseessesssseanseenseeses 528
B3LL2.2INEGATOR ... eieiieecte et stee s te sttt e see e e te e saeesae e s e e saeesteesateenseensessaeeeseenseeses 529
33123 RESTRICT c.ttiueieirtetesesesesie b se e bt ettt se e b bt e e e bbb e se st st ebebe e neea 530
1 TN 2 N []| ISPV 531
BB L2. 5 HASHES.....c ettt bbbttt bbbt b et 531
33.12.6 MERGE$SORT1 SORT2 LTCMR GTCMIP.....ccuiiiiiirieeeenierie e 532

33.13. Interfacing EXtENSIONS TO INAEXES.........ooeriiiirirere e 533
33.13.1. Index Methods and Operator CIaSSES.......cccuoerererierererieniere e 533
33.13.2. Index Method Strategies.........ccoeverereriererisene e 534
33.13.3. Index Method SUppPOrt ROULINES.........cccooerirenieniereeenene e 535
I T I I B AN g = 1 0 o = RS 536
33.13.5. System Dependencies on Operator Classes........ccoccevvveeveeveveeseninnns 539
33.13.6. Special Features of Operator ClasSes........cccoovvereveevineece e sceesesiens 539

34. The RUIE SYSIEIML.....eciicie ettt s e e s ae e ee e s e et e sre e e e steeneeseesnnensenrenns 541

G I I o TSI O LU 1Y o I =T TSP 541

34.2. Views and the RUIE SYStEM........cc.cciiiiiiiecece s 543
34.2.1. HOWSELECTRUIES WOTK.....ocviiiriereeieieninesieie s 543
34.2.2. View Rules in NOISELECTSIAtEMENTS.......ccvvrrrrerreerirenreee e 548
34.2.3. The Power of Views in PoOStgreSQL.......cccocvvvrevereeieseneveseeeese e 549
34.2.4. UPAAtiNG @ VIEW.......ccuieieieeeeeesie s seesee ettt se e sre e sae e enaenesne e seeneen 550

34.3. Rules ONNSERT, UPDATE ANADELETE.....ccccoueeereriesieseeseeeeesessessessesseseeseesessesssseens 550
34.3.1. How Update RUIES WOIK.........ccoeuiriiriirrire et 550

34.3.1.1. AFirst Rule Step bY StEP......coviireireereerer s 551
34.3.2. Cooperation With VIEBWS..........cccveireirnirnireneesiee s 555

34.4. RUIES aNd PrIVIIEGES......c.coiiiiiieiiere ettt et 560

34.5. Rules and Command SEALUS.........cccourereireereeseeeesieesee et 561

34.6. RUIES VEISUS THOGEIS ..cveeereerieirieesieie sttt st st sttt sr e ebeseebe s sbe e b e srenea 562

R ST I T [1= £ TSSOSO USTPPRTPRRRPRN 565

35.1. Overview of Trigger BENAVIQL..........cccoiiiirieireeeeseereere et 565

35.2. Visibility of Data Changes.........cccoeiriiirieiriee ettt 566

35.3. Writing Trigger FUNCHONS IN Ci...oovouiiiiiieireciereeteeeeesieesee et 566

35.4. A Complete EXAMPIE.......ccoiiiiirieerieeree ettt 568

36. ProCedural LANQUAGES.coereeeereeeeetesie ettt sttt s et see et ebeseeseeseeeenesnesneseenas 573

36.1. Installing Procedural LAnQUAQJES.........ccoererrieriririe e 573

37. PL/pgSQL - SQL Procedural LAnQUAGE.........cccccreruerirririrese e seees e e seeseas 575

7. L. OVEBIVIBWL. ...ttt ettt sttt e et b e b e b s e e e e e et e st e bt ebesbeseene e e enenbesbeseen 575
37.1.1. Advantages of Using PL/PGSQL........cccooririninineeenere e 576
37.1.2. Supported Argument and Result Data TYPeS......ccccvvererenereierieseseeens 576

37.2. Tips for Developing in PL/PGSQL.......coriiieeese e s 577
37.2.1. Handling of Quotation Marks...........cccceeeeriieeresineseseee e e 577

37.3. Structure Of PL/PGSQL....cceoie ettt sttt sae e nreens 578

37.4. DECIATALIONS.......civevireerereereseer ettt r s r e e r e r e nrene 579
37.4.1. Aliases for FUNCLION Parameters..........ccooevveeneeneeneeneeeseereseseenneens 580
A B O] o)/ T o B Y/ 01T 581
B7.4.3. ROW TYPBS ...ttt ettt sttt sttt sae s bbb st s beenbe e sbeesresnee e 582
A S = LYo o] o [1Y/ o1 582

XV

BT A5 RENAME. ..ottt ettt r e e 583

7.5, EXPIrESSIONS.cuiiieiireitireeteriete sttt sttt sttt b et b et b bt s e b et e bt be e nbene 583
37.6. BASIC STAEMENLS......cooiiitiiitieeierte ettt b e s b e s srene 584
37.6. 1. ASSIGNIMENL.....eiitiiitiirteeriee ettt b e st s eb e snene s 585
37.6.2.SELECT INTO it iiiiceeiieesierseesttesteesieesseeeteesseessesssseesseessesssseesesssessssssnsesssesse 585
37.6.3. Executing an Expression or Query With No Result...........cc.cccoovennenne 586
37.6.4. Executing Dynamic COmMMAaNAS........ccccoreririnerereeenese e 587
37.6.5. Obtaining the ReSUlt SEatLIS........ccocoiiiriiee s 588
37.7. CONLIOl STIUCTUIES......couiitiie ettt et e et bbb se e b sbesae e 589
37.7.1. Returning From a FUNCLON..........ccoiiiiiee e 589

7. 7. LARETURNM...uttttirirteteie sttt sttt sttt 589
37.7.L.2RETURN NEXT . iiiiiiieeiiieitessieesiessaessiesstessesssssssesssesssssnsesssesssnssnns 589

37.7.2. CONAItIONAIS.......coiiiriiireisicee e 590
7.7 2. 1IF-THEN .ottt 590
B7.7.2.2IF-THEN-ELSE ...iiiitiiteiiieieie sttt sttt see sttt ssas s 590
37.7.2.3IF-THEN-ELSE IF .iiiiiiiiiieeitee st ste et see st 591
37.7.2.41F-THEN-ELSIF-ELSE ...iiitiieestiieie ettt 591

G A ARG TS 141 0] (=38 o o] o 13T 592

7. 7.3 L LOO0P.....co ettt 592
7.7 B 2EXIT ettt 592
377 3.3 WHILE ..ottt 593
37.7.3.4FOR(INtEQEr VAIIANT)......ccccerierereeeeere e seeseeeese e ste e e e e e snens 593

37.7.4. Looping Through QUery RESUILS........ccccvivireriererece e 594
= TR 1 0 = 0 PSS 595
37.8.1. Declaring Cursor VariabIes...........ocveirrinneneerieesee et 595
37.8.2. OPENING CUISOIS.....oiiiieuerieierieierieteseeteseete sttt sae e sseseseebeseebeseebesesbenessenens 596
37.8.2.10PEN FOR SELECTcccoiitrtrerireeireneresieteseeseseseesssenesessssssssesessssesees 596
37.8.2.20PEN FOR EXECUTE ...cceotitririreeerienererieeeieesesesessssesesesssssseneseseseesees 596

37.8.2.3. Opening a BoUNd CUISQOL........coeireerieinieierieesieeseeesieeseee e 597

37.8.3. USING CUISOIS.....oiiitiirieierieierieie sttt sttt be st st se b snene s 597
S 0 Tt I 1 S 597

B7.8.3.2. CLOSE ...ttt ettt 597

37.8.3.3. REtUINING CUISOIS....c.couiiitieirieiirieiesieieseeiesee e 598

37.9. Errors @nd MESSAGES.ccueveirieirieiriettsiete sttt sb e bbb e b e ne e snenea 599
37.10. TrigQEr PrOCEAUIES.......c.ciuiieieeeeeeeeierie sttt e e st besaese e e sesbeseeseeas 600
37.11. Porting from Oracle PL/SQL........coiiieeeeeese e 602
37.11.1. POrting EXamMPIES....cccoieeieriese et s 602
37.11.2. Other Things t0 WatCh FOL........ccocoiiiieeee s 607
37112 1 EXECUTE ettt sttt 607

37.11.2.2. Optimizing PL/pgSQL FUuNCtiQNS........cccooeirienirenieneeeeeneneene 607

G700 I TR T AN o] 1= o [GRS 608

38. PL/Tcl - Tcl Procedural LanQUAGE...........ccovieeieieriesieceeie e eee e siee et e e sresaesnesseensesreens 611
8.1, OVEIVIEW. ...t re ettt et r e r et n e e s e e er e neer e neer e e en e e nrene s 611
38.2. PL/Tcl FuNctions and ArgUMENLS.......c.vvieiireeieereeceeseeseseesieeseeee e esasseesee e ssens 611
38.3. Data Values iN PLITCL....ociieiieereereereee e 612
38.4. Global Data in PLITCL....ccoiieeiirsiee s 613
38.5. Database ACCEeSS fromM PLITCL......ooiiirrierers s 613
38.6. Trigger Procedures in PLITCL.....cooiiiieeeeee st 615

XVi

38.7. Modules and thenknown COMMANC..........ccooeeiririeiniireeee e 617
38.8. TCI ProcedUure NAIMES........ciiieeeieere e ettt te e see e sessesseseens 617
39. PL/Perl - Perl Procedural LANQUAGE.........cccvueireereiereeteneeierestee st sesie s 618
39.1. PL/Perl FUNCctions and AFQUMEILS..........cereereerenienesieeseee s seere st sesresesrene s 618
39.2. Data Values iN PLIPEIL.......coo e 619
39.3. Database AcCesS from PL/PEIL.......co e 619
39.4. Trusted and Untrusted PL/PELL..........cooo et 620
39.5. MISSING FRALUIES ...cueiuiitiie ettt ettt st e e sbe e e 620
40. PL/Python - Python Procedural LangUage.........ccoereeeeererenienerie et 622
40.1. PL/PYIhON FUNCHONS.....c.ciuiiiit ittt s sbe e e 622
40.2. TrQQer FUNCLIONS.....cuiieiieieeiie ettt b e s e e sbe e e 623
40.3. DAtADASE ACCESS......civceerieiirieterietere e 623
41. Server Programming INtEIfaCE..........ccovvieeie e 625
471.1. INtErface FUNCHONS.cci ettt 625
SPI_CONNECL......ei et rb e s be e b e saaesreeree e 625
SPIFINMISH.c.ce e 627

] o = (T oSSR SURRPRRN 628

] o I 0] (=1 0 1= 1 = USRS 631

] o = (ST o] o T PP R VST SPRRPRRN: 633

] o I o 01 £=To] g o] 011 o FO PSP PPPRRPRRIN 635

Y o I o0 £ o 1o P 636

] o I o0 £ o (= (o o 637

] e T UL = To T S 4101V RS 638
SPI_CUISOF_ClOSE...... ittt st sttt 639
SPI_SAVEPIAN....ceciieeeee e b 640
41.2. Interface SUPPOIt FUNCLIONS........coiiriiiirieirieeriee e 641
SPI_NAME .. bbb 641
SPI_NUMDEL. ...t 642
SPI_gEIVAIUE ...ttt bbb 643
SPI_gethinNual........c.cooiiiie e 644
SPGB PO .t s 645
SPI_QELLYPEI. ...ceceiieceerecte et e 646
SPI_gEtrEINAIME ..ottt b bbb 647
41.3. Memory ManagemeNDt..........ccuviiniereierinisese s e 648
] o I o =11 [o3 USSR 648
SPL_IEPAIIOC. ...ttt bbb e e e 650

] o T o (== TSRS 651

SP COPYUPIE et e e 652
SPI_COPYLUPIEUESE. ...ttt 653
SPI_COPYLUPIEINTOSIOL......couiieiiiieeeeeee e 654

] T 100 1137 (0 o =SS 655

] o T == (U]] =SS 657

] o T (== (U] 2=] = S 658

] T (1=] = o PSS 659
41.4. Visibility of Data ChanQes.........ccccviiecieii et 660
T =T 2] o] L= SR 660

XVii

(IS @ I @ o ¢ .= Vg o =SS 666
Y 2@] USSR 667
ALTER AGGREGATE ..ottt sttt st st ebe e nnens 669
ALTER CONVERSION... .ottt st se s s s besee e eneeneseeseens 670
ALTER DATABASE ...ttt ettt et esensenesaenan 671
ALTER DOMAIN ..ottt s st sa s ss e e s e sasensesessesesannas 673
ALTER FUNCTIONooiiiiiiieisieisiee ettt sae st sas s s s esssensssassssasessesessnss 676
ALTER GROUPL.........ootiirtiisieiriee ettt sttt sae e s s s s e e se e ssasensasessesesannas 677
ALTER LANGUAGE ...ttt sttt nsasessesesaenas 679
ALTER OPERATOR CLASSottt sttt ssesessenesaenas 680
ALTER SCHEMAL......cco ottt sttt s et n et esestenesaens 681
ALTER SEQUENCE.......cooieireiieesetees ettt et saenas 682
ALTER TABLE ...ttt nanas 684
ALTER TRIGGER........c ittt st s naenas 689
ALTER USER.....oiee ettt ettt n et nenaenas 690
A N 4 T 693
2]] OSSOSO 695
CHECKPOINT ...ttt sttt sttt sttt b st b e st et seebeseebenesbenesbeneas 697
CLOSE ...ttt sttt sttt s b e ekt b et b et b et b e et st ebe st be e eteneas 698
CLUSTER. ..ottt s sttt stttk et se et et sbe e sbene 699
COMMENT L.ttt st et skt ettt eebe s e et e seebeseebenesbenenbenea 702
(1@ 11,11/ S 705
(L0] 2SS 707
CREATE AGGREGATE ... oottt steseeeees e e e see e st steseesaensesessessestessesaeseenessessessssenns 714
(O] I O N) SR 717
CREATE CONSTRAINT TRIGGER.......ci ittt 720
CREATE CONVERSION.......oiititiirieieieese sttt tesae e s ste e saeseeneesessesneseens 721
CREATE DATABASE ...ttt sttt st ste st ense e se s stestesteseeneesessessessens 723
CREATE DOMAIN. ...ttt ettt se st te e e ense e sessestesbesteseeneeseesesseseens 726
CREATE FUNCTION.....c ettt ettt s e s stestesaeseeneeseesesenseens 728
CREATE GROURP......cieee sttt ettt st st s be st e e e e e senbesaeseens 732
CREATE INDEX.... ittt ettt se et ae st see e ens e e ese st sbesbesseseeneenessesaeseeas 734
CREATE LANGUAGEct ittt sttt st st st et e snene s 737
CREATE OPERATOR......coct ettt ettt sttt st st se st st saesesaesesaeteseetesessanessenens 740
CREATE OPERATOR CLASS......o ettt sttt st sttt sessesessenessenens 744
CREATE RULE ...ttt sttt sttt s aese st saeteseebeneetanensanens 747
CREATE SCHEMAL. ..ottt sttt sae st s saebesaeteseeteseetanesteneas 750
CREATE SEQUENCHE ..ottt sttt st sttt stesesaetesaetesestesessenessenens 752
CREATE TABLE ..ottt st sttt sttt st st e te e stene s 755
CREATE TABLE AS.....o oottt sttt sttt st st st et e stene s 765
CREATE TRIGGER.......ct ittt sttt st st e ebesesta e ssenens 767
CREATE TYPE ...ttt sttt sttt st st s e st et seebeseebesestenestenens 770
CREATE USER......o ittt sttt st sttt st st se et saebeseebesestenesteneas 776
CREATE VIEW......otiiiiiei ettt st sttt s st saebe e sbenestenestanens 779
DEALLOCATE ...ttt sttt ettt sttt 782
DECLARE. ...ttt 783
DELETE ...tttk bttt bttt 786

XViii

DROP AGGREGATEottt sr e nes 788

]] O N SRS 790
DROP CONVERSIONL......cttiiteiiieiee st stes e esie et s e sseasseessteesseessessaseenseessessssseseesseessenan 792
DROP DATABASE ...ttt ettt st et e e st e e te e ae e saaeeteenneesnee s 793
(D (0] 10 1Y A | TSSOSO 794
DROP FUNCTION. ...t tettitetiiettisieisieisiese sttt e et sesbesessesessesensesensnes 795
DROP GROURPL........ootiiiitetetst ettt sttt sttt b bt se st b besses st bese s sneas 797
DROP INDEX....iiiictetiiiiiisietetit ettt ss sttt ss sttt sese s s bt sn s b b ebesesnssesesesennsnanas 798
DROP LANGUAGE ...ttt sttt a et s bbb sn st bene e snnas 799
DROP OPERATOR ..ottt sttt sttt ae e s ss b sesssn s b sanennsnanas 800
DROP OPERATOR CLASSottt sttt s ss s ssns s snnas 802
DROP RULE ..ottt sttt sttt sttt s s be e s st se e sssnesesene e snnnns 804
DROP SCHEMAooiietetste ettt ettt ae ettt se s sesaesesese e snneas 806
DROP SEQUENCE........ciiiiriisietetestsis st tee ettt se sttt sssassesasesess st sesasessssssesasessssnsns 808
DROP TABLE.......ct ettt ettt sttt se e sesn et sase e nnnens 809
DROP TRIGGER.......cciiiiiicieiiteisieeestse st ies st se s sssase s sassesasesesessesesasessssssesasensssnsns 811
DROP TYPE....itiiietetiiiisiseetsts e te et se s st e e st sesase s sassesasesesessssesesesessnsesasensssnsns 813
DROP USER.....ooicteiiiiris ettt te et ae st se st sase s sassesasesessssesesesessssnsesasensssnsns 814
DROP VIEW ..ottt eteess s te s te e sesssas et ase e sssssasesesassssssessssssnsesesessssssesssensnsnsns 816
N TR 817
= O 8 I TR 819
) I TR 820
N I TS 823
L] A VS 827
LN A =l S 832
I 1T I = S 835
I A 5 S 837
1 11 TSRS 838
1 1 SR 841
N1 1 e SRS 843
PREPARE......co ettt ettt st b e et e e e st e e s e e e e e e e e re e e nneeennreeean 845
L |0 SRR 847
R Y SRS 850
REVOKE ..ottt sttt sttt s et s et et e et et e ne s tesentese s se e ee 852
ROLLBACK ...ttt ettt ettt ettt a ettt et e s s s b b et e e s bt ebesess s s bebene s aneas 855
SELE CT ettt ettt a e et b R et b bea e e bt rene s 857
SELECT INTO ittt sttt bbb bbb b sn st a b se e st benene s 869
LS TR 871
SET CONSTRAINTS ..ottt sttt st bbb es e st sesene s 874
SET SESSION AUTHORIZATION.....cciiiitetciisessieteteeses e ssae et sesene s 875
SET TRANSACTION......ccoctetitiirisisieteieseststese e se st ssse et sssese s sesese s sessesesasessssssesesaseses 877
£ [TP 879
START TRANSACTION......ctiirisieieteesisisteteesesesastesssesesessssessse e s sesssessssssssesssessssssesesesees 882
TRUNGCATEcocctetists ettt sttt e sa e se bt s e s e e et snsanese s nsnsans 883
UNLISTEN. ..ttt ettt se st se st sesese e st asese st sesesesessssesasenesnsns 884
[0 3 I TSP 886
Y/ O L T 888
[I. PostgreSQL Client APPlICALIONS.......cccvieeeeeeiee et 891

XiX

(o1 (813 (T (o | TR 892

Lo (=71 (=T | o TS PR 895
CEALEIAING. ...ttt b e bbbt e bt b e s b e e bt b e r e 898
CFEALBUSEL......eeeeeeeet ettt ettt ettt e st ettt e e bt e s ae e e e e e be e s he e et e e s e e sbe e saeesane et e e smneemneenbeesnneenneennis 901
(o[0T T | o FHNT O ST TE OO STPTSTPTSTPPRPRPRPRIN 904
AFOPIANG. ... ettt b et b et r e bbb e b b rene 907
Lo 0] 01U LT USSR 910
L= Tod oo FO USSP RPN 913
7o I e e] 01 o NSRRI 915
o7 o 180/ o OSSPSR 917
o700 (80 0] 0= 1 ISP 924
1o T (ST (o] (= TSSO P TR PRPTURORTPRPR 928
010 (03 = o 1TSS 935
0101 PSSP 936
1T | PSS 937
A2z (o011 o | « T U OSSR PP PSRRI 960
[I. PostgreSQL Server APPlCALIONS........cccveiieeeierecee e seee e e e se e e s sreeeesaesnees 963
111 o | o TSRS 964
(1 pT11[oox= 11 o] o KSR 967
T TeTed 7= o OSSOSO 968
[oTe I eTe] aki o] o £ = OSSR 969
1o T o | USSP 970
18 T LSIST] 01 oo OSSR 974
010153 (0T ST TP TP PPRURROT 976
POSTMASTEL. ...ttt ettt ettt e e b bt e s ateeabe e s beesaeesaneesbeesaeesaneenbeenneenaeean 980
RV 101 (T g = SR 985
42. Overview Of POStgreSQL INTEINAIS.........coeiiiiieiree e 987
42.1. The Path Of @ QUELY.......cociriiircereeteeer e 987
42.2. How Connections are Established............ccoo e 987
42.3. THE PAISEr STAQE......ciuiiieeiereetereetereet ettt 988
N T N == 1 £ = USSP PR 988
42.3.2. Transformation PrOCESS.......ccoi it 989
42.4. The PostgreSQL RUIE SYSIEML.....c.iiiiiieeiee e e 989
42.5. Planner/OPtiMIZEL.... ..ottt s sbe e e 990
42.5.1. Generating POSSIDIE Plans.........coooiriiiiine e e 990
2.6, EXECULOL.....ccueitiieeeie ettt ettt bt b e e ae e e e et e eesbesae et e sb e e s e ebe e e e seesnnan 991
TS VA1 (=11 0l OF= =1 (oo S USTRRR 993
A3, 1. OVEIVIEW ...ttt ettt sttt he b e b se e e se e b e s bt se e b e e et e st ebesbesbesee e eneebesbeseens 993
T B2 T - Vo o[(=T - L= PSSR SURRROt 994
e RS oo T 11 PRSPPSOt 994
T - 11 1o PSP UPRSPRPRROt 996
T B T - 11 1] o1 (o T2 PRSP SURPRROt 996
LG I ST oo T 111 £ 1= SRR 997
G T N oo T 111 1o T =R 997
G TN oo [o= Y= A 1000
G T N oo [o =TT S 1001
2 0 O o Yo T o0 1011 1 =11 1 RS 1003

XX

G 20 o o To Tl o704 V=Y £ To o OSSR 1005

VR I o To Tl o - 1 - Lo - 1Y ST 1005
G I e oo T o =1 o113 Vo TSRS 1007
G R o To Tl o [=1Yo7 1T o USSR 1008
7 RS o To Tl o (oYU « USROS URURRRRORON 1009
G I K G o To T 11 o[- USRS URURRRRORON 1009
o g o Yo T T T 1 £ OSSP 1011
T B R oTo T = UaTo [V Vo =Y USSP 1011
43.19.pg_largEODJECt oiiiiciiee e are s 1012
T B O o Yo T 11 (T3 1) USSP 1013
o 2t o Yo T = T 1 =T o = Lo S SRS 1014
2o B oTo T o] o Tod - 11 OSSPSR 1014
7o I N oTo Tl o] o 1=T= (o L OSSPSR 1015
T B N o To T o] o o OSSP 1016
T I o To T (=1 1 (= PRSPPI 1018
7 I SN o To =] = Vo (01 PRSPPI 1019
G B A o To) = 1) 1[I 1020
NG T2 S oo T 1 [1= S 1022
I N oo [, o L= SSTTSTPSPRN 1023
43.30. SYSEM VIBWS.....oecieiieieeieeietesestestesteeeeesestes e saesseseesessessessensesassessessesseseessssessessenes 1029
0 I o Yo T g Lo [=TSSR 1030
T R o Yo T [o)< TS 1030
G 1 o Yo T (11 1032
G TR 7 oo TR =T=Y 11 T =S RSS 1032
G TG 1T oo =) - LRSS 1033
G TR 1 G oo T =T o1 [RRSSRN 1035
G TR oo T 1T SRS 1036
TG R 1o o TR 1= SRR 1036
44. Frontend/Backend ProtOCOL.........cccuviiiiierenieieeese et sse st s ee e e e 1038
Nt @ Y= gV PSS 1038
44.1.1. MeSSAJING OVEIVIEW.......eeiueerieierieierieieseete st et srese e seeseseereseeseneas 1038
44.1.2. Extended QUETY OVEIVIEW........ccciueuerieeerierereetesesiesestee e seese s seere e 1039
44.1.3. Formats and FOrmat COAES.......cocurirrererire e 1039
44.2. MESSAGE FIOWL......oiiiiiitiieete ettt eb e er e 1040
N S = Ly 1 o TSRS 1040
44.2.2. SIMPIE QUETY.....ueiuirtiieieeieeeeterie sttt st e e see st be e e eae b e 1042

V2 N S T = (=] o [0 @ U =] oY USSR 1043
A4.2.4. FUNCEION CalL....uiiiiiiieeeeee e e 1046
44.2.5. COPY OPEIAtIONS. ...cueieeeeuerieriesie ettt s st se e sre e 1046
44.2.6. ASynchronouS OPEratiQnS.........ccoerueeeerereresieseereeesese s sessesreseas 1047
44.2.7. Cancelling Requests iN Prograss.......cccveveveeieneeee s seesee e 1048
44.2.8. TEIMINALION.coiiiitirieieeeeeet ettt et sbe e 1049
44.2.9. SSL Session ENCrYPtioN......ccocveiiveere e 1049
44.3. MESSAJE Dala TYPRS....eeiiie ittt sttt sttt s saaenare s 1049
44,4, MESSAGE FOIMALS......ccciiiiiiii ettt s 1050
44.5. Error and Notice Message Fields........ccooviviiievcecine e 1067
44.6. Summary of Changes since Protocol.2.0........ccccceivviivinineresiese e 1068
45. PostgreSQL Coding CONVENLIONS........ccceieieeeireseseeeeeesesres e e seeessessessessessenesssssessens 1070

XXi

A5. 1. FOIMALING....cteueeteierieiereete ettt ettt b e b ettt a b e b e et e seebe e 1070

45.2. Reporting Errors Within the SEerver..........ccvvininnenseeeee e 1070
45.3. Error Message StYle GUILE.........cooiriirieiree ettt 1072
45.3.1. What gOES WNEEE......c.ooiiiiiriiesteesee ettt 1072

45.3.2. FOIMALIING. ..c.eivevereetereetereeteseeiee ettt et b e s en e 1073

45.3.3. QUOLALION MAIKS.......i ittt e 1073

45.3.4. USE Of QUOLES ...ttt e 1073

45.3.5. Grammar and PUNCLUATION..........coireiriere et 1074

45.3.6. Upper CaSe VS. IOWEE CASE.......ccuiuirieeriee ettt 1074

45.3.7. AVOId PASSIVE VOICE.....c.eeeeeertirieriesieieie ettt et sbe e 1074

45.3.8. Present VS PaSt LENSE.......coci ittt s s 1074

45.3.9. Type Of the ODJECL....ceiei s 1075

45.3.10. BraCKetS....c.ciiuiieeiereeiereeresee et 1075

45.3.11. AssSembling €rror MESSAGES......ccvceevererieerieseerresre e sresee e sressaesseereenns 1075

45.3.12. REASONS fOI EITAIS....c.ccvieireerreerieerree e 1075

45.3.13. FUNCLION NAIMES......ciriirienreesreesree st s seeneseereseene e 1075

45.3.14. Tricky words t0 @avoid........ccccveieriieeie e 1076

45.3.15. Proper SPEIliNG......ccccveieieiei et 1076

45.3.16. LOCAlIZALION.......ccveurireiereiieseres et 1077

46. Native Language SUPPQLL.......ccceiirieereriereseeieeeseseseessesesessessesessesssssssessessesssssesssssssessens 1078
46.1. FOr the TranSIator.........cceerreerereeeres e 1078
Nt I = =T 01T =T o 41T) 1078

T O o o7 =T o (=S 1078

46.1.3. Creating and maintaining message catalogs.........ccooeeerevereernernenens 1079

46.1.4. Editing the PO fil@S........cioiee e 1080

46.2. FOI the PrOgIamMMEL.........coieiriiieresieesiee sttt see bbb 1081
00 T |V =] = 1 o 1081

46.2.2. Message-writing gUIdEliNeS...........ccveiriencinneeeeeree e 1082

47. Writing A Procedural Language HandIer............cooviiinieiicceeese e 1084
48. GenetiC QUETY OPLIMIZEL.......cociiiiieiiiee et b e 1086
48.1. Query Handling as a Complex Optimization Prohlem.........c.cccoeoveiinniennenens 1086
48.2. GenetiC AlGOIthMS........coii e 1086
48.3. Genetic Query Optimization (GEQO) in PostgreSQL.........cccccveereerniennenens 1087
48.3.1. Future Implementation Tasks for PostgreSQL GEQQ.........ccocccevevenne 1088

48.4. FUIther REAAINGS.ccui ettt et s sae e 1088

49. Index Cost EStimation FUNCLONS..........cooo e 1089
50. GIST INUEXES.....e ittt st b e e se e st besbe et b et et et ebeebesbesee e e e enenaees 1092
L0 5] 170 To [Tex 1 o o NSO P USSR 1092
50.2. EXTENSIDIILY.eeieeeeeeeeeteee et s e 1092
50.3. IMPIEMENTALIONottt bbb e 1092
50.4. LIMITATIONS.....ccviuireetereeieseet ettt ettt 1093

LT BRI = T 4] o] =SS 1093

oI Vo =N 1 =P 1095
52. BKI BACKENd INTEITACE.......corieiireeeieriiesiierieerees e 1098
52.1. BKI Fil@ FOIMAL......ccoiiieireeeiceeeree et 1098
52.2. BKI COMMANUS......coiieiiirireieieieris et 1098
L T b - 11 4] o =S 1099

XXii

VL APPENTIXES ...veeiteeiteteteese ettt st skttt b et bt bbbt st b et e bt bbbt 1100

A. POSIGreSQL ErTOr COUES.......ciuiuiriitirietereeieresiee ettt sttt se bbb 1101
B. DAtE/TIME SUPPOKL....c.ectiriitiiitiiet ettt ettt b bbb n e 1108
B.1. Date/Time Input INterpretatiQn....... ..o 1108

B.2. Date/Time KeY WOIAS........cccoiieirieirieieieteeteesi et 1109

B.3. HIStOrY Of UNILS......cuiieieeeiee ettt st 1114

C. SQL KBY WOIUSceieeeeieeiestesie ettt sttt ae st b e e e e e be s b s e s b e b e e et ebeebesbesee e eneenenneee 1116
(D ST I @] g1 {0 .1 = o = TP 1133
D.1. SUPPOITEA FEAIUES.cueiiirieitisieie ettt bbb s e sne 1133

D.2. UNSUPPOIEA FEALUIES.......cotitirtiiereeeeieetes ettt sn 1144

E. REIECASE NOLES......oiciiectieetee ettt 1149
E. 1. REICASE 7.4.2.....o ettt 1149
E.1.1. Migration tO VEISION 7.4.2........ocveceeee e ceee e eee et 1149

I O o = T T 1= 1150

E.2. REICASE 7.4. L. 1151
E.2.1. Migration tO VEISION 7.4 L......c.ooveeeie e eees e ses et 1151

I O g T- 1 oo =SS 1151

E.3. REICASE 7.4 ..o 1152
E.3. L. OVEIVIEW. ..ot 1153

E.3.2. Migration tO VEISION 7.4......cceeeceeeeesieseeseeeees e seeseaeee et sa e sse s 1154

R T R O - T o =S 1155

E.3.3.1. Server Operation Changes.......ccceovvvrevereeeeeseseseseneeseee e 1155

E.3.3.2. Performance IMprovements.........ccoeourrerrennennenese e 1157

E.3.3.3. Server Configuration Changes.........ccoverrerrerrenneneneeseeee 1158

E.3.3.4. QUENY ChangEs......cccccvririririeirinirieeseesie st 1160

E.3.3.5. Object Manipulation Changes.........cccoverrernenneienereseesieeee 1160

E.3.3.6. Utility Command Changes.......c.cccrrirrinnennereneese e 1162

E.3.3.7. Data Type and Function Changes..........cccoceererreneneneneneneeneens 1163

E.3.3.8. Server-Side Language Changes...........ccoveererererenenenenenieenens 1165

E.3.3.9. PSOI ChanQES.....cueiieeiieirieereee e e 1166

E.3.3.10. pg_dump ChangES.......ccoceereeririnieieririeesieesie e 1166

E.3.3.11. [Ibpg Changes.......cccveirieirieirieeie et 1167

E.3.3.12. IDBC ChanQEeS.....cccorururueuieririnieiiesesesisieeesesesiese e e seseeesssenens 1168

E.3.3.13. Miscellaneous Interface Changes...........cccceevereneneneicecenenn. 1168

E.3.3.14. Source Code Changes........cccccrirerereniereeeeene e 1168

E.3.3.15. Contrib Changes.........ccoeriiieirierenese e 1169

E.4. REICASE 7.3.6..... ottt b e e en 1170
E.4.1. Migration t0 VEIrSiON 7.3.6......cccoceriririerieeeiriesie e e 1170

E.4.2. CRANQES. ..ottt 1170

E.5. REICASE 7.3.5. .o 1171
E.5.1. Migration t0 VEISION 7.3.8. ..ot 1171

E.5.2. ChaNQES......oci ettt ettt ne e 1171

E.B. REICASE 7.3 4 e 1172
E.6.1. Migration tO VEISION 7.3 4.....ccooe e ceee ettt 1172

T2 O g T T o =SS 1172

E.7. REICASE 7.3.3 . et 1172
E.7.1. Migration t0 VEISION 7.3.3 . c.ccieeeeserieseereeesese e seeaeee e te e s sse s 1173

A O g - T o =S 1173

XXiii

8. REIBASE 7.3.2. oottt et e st e st s s bt e e st e e e s ae e s saaeesasbeesaraeesareeean 1175

E.8.1. Migration t0 VEISION 7.3.2. ...t 1175
E.8.2. CNANGES. ...ttt 1175

E.O. REIECASE 7.3.1 .. ettt ettt ene 1176
E.9.1. Migration t0 VErSion 7.3. 1 ...t 1176
E.9.2. CRANGES. ...ttt bbb 1176
E.L0. REIEASE 7.3 .ttt ettt b et be st n e e e ene 1177
E.LO. 1. OVEIVIEW. ..ttt sttt e et e et ae b b e e e e e snesne e 1177
E.10.2. Migration tO VEISION 7.3.....c.corereeierie et s 1178
E.10.3. ChANQES...cue ettt et s e 1179
E.10.3.1. Server OPeratiOn........cocooeoereerereseneseseeneeesesie e ses e sreseas 1179

E.10.3.2. PerfOrmManCe......cccouriiiiiieiecene et 1179

E.10.3.3. PriVIIEOES ...cei ettt 1180

E.10.3.4. Server ConfiguratiQn............cccoceveeeeriesecie e 1180

E.10.3.5. QUEIIES....cuiiiiiieriiirieirieisiee sttt ettt 1180

E.10.3.6. Object Manipulation...........cccceeverereeriesecre e 1181

E.10.3.7. Utility COMMANAS......cccoeceeierieeiesieeeeie e e 1182

E.10.3.8. Data Types and FUNCLONS........cccccevevevereeeee e 1183

E.10.3.9. InternationalizatiQn............ccoecereinniinnenseses e 1184
E.10.3.10. Server-side LangUAaGES.......ccceveeererereereeesesesseseesesessessessenees 1185
0 TR 04 I O o 1~ | OSSO 1185
00 700 T2 {1 o] o 1186
0 TR 0 C TN | 5 = 2SSO 1186

E.10.3.14. Miscellaneous INterfaCes......ccovvvvivrierereerese e 1186
E.10.3.15. SOUICE COUE......cerirrierriieeeeeee e e nee e ere e 1187
00 700 K T @ 1o T 1188

E.11. REICASE 7.2.4...c.oo ettt st ene et seeaenannennenne s 1189
E.11.1. Migration tO VEIrSION 7.2.4. ..ot 1189
E.11.2. ChANQES....ciiieiieiitt ettt 1189
E.12. REIEASE 7.2.3. .ottt sttt st ae e e e e e nnenne s 1189
E.12.1. Migration t0 VEIrSION 7.2.3......cciieireirieiieeese et 1190
E.12.2. ChANQES.. .ottt 1190
E.L13. REIEASE 7.2.2. ..ottt bbbttt ne e nnenne 1190
E.13.1. Migration t0 VEIrSION 7.2.2........ccveireinieiieieisess e 1190

N T @1 0 - T o =PRSS 1190
E.14. REIEASE 7.2. 1.ttt bbb e e e nn 1191
E.14.1. Migration tO VErsioN 7.2. 1. ...t s 1191

N o O g - T g To [PPSR 1191
E.15. REIEASE 7. 2. ..ottt ettt ettt ens 1192
E.15. 1. OVEIVIEW....cuiieeiieiiietiisieesieesie sttt ss et sttt naens 1192
E.15.2. Migration tO VEISION 7.2......ccecvieeieieeiieseeee e see et eae e 1192
E.15.3. ChaNQES....c.ocoiie ettt ettt 1193
E.15.3.1. Server OPeration........cccceveieriesieseesieseeseeseeseesesseeseesseensesneennes 1193

E.15.3.2. PerfOrmManCe......ccccciriiiiiieeeeeee et 1194

E.15.3.3. PriVIIEOES ...cei ettt 1194

E.15.3.4. Client AUthentiCatiQn...........ceceveireersisese e 1194

E.15.3.5. Server ConfiguratiQn.........cccccueeeeieeesieseseereeeeese e 1195

E.15.3.6. QUETIES. ...ieitierieerieicrieesieie ettt ettt 1195

XXiV

E.16.

E.17.

E.18.

E.19.

E.20.

E.21.

E.22.

E.23.

E.24.

E.25.

E.26.

E.15.3.7. Schema Manipulation...........cccoeerrirninnenneseeseesee e 1195

E.15.3.8. Utility COMMANAS.......ccooriiirieirieiieeseese e 1196
E.15.3.9. Data Types and FUNCLONS..........ccevirrinnenreerees e 1196
E.15.3.10. Internationalization.............ccccoeoeeenereseneeecse e 1197
R 0 I O o I« T 1 | TSRS 1198
R 1 2 o] =T o TS 1198
R 00 e T = I o TSRS 1198
E.15.3.14. PL/PYNON......coiiiiiirieisieis et 1198
R 00 LT o 1o | TSSO 1198
R 04 < T 11 o Lo TS TS 1199
R 0 N |] = TSRS 1199
E.15.3.18. ODBC......ooi ittt st 1200
E.15.3.19. ECPG....coiiciieiritirieer st 1200
E.15.3.20. MISC. INtErfaCES......ccceririiieereresese e 1201
E.15.3.21. Build and INStall.........cccooeieiiniiinee e 1201
E.15.3.22. SOUICE COUE......ceririiriiiiieeeeee et 1201
E.15.3.23. CONMIRL....iiitiiiiirierie e e 1202
REIEASE 7.1.3. .ottt 1202
E.16.1. Migration t0 VErSioN 7.1.3.....cccciveieriesereeesesesesiesaeee e re e s sne e 1202
I G T2 1 g - T o =S 1202
REIEASE 7.1.2.. ittt 1203
E.17.1. Migration t0 VEIrSION 7.1.2.....ccceovvierierereeeseseseeseeaees e sse e seenessesse s 1203
I A 1 - T o =S 1203
=] ST L 00 1203
E.18.1. Migration to VErsion 7.1.1.......cccveireiinieinninseneseesie e 1203
E.18.2. ChANQES....ciiieiiciiertire ettt 1203
=] (ST LS 0 1204
E.19.1. Migration tO VEISION 7.1......cccoeireirieirieiieeiseese e 1205
E.19.2. ChANQES.. .ottt 1205
REIEASE 7.0.3....ei ettt st ne e nenne s 1208
E.20.1. Migration t0 VErsion 7.0.3........ccveireinieiieeiseseese e 1209
E.20.2. ChANQES.. ..ottt 1209
REIEASE 7.0. 2.ttt ettt e n e 1210
E.21.1. Migration t0 VErsion 7.0.2........cccoeireinieinnisesesesie et 1210
2 I O g T- T o To =SSR 1210
REIEASE 7.0. L.t et e e 1210
E.22.1. Migration t0 Version 7.0.1........ccocuiiiiiineenene e 1210
E.22.2. ChANQES . ..ottt e 1210
REIEASE 7.0t e 1211
E.23.1. Migration to VErsion 7.Q.......c.ccecceveieeie et 1212
[T O g - T T = S 1212
REIEASE B.5.3..... et e e 1218
E.24.1. Migration tO VErsion 6.5.3.......cccceiiiieie e 1218
A O g T T T T P 1219
REIEASE B.5.2.....c e e 1219
E.25.1. Migration t0 VErsion 6.5.2.......ccccceciieieiieisese e s 1219
ST 1 g - T oo =TS 1219
REIEASE B.5. 1. ...ttt 1220

XXV

E.26.1. Migration to Version 6.5.1........cccoeirrinrininireneese e 1220

E.26.2. ChANQES.. ..ottt 1220
E.27. REIEASE B.5......oie ettt ettt a et st ne e nne 1221
E.27.1. Migration t0 VErSion 6.5........cccreiriinieieee e 1222
E.27.1.1. Multiversion Concurrency CONtrol...........ccocverveieneneneienieennns 1222

E.27.2. CRANQES.. .ottt 1222
E.28. REIECASE B.4. 2.ttt bt b et e ene 1226
E.28.1. Migration tO VErsion 6.4.2........ccccooiiiieneinere e e 1226
E.28.2. ChANQES....ui ettt b e 1226
E.29. REIEASE B.4. 1.ttt bbb e 1226
E.29.1. Migration t0 VErsion 6.4.1........ccccoiiireneinere e e 1226
E.29.2. ChANQES ...ttt e 1226
E.30. REICASE BA......o.ecvieiiteeeee et 1227
E.30.1. Migration tO VEISION 6.4......ccccuveeeieieeie ettt 1228
[T O I O o - T T T P 1228
E.31. REICASE 6.3.2......coieerieercerieeree et 1232
[31 It O 1 = T T 1= P 1232
E.32. REICASE B.3. L ...ttt 1233
R 0 N O g - T o =S 1233
E.33. REICASE B.3.....o e 1234
E.33.1. Migration t0 VEIrSION B.3.......ccceceevrereriereeeseseseeseeeeee e re e s saeneesesse s 1235
R 1 T 1 - T o =S 1235
E.34. REICASE B.2. 1 ...t 1238
E.34.1. Migration from version 6.2 to Version 6.2.1.........ccccocevvernenenenenieennnns 1239
E.34.2. ChANQES....c.ooiieriiriie et 1239
E.35. REIEASE B.2......ociii ettt sttt et ne st sneaenannennennens 1240
E.35.1. Migration from version 6.1 t0 VErsion G.2.........cccccevverrerenenenenenieennnns 1240
E.35.2. Migration from version £.t0 VErsion 6.2...........ccvvevvennenneneneieseenes 1240
E.35.3. ChANQES....c.o ittt 1240
E.36. REIEASE B.1.1......ociiieeeeeeieeees et st ettt se e nnenne s 1242
E.36.1. Migration from version 6.1 to version 6.1.1.........ccccoevveineneneieneennns 1242
E.36.2. ChANQES.. ..ottt 1242
E.37. REIEASE B.1......oeiieieeeeeee sttt bbbt st e e nne 1243
E.37.1. Migration t0 VErSIiON B.1........ccccuveirieinieiieiiiseses e 1243
R O o T- T To =TSSR 1244
E.38. REICASE B.0......ccuiiiiieiieeiee ettt bbb e e nn 1245
E.38.1. Migration from version 1.09 to version 6.0..........cccccevrerenenieneeiencnenn 1246
E.38.2. Migration from pre-1.09 to version 6.0.......c.ccocovererrienienene e 1246
E.38.3. ChanQES. ..ottt e e 1246
E.39. REICASE 1.09......cco ittt 1248
E.40. REIEASE 1.Q2.......coeeeiiereerieereeeree et 1248
E.40.1. Migration from version 1.02 to version 1.02.1........cccccoovrvievvneecvseenen. 1248
E.40.2. Dump/Reload ProCeAUIE.........ccceve et 1249
E.40.3. ChaNQES....c.cciiie ettt st neeaesne e 1249
E.41. Relase 1.QL.......ccooiiieireereeereeereeee et 1250
E.41.1. Migration from version 1.0 to version 1.01.........ccccccceveevenievievereeceeennenns 1250

R N O g - T o =TS 1252
E.42. REICASE L1.0....co it 1252

XXVi

E.42.1. ChANQES.. .ottt 1253

E.43. Postgres95 Release Q.03........ccooiririinieeeeeseeree e 1253
E.43. 1. ChANQES....c.iiceieeiiet et bbb 1254

E.44. Postgres95 Release Q.02..........cocireireeniniireeseeesieesiee s 1256
E.44. 1. CRANQES....ciiiiciieei ettt 1256

E.45. Postgres95 Release Q.0L........cociririinniinieeneeesieesee s 1257

T B L OV SR o LT o T 1S (o] YU 1258
F.1. Getting The Source Via ANONYMOUS CV.S........cccoioiirinenereeesese e 1258

F.2. CVS Tree OrganiZatiOn........cocooeieieieeeniene et e b see s e esse e 1259

F.3. Getting The SoUrce Vid CVSUP.....c.coiiririiierieeirese sttt s sn 1261
F.3.1. Preparing A CVSup Client SYStemM........cccocrieririnireeeeeeese e 1261

F.3.2. RUNnNing @ CVSUP ClBML........ooiiiiirie e 1261

[T B [0153 = 11 [T (o T @AY S T U o S 1263

F.3.4. Installation from SOUICES........coecieireinieies e 1264

G. DOCUMENTALION.ceeveieeeireetiseeiere ettt e 1266
L0 T Tod = T Lo <SPS P TSPV 1266

G2, TOOI SEIS....oiciiiciireete ettt ettt sttt r s 1266
G.2.1. LinuX RPM INStAllAtioN.......covivereiirrieeieeeresee e 1267

G.2.2. FreeBSD INStallation............coceirreeeeeereseeeesese e 1267

G.2.3. Dehian Packages........cccveieieriniiie i 1268

G.2.4. Manual Installation from SOUICE........ccccrrereirnreeee e 1268

G.2.4.1. Installing OpenJade........ccccceovrerereecenesie e 1268

G.2.4.2. Installing the DOCBOOK DTD Kil......ccovvivrvrerreeerereseeseseeseeeeeenens 1269

G.2.4.3. Installing the DocBook DSSSL Style Sheets........c.ccccocevveennee 1270

G.2.4.4. Installing JAAETEX...c.coi ittt 1270

G.2.5. Detection DEoNfigUre ..ot 1270

G.3. Building The DOCUMENTALION.ccoiiiririrriereseese e 1271
LT 201 R I I /| RSP 1271

G.3.2. MANPAGES. ..o ettt sttt r e e nne 1271

G.3.3. Print OULPUL Via JAAETEX......cieererereriererieeste sttt 1272

G.3.4. Print OULPUL Via RTE......ciiiiee e 1272

G.3.5. Plain TEXE FIlES ..ottt 1274

G.3.6. SYNEAX CHECKcuiiiteirieeree e 1274

G.4. Documentation AUtNOMNG.......cceiieiieireereeie et 1274
G.4.1. EMACS/PSGML...coiiiiiiiiiiiririeie ettt 1274

G.4.2. Other EMAacs MOUES......ccciiiieiriere et s sn 1276

G.5. SEYIE GUIR... .ottt bbb e b 1276
G.5.1. REfEreNCE PAgeS.....cciiiieieeeieste et e 1276
BIDIOGIAPRY ... bbb et h b b e e et ene 1279
100 = ST PSPPSR PSPPI 1281

XXVil

List of Tables

4-1. Operator Precedence (AECIEASING)......eieruereeererrrterereereeestesteseesseeesessessessessesseseeessesseseessessesens 27
o I D = 1= T Y] 1= 3 75
S R N1 4T o 1o -SSR 76
8-3. MONELAIY TYPES... ittt ettt h R b e et bbbt se s e et en e n e b e e 80
S N O T = ot (=T gl Y] L= SRS 80
8-5. SPECIAl ChAraCler TYPES. ..o i cuirerieeriee sttt sttt b et s et 82
8-6. BINAIY DAt@ TYPES.....c ettt sttt sttt s e bbbt b et bt bbbt e b e b 82
8-7.bytea Literal ESCAPEU OCIELS......ccoiiiieirieiriee ettt s s 83
8-8.bytea OULPUL ESCAPEU OCLELS.......civiiieiirieeree ettt s 83
8-9. DAL/ TIME TYPES ettt ettt sttt sttt s b e st b et b et b et b bt s b bt s e e b se e b et e b et b et s b e st ne bt e e b et 84
8-10. DALE INPUL......oititiieeeeeteet ettt ettt r e et b e r R ne e e et en e r e e 85
8-1L. THME INPUL..eeeee e b bbb bbb e bt b et bt bbbt e b et 86
8-12. TIME ZONE INPUL......eeitiiete ittt ettt b e e bbbt bt e st e b e ene s 87
8-13. Special DAate/TiMeE INPULS........ceiirieiiteiriee sttt b ettt b et e b e e 88
8-14. DAte/TIMeE OULPUL SEYIES... .. ettt et e ae st b se e 88
8-15. Date Order CONVENTIONS.iouieeireetietesie ettt se et e et sae st besee e st e besee s e e e e saeeaesbesbeseeeens 89
S e ST CT=To] g LT ([l Y] 012U 91
8-17. NEtWOIK AQUIESS TYPES...cuiieiieieieie sttt sttt e ettt she bt se et st b e be e e e e e e e eneeaesbesbesee e ene 94
8-18.cidr Type INPUL EXAMPIES... ..ot 94
8-19. ODbjJECt IHENTITIET TYPES...uiiuertirteeeeee ettt ettt eb e st be bbbt eaesbe e s 105
Lo S O Y= TN o (o Tl 1Y o= SRS 106
Lo R I @0] o F= T LT 0] g @] 1= = (] =SS 107
9-2. MathematiCal OPEIatOLS.......cccoceiiieerierteeieeeceeste st e e e te s e e e e e saestessaestesreensesreeeesaesneetensenns 109
9-3. Bit String BitWiSE OPEIALOLS......cceieeieiteeiiee e ste st e ste st ste st sae e e sae e ssae e sseesesseeeeseesseensessenns 110
9-4. MathematiCal FUNCHIONS. ..ottt 110
LS ST T o] aToT g g =] ng o w0 g Tox 1 o] o= 111
9-6. SQL String FUNCIONS and OPEIALQIS........ceieveeieeererestesteste e se e sesteseese s re e e e esesreseeses 112
9-7. Other StriNG FUNCLONS.......ccciiiiieeeiee e sttt te ettt st e e eseesesseseestenaenaeneenesreseenes 113
9-8. BUIIt-IN CONVEISIONS......cvciiiirireereieieiress ettt nen s nnas 117
9-9. SQL Binary String FUNCtioNS and OPEratirS......ccovievirereererieseseseseeseeesese e seeseeseesessessesseses 120
9-10. Other Binary StriNGg FUNCHONS.....c..ccvviiiiere e sesee et see et ae e e esesre e nes 121
9-11. Regular EXpression MatCh OPEratOrS.........ccv ettt st 124
9-12. Regular EXPreSSIiON ALOMS........ccoiirieirieeriee sttt sttt et sttt st st e s s nees 126
9-13. Regular EXpression QUANTIfIEIS.......c.ccireiriirierrerne s 126
9-14. Regular EXpression CONSIIAINTS.........ccviirieirirereeieresiee ettt 127
9-15. Regular Expression Character-Entry ESCApeS.......cccooevveiireienee s 129
9-16. Regular Expression Class-Shorthand ESCAMIES.cccveireiineieneresne s 130
9-17. Regular EXpression CONSLraint ESCAPES........ccovreirireirieie ettt 130
9-18. Regular Expression Back ReferenCes..........coviiiiinicineee e 130
9-19. ARE Embedded-Option LEEIS.......c.cci ittt 131
9-20. FOrmMatting FUNCLIONScoueiiiteiiiet ettt sttt bt 134
9-21. Template Patterns for Date/Time FOrmMatting..........cccooeoreiereiineeneeseesesee e 135
9-22. Template Pattern Modifiers for Date/Time FOrmatiing.........c.cooerevererrienenesene e 136
9-23. Template Patterns for Numeric FOrmatting..........ccooovirereirienene e 137
9-24.10_Char EXAMIPIES......cueieiieie ettt bbb sttt st n e b b e 138
9-25. DAL/ TIME OPEIALOIS.....ciuiitirtirtiieeeeeie ettt ettt sttt et ebesbesbe st e e eneebesbesbesbeee e e e enesbeseenes 139

XXViii

9-26. DAt/ TIME FUNCHIONS.eiiieeie ettt ettt st e e st e s et e e s st e e ssbaeeseaeeesabeessstesssasaessseessnbensanes 140

9-27.AT TIME ZONEVAIANTScetitiriiieeeeeeetestesieseeeesessessessesseseesessessesteseeseeneesessessessessensenseneesessesseses 146
9-28. GEOMELIIC OPEIALOLS......cuieeteeeteertet sttt sttt sttt sttt b et bt e bt se b e b e e bt be st s b et e s b e 148
9-29. GEOMELIC FUNCLIONS.uiitiieiitiieee ettt sttt se ettt ee e e e eneesesaeseesteneenee e eneereseeses 149
9-30. Geometric Type CONVErsioN FUNCLOMSccociriiriieesiee sttt 150
9-31.cidr ANAINEt OPEIALOIS.....c.eiiiteerteirteit ettt sttt sttt b et b et bt bt e s b 151
9-32.cidr andinet FUNCLONS.......ccci ittt ae st et e be e e sbeeneesresaeetesreens 152
9-33.mMACaddr FUNCLONS.......ciiii ettt st e st eae e eesaeesae s ressaebeereensesreeneeseesaeentenseans 153
9-34. SEQUENCE FUNCHIOMS ... couitetirtiieeeeete sttt st ettt ebe st e b st e e eneebesaesbe s b e b e e e e enesbeseees 153
9-35. Session INformation FUNCHQNS.........cceciiiicece e ereens 157
9-36. Configuration Settings FUNCLIONS..........cooi i 158
9-37. Access Privilege INQUIry FUNCHOMS.........coiiiiiiiree e e 158
9-38. Schema Visibility INQUIY FUNCHOMNS.........cccvciiiiiiece e s sne e 160
9-39. System Catalog Information FUNCLIONS..........ccoceeiiiirescceese e e 161
9-40. Comment INformation FUNCHONS..........oiiiiiiieirerie et st 161
LS R T - VA @ 01T = 1o] £ OSSP 162
Lo R V= VA U T 10 F NP 163
9-43. AQQregate FUNCHONS.cci ettt st e ettt st e e ese e s e s aesaestete e e e enesreneees 164
12-1. SQL Transaction ISOIAtioN LEVEIS.........c.cceeieiiiiireeiecreeee ettt nre e e et ebeer e b e 191
G S a1 T AT 01T g I (=) VT 249
16-2. SYStEM V IPC PAr@mMELELS......ccueeieriieeeriesieeeestesieestesteeeesseseestessessaestesseensesseesessaesseessessessessennes 250
20-1. Server CharaCler SEIS.......cccii ittt sttt sttt st et 279
20-2. Client/Server Character Set CONVEISIONS.ccov ettt sees 281
23-1. Standard STAtiStICS VIEWSccirueeeeeeetesiesieseeseeesessesteseeseeseeessesteseeseeeesessessessessensensesessessessenes 297
23-2. StatiStiCS ACCESS FUNCHONS......ccveeeieeetise ettt s e e sr e e e e esesre e nes 298
29-1. POLCI COMMEBNAS.....ceiuiiieierieie ettt bbb st b e ekt b et bt et 369
31-1.ConnectionPoolDataSource IMPIEMENTALIONS......cvieciireeterere e 445
31-2.ConnectionPoolDataSource Configuration Properties.........cceoveererneieneieneeneesee s 445
31-3.DataSource IMPIEMENTALIONS........cciiiirieiriee et 446
31-4.DataSource Configuration PrOPerties.........ccv it 446
31-5. Additional PoolingpataSource Configuration Properties..........cccoevevennenneieneieseeseeeene 447
32-1.information_schema_catalog_name COlUMNS. ... 451
32-2.applicable_roles L0] (11321 0 1S TSR 451
32-3.check_constraints COIUMNS ..ttt e ae e e 451
32-4.column_domain_usage COIUMNS..........coiii e eeesre e e nteereens 452
32-5.column_privileges (0] 11 1 4] 1SS 452
32-6.column_udt_usage COIUMMNS.......coiiiicice ettt s re e e s re e sresaeetesreens 453
32-7.C0lUMNS COIUMNS.....c.oiiiii ettt ettt s ae e te s beesaebeereensesreeneesaesneetenseens 454
32-8.constraint_column_usage COIUMNS ...ttt eaee e 458
32-9.constraint_table_usage COIUMNS ...ttt e e ae e e 458
32-10.domain_constraints COIUMNS. ..ottt re e be e sae e eareenree e 459
32-11.domain_constraints COIUMNS. ..ottt re e be e sreeenreenree e 460
32-12.domain_udt_usage COIUMNS.......cciiieiice et e e sre e e naenreens 461
1 I o o] = 1 TSI @0 1 S 461
32-14.element_types COIUMNS......ccciiiiieiie ettt rte et e e e re e sbe e sareenreebe e saeeenneeares 464
32-15.enabled rolesS COIUMNS.......coiieeetectectecte ettt st ete st ereesresaeeeresbesssesbeebeensesbeeneesaesseebestenns 466
32-16.key_column_usage COIUMNS.....cccciirieiticeciecte ettt s sae s be s e beebe e s e sbeeneesresaeenbesreens 467
32-17.parameters COIUMNS ...ttt et st s be e e e beebeensesbeeneesaesaeenbesbeens 467

XXIiX

32-18.referential_constraints (O] 01191 1SR 470

32-19.role_column_grants (@] 0] 191 o 1SN 471
32-20.role_routine_grants (0] (1] 331 o 1S 471
32-21.role_table_grants L©0] (11321 o 1SS 472
32-22.role_usage_grants COlUMNS .. et b e e 473
32-23.routine_privileges (O] 1] 491 o LSRR 473
I N oYU 1 L= R O o [N o] F= OSSR 474
32-25.5chemata COIUMNS......oiiiiitee ettt sttt be b b e e e se bbb e b et e e e e eaeebe e es 478
32-26.sql_features LO70] 11 4] T 479
32-27.sqgl_implementation_info L0701 [1]1'0] 1S3 S S 480
32-28.501_1anguages COIUMNS.........coieiiiiiccce ettt sae s be e e e tesre e s e sreeneesresanetesreens 480
YA o [o= 1e3 = Te (X I ©] [V 2 01 F= S 481
1Y O o [=34 Ta o IR @01 111 o] 1SS 481
32-31.sql_sizing_profiles L0701 18] 4] 1S 482
32-32.table_constraints (OF0] (11001 1TSS SRR 482
32-33.table_privileges (0] 18] '] 1S S 483
32-34.1ables COIUMNS.......ciiiirerere et ettt e 484
32-35.11GQEIS COIUMNS....ccueiciietiecee ettt ettt et ste et et e s be et e st e sbeessesbeesesbesssesbesbeensesbeeneesaesaeenbestenns 485
32-36.usage_privileges (7o) [1]1'0] o OO 486
32-37.view_column_usage COIUMNS......c.ociiiiiiiciece ettt st e be e e beeneesaesreebesbeens 486
32-38.view_table_usage COIUMNS.......cciiiiiicie ettt sttt ebe et e beeneesaesreebesreens 487
32-39.VIEWS COIUMINS.....ciiiiicreree et en e en e 488
33-1. Equivalent C Types for Built-IN SQL TYPES...cccivviirrirerereeere e seeseees e saee e 503
33-2. B-IrBE SHIAEIES. .. e eeuireetereeteseete sttt sttt et sttt b et b et bt bt e et 534
I T o TS S 1 1= 1 =T == OSSOSO 534
33-4. R-IEE SIALETIES. ... ettt sttt bbbt b ekt b et bbbt 535
33-5. B-tre€ SUPPOIT FUNCLOMS......ccitierieiiteeriee ettt sttt 535
33-6. Hash SUPPOIt FUNCLOMNS.cciiiieereere ettt st s 536
33-7. R-tree SUPPOIt FUNCHONS.ccoviirieiiteereee ettt s 536
33-8. GIST SUPPOIt FUNCHOMS.....cueeitierieisiee ettt sttt s sttt st 536
A3-1. SYSIEM CALAIOGS......eueiveuereeiiriete ettt b et e eb et b et b et sb bbbt se b e se et e se et e e ebe e ebeneas 993
VAR B2 o To I To o =To =X (- T @0 L1 0 0T SRR 994
v T o To I Ly o O o] 110 1o - OSSR 995
Ve R oo I Ly (o o J @0] 0] 1 o1 LSOO 996
43-5.pg_amproC COIUMNS.......coiiiicie ettt r e s be e sreeae e besbeensesreeneesresnean 996
43-6.pg_attrdef COIUMNS......oiiiieee e e et e e s resae e besreensesreeneesresnean 997
43-7.pg_attribute (L0111 1 o TSRS 997
G Bt T o T oz o A O o] 11 1 ¢ 1SS 1000
43-9.pg_Class COIUMNS ..ot sre e e st e e b et e eaeessesaeetesreeseentenreenns 1001
43-10.pg_constraint (0] 18] 3'0] 1SS 1004
43-11.pg_conversion COIUMNS........cciiieiiie et e et eaeesresaeeaesreesaerenneenes 1005
43-12.pg_database COIUMNS........ccieiicece et e et e ae e sae s e e aesreesaebenreenes 1005
43-13.pg_depend COIUMNS.......cco et s sae s e e s reessesbeeneessesreetesrensaensenreenns 1007
43-14.pg_description (701 18] '] LSO 1009
43-15.pg_group COlUMNS.....cccii ittt et re e s be e s beebeesbeesaeeeaseebeesaaesnsesnbeesreesaeesasenn 1009
43-16.pg_iNAEX COIUMNS......cuiiieitietieticte ettt e ste s e te st e et e s beeseesbesseesbesbeeasesbeeseessesaeentesbesseentenseenns 1010
43-17.pg_inherits (7o) 11140] s L3OO 1011
43-18.pg_1anguage COIUMNS........ociiiiiiecee ettt besbe b et e eaeesresaeentesbesaeenbesreenns 1011

XXX

43-19.pg_largeobject COlUMNS....cee et a e s st et esbeenresreeneas 1013

43-20.pg_listener (O] [0 491 0 1SS 1013
43-21.pg_NamespPace COIUMNS........coiieieireee ettt see e et e e seeaestestesee e eneenesaeees 1014
43-22.pg_0pClass COIUMMNS ..ot ettt et e e s ae st be e e e eneene e e 1014
Ve B2 I oo T e o T=T=Y o R @] U 4o o L= TS 1015
e B o To T o] (o TR @] (14 o SRS 1016
43-25.pg_reWrite COIUMNS....coiiiicictcce et ste s be s be et e beeaeesresaeetesreeseesbesreenns 1018
43-26.pg_ShadoW COIUMINS.....ccciiiicecece et sre e e s be e b e s beeaeesaesaeeneesreeneentenreenns 1019
43-27.pg_statistic L0701 11 4 TSP 1020
43-28.pg_trigger COIUMNS. ..ot e s be et e b e eaeesresaeeaesreesaenreereenns 1022
e e I o Yo T 1Y, o LY @3] (U2 T S 1023
A3-30. SYSIEM VIBWS.....cueiuiiieriiite sttt ettt sttt ae b e e e et b s bt b se e s e e e st e bt ebesbesbese e e enenaenaees 1030
G G 1 I o Yo 1T L) (T o 1 [1 o £ S 1030
ViR EC Y o Yo T (o T LS @ | [0 ¢ 11 o 1 S 1031
e B G o Yo T (0 1LY I @ U ¢] o 1S 1032
43-34.pg_settingS COIUMNS.....ciiiieice et e e e e s e te s re e e e eeereenes 1032
43-35.p0_StatS COIUMNS.....ooitiiiiecee ettt et e s be e s be e be e s be e saeesareenbeesaeesaseenbeesbeesanesatens 1033
43-36.pg_tablesS COIUMNS.....cociiitiitietectecte ettt e st e e eesbe e e e besbeeabesbesseessesaeentesbesaeenbenreenns 1035
A3-37.0G_USEI COIUMMNS.....coiitiiieitictieite ettt et e ste st e et e b e stesbeeaesbesaeebesbeesbasbesseessesaeensesbesssenbesreenns 1036
43-38.pg_VIEWS COIUMNS......coeiieitictieticteete ettt e st e et e este s e e aesbeste e besbeesbeebeeseessesaeentesbesseenbenseenns 1036
51-1. SAMPIE PAGE LAYQUL......cueiiiiiieiieieece sttt e et te e sa e ssesnesee e ae e eneerenras 1095
51-2. PageHeaderData LaYQUL............ccceoeeererieresceeeeese st e e ste e seeseese e sse e seaeneesessenss 1095
51-3. HeapTupleHeaderData LaYQUL..........cccoviererrreeerereseseeseeesse e e e seeses e sne s sesaeneenessenees 1096
A-1. POStGreSQL ErTOr COUES.couiiiiiririeieeteesie sttt sttt sttt sttt 1101
(22 IV, o a1 g 12N o] o] =Y/ = 11 o] g =SSR 1109
B-2. Day of the Week ADDIeVIiations....... ... 1109
B-3. Date/Time Field MOUIfIEIS.....c.ccviiireeeeee ettt s a e nennennens 1110
B-4. TIMe Z0Ne ADDIEVIALIONS..........coiirieiee ettt se e e e nnennens 1110
B-5. Australian Time Zone ADDIEVIAtIONS...........cuoiiereiririeie et snens 1114
C-1. SQL KEY WOIUS ...ttt bbbttt b e 1116

List of Figures

48-1. Structured Diagram of a GenetiC AlgOrithim...........ccovvieve i 1087

List of Examples

8-1. USING the CharaCler tYPES... ..ottt bbb 81
8-2. USING tNEDO0IEAN TYPE.... ettt ettt et 91
8-3. USING the DIt SIHNG TYPES....cecteieeiieeteeste ettt 96
10-1. Exponentiation Operator Type ReSOIULIQN.ccoiiiiiiieiieee e 175
10-2. String Concatenation Operator Type ReSOIULOMN.cc.ecviireririenere e 175
10-3. Absolute-Value and Factorial Operator Type ResolUutiQn............ccocevereeenenenineneesese e 175
10-4. Rounding Function Argument Type ReSOIULION...........cooiiieirieni i 177
10-5. Substring Function Type RESOIULIQN.cciiiiiiiiiiie et 178
10-6.character Storage TYPE CONVEISION.........cciierirerierie e sttt e b b e e e se e e sneeas 179

XXXI

10-7. Type Resolution with Underspecified Types in @ UmiOn...........coceovernenneieneieneeneeseeens 180

10-8. Type Resolution in & SimpPle UNIOM........oeoise e 180
10-9. Type Resolution in & TranSPOSEd UNION..........ccoueereirieininineseesieesie e 180
11-1. Setting up a Partial Index to Exclude Common ValUEs...........ccovorerneineieneieneeeeneeee 187
11-2. Setting up a Partial Index to Exclude Uninteresting Values..........c.ccocvevneineieneiennennenens 187
11-3. Setting up a Partial UNiqUe INAEX.........ccvuiiriiirieiriciiei ettt 188
19-1. An exampl®g_hba.conf — file ..o s 270
19-2. An exampleg_ident.conf 1= SRS 275
A W 11 oo Jo [== La] o] (= = oo =T 0 OSSR 351
A 1o o Jo [=z La] o] (=0 = (oo | =T o BV USSR 353
27-3. libpg EXAmMPIE Programi.3... ..ottt st st et ne e ene b e s 356
28-1. Large Objects with libpg EXample Programi..........c..coernenene e 363
29-1. pgtcl EXamMPIE PrOQIalL.......cccciiiiieiiiitieiietecceeste s e stesteete e sseesaesaeesaesressaestesseensesseeneesaesneensessenns 393
31-1. Processing a Simple QUEry in JIDBEC.........oci et s nneens 415
31-2. Setting fetch size to turn cursors 0N and.off...........covceci e 415
31-3. Deleting ROWS iN JDBC........ccoiiiiieecieetese st ste st ae st sae e e sae st s sae e sneenaesneeneesaesneeneessenns 417
31-4. Calling a built in Stored fUNCHIQN..........cociieeece e e nneens 417
31-5. Gettingefcursor values from @ fUNCHOM..........ccccvvi e e 418
31-6. Treatingefcursor @S @ AiSNCL LYPR....cceiivececeece e e 418
31-7. Dropping @ Table iN JDBC........ccceieeceee et e et s e e sne et e aenae e enesrenrenes 419
31-8. Processing Binary Data in JDBC..........cco ettt 420
31-9.DataSource COdE EXAMPIE......ccuceeeeieiisie e s 447
31-10.DataSource JNDI COAE EXAMPIE.....cciiiiireecieeie et e e s 448
36-1. Manual Installation of PL/PGSQL........cciiiiiiieerrerneese st 574
37-1. APL/PYSQL Trigger PrOCEAUIE.......cc.coirieirieiereeie ettt sttt s 601
37-2. Porting a Simple Function from PL/SQL t0 PL/PGSQL.......cccriiirrinnenneresee e 602
37-3. Porting a Function that Creates Another Function from PL/SQL to PL/pgSQL.................. 603
37-4. Porting a Procedure With String Manipulation @drParameters from PL/SQL to PL/pgS@Q4
37-5. Porting a Procedure from PL/SQL t0 PL/PGSQL...c.ooiiiiiiiinee e 606

XXXil

Preface

This book is the official documentation of PostgreSQL. It is being written by the PostgreSQL develop-
ers and other volunteers in parallel to the development of the PostgreSQL software. It describes all the
functionality that the current version of PostgreSQL officially supports.

To make the large amount of information about PostgreSQL manageable, this book has been organized
in several parts. Each part is targeted at a different class of users, or at users in different stages of their
PostgreSQL experience:

« Part lis an informal introduction for new users.

- Part Ildocuments the SQL query language environment, including data types and functions, as well as
user-level performance tuning. Every PostgreSQL user should read this.

- Part Il describes the installation and administration of the server. Everyone that runs a PostgreSQL
server, be it for private use or for others, should read this part.

- Part IV describes the programming interfaces for PostgreSQL client programs.

- Part Vcontains information for advanced users about the extensibility capabilities of the server. Topics
are, for instance, user-defined data types and functions.

- Part VIcontains information about the syntax of SQL commands, client and server programs. This part
supports the other parts with structured information sorted by command or program.

« Part VIl contains assorted information that can be of use to PostgreSQL developers.

1. What is PostgreSQL?

PostgreSQL is an object-relational database management system (ORDBMS) based on POSTGRES,
Version 4.2, developed at the University of California at Berkeley Computer Science Department. POST-
GRES pioneered many concepts that only became available in some commercial database systems much
later.

PostgreSQL is an open-source descendant of this original Berkeley code. It supports SQL92 and SQL99
and offers many modern features:

« complex queries

- foreign keys

. triggers

« views

- transactional integrity

- multiversion concurrency control

Also, PostgreSQL can be extended by the user in many ways, for example by adding new

- data types
- functions

1. http://s2k-ftp.CS.Berkeley.EDU:8000/postgres/postgres.html

Preface

- operators

- aggregate functions
+ index methods

« procedural languages

And because of the liberal license, PostgreSQL can be used, modified, and distributed by everyone free
of charge for any purpose, be it private, commercial, or academic.

2. A Brief History of PostgreSQL

The object-relational database management system now known as PostgreSQL is derived from the POST-
GRES package written at the University of California at Berkeley. With over a decade of development
behind it, PostgreSQL is now the most advanced open-source database available anywhere.

2.1. The Berkeley POSTGRES Project

The POSTGRES project, led by Professor Michael Stonebraker, was sponsored by the Defense Advanced
Research Projects Agency (DARPA), the Army Research Office (ARO), the National Science Foundation
(NSF), and ESL, Inc. The implementation of POSTGRES began in 1986. The initial concepts for the
system were presented e design of POSTGRERd the definition of the initial data model appeared

in The POSTGRES data mod€&he design of the rule system at that time was describ@thédesign of

the POSTGRES rules systefe rationale and architecture of the storage manager were detailée in
design of the POSTGRES storage system

POSTGRES has undergone several major releases since then. The first “demoware” system became op-
erational in 1987 and was shown at the 1988 ACM-SIGMOD Conference. Version 1, described in
implementation of POSTGRERas released to a few external users in June 1989. In response to a critique

of the first rule systemX commentary on the POSTGRES rules sykttra rule system was redesigned

(On Rules, Procedures, Caching and Views in Database Syssmth¥/ersion 2 was released in June 1990

with the new rule system. Version 3 appeared in 1991 and added support for multiple storage managers,
an improved query executor, and a rewritten rule system. For the most part, subsequent releases until
Postgres95 (see below) focused on portability and reliability.

POSTGRES has been used to implement many different research and production applications. These in-
clude: a financial data analysis system, a jet engine performance monitoring package, an asteroid tracking
database, a medical information database, and several geographic information systems. POSTGRES has
also been used as an educational tool at several universities. Finally, lllustra Information Technologies
(later merged into Inform# which is now owned by IBM) picked up the code and commercialized it.

In late 1992, POSTGRES became the primary data manager for the Sequdis@eatfic computing

project.

The size of the external user community nearly doubled during 1993. It became increasingly obvious that
maintenance of the prototype code and support was taking up large amounts of time that should have been
devoted to database research. In an effort to reduce this support burden, the Berkeley POSTGRES project
officially ended with Version 4.2.

2. http://www.informix.com/
3. http://www.ibm.com/
4. http://meteora.ucsd.edu/s2k/s2k_home.html

Preface

2.2. Postgres95

In 1994, Andrew Yu and Jolly Chen added a SQL language interpreter to POSTGRES. Under a new
name, Postgres95 was subsequently released to the web to find its own way in the world as an open-
source descendant of the original POSTGRES Berkeley code.

Postgres95 code was completely ANSI C and trimmed in size by 25%. Many internal changes improved
performance and maintainability. Postgres95 release 1.0.x ran about 30-50% faster on the Wisconsin
Benchmark compared to POSTGRES, Version 4.2. Apart from bug fixes, the following were the major
enhancements:

« The query language PostQUEL was replaced with SQL (implemented in the server). Subqueries were
not supported until PostgreSQL (see below), but they could be imitated in Postgres95 with user-defined
SQL functions. Aggregate functions were re-implemented. Support f@RGUP Byuery clause was
also added.

- In addition to the monitor program, a new program (psql) was provided for interactive SQL queries,
which used GNU Readline.

- A new front-end librarylibpgtcl , supported Tcl-based clients. A sample shaltclsh , provided
new Tcl commands to interface Tcl programs with the Postgres95 server.

« The large-object interface was overhauled. The inversion large objects were the only mechanism for
storing large objects. (The inversion file system was removed.)

- The instance-level rule system was removed. Rules were still available as rewrite rules.

A short tutorial introducing regular SQL features as well as those of Postgres95 was distributed with
the source code

« GNU make (instead of BSD make) was used for the build. Also, Postgres95 could be compiled with an
unpatched GCC (data alignment of doubles was fixed).

2.3. PostgreSQL

By 1996, it became clear that the name “Postgres95” would not stand the test of time. We chose a new
name, PostgreSQL, to reflect the relationship between the original POSTGRES and the more recent ver-
sions with SQL capability. At the same time, we set the version numbering to start at 6.0, putting the
numbers back into the sequence originally begun by the Berkeley POSTGRES project.

The emphasis during development of Postgres95 was on identifying and understanding existing problems
in the server code. With PostgreSQL, the emphasis has shifted to augmenting features and capabilities,
although work continues in all areas.

Details about what has happened in PostgreSQL since then can be folyopkindix E

3. Conventions

This book uses the following typographical conventions to mark certain portions of text: new terms,
foreign phrases, and other important passages are emphasitalitgr Everything that represents in-

Preface

put or output of the computer, in particular commands, program code, and screen output, is shown in a
monospaced fonekample). Within such passages, italicaample) indicate placeholders; you must

insert an actual value instead of the placeholder. On occasion, parts of program code are emphasized in
bold face éxample), if they have been added or changed since the preceding example.

The following conventions are used in the synopsis of a command: bra¢katgl{) indicate optional
parts. (In the synopsis of a Tcl command, question matkare used instead, as is usual in Tcl.) Braces
({ and}) and vertical lines|() indicate that you must choose one alternative. Dots mean that the
preceding element can be repeated.

Where it enhances the clarity, SQL commands are preceded by the promand shell commands are
preceded by the promgt Normally, prompts are not shown, though.

An administratoris generally a person who is in charge of installing and running the servaseA

could be anyone who is using, or wants to use, any part of the PostgreSQL system. These terms should
not be interpreted too narrowly; this book does not have fixed presumptions about system administration
procedures.

4. Further Information

Besides the documentation, that is, this book, there are other resources about PostgreSQL.:

FAQs

The FAQ list contains continuously updated answers to frequently asked questions.
READMEs

READMEHiles are available for most contributed packages.
Web Site

The PostgreSQL web sitearries details on the latest release and other information to make your
work or play with PostgreSQL more productive.

Mailing Lists
The mailing lists are a good place to have your questions answered, to share experiences with other
users, and to contact the developers. Consult the PostgreSQL web site for details.

Yourself!

PostgreSQL is an open-source project. As such, it depends on the user community for ongoing sup-
port. As you begin to use PostgreSQL, you will rely on others for help, either through the documen-
tation or through the mailing lists. Consider contributing your knowledge back. Read the mailing
lists and answer questions. If you learn something which is not in the documentation, write it up and
contribute it. If you add features to the code, contribute them.

5. http://lwww.postgresql.org

Preface

5. Bug Reporting Guidelines

When you find a bug in PostgreSQL we want to hear about it. Your bug reports play an important part
in making PostgreSQL more reliable because even the utmost care cannot guarantee that every part of
PostgreSQL will work on every platform under every circumstance.

The following suggestions are intended to assist you in forming bug reports that can be handled in an
effective fashion. No one is required to follow them but it tends to be to everyone’s advantage.

We cannot promise to fix every bug right away. If the bug is obvious, critical, or affects a lot of users,
chances are good that someone will look into it. It could also happen that we tell you to update to a newer
version to see if the bug happens there. Or we might decide that the bug cannot be fixed before some
major rewrite we might be planning is done. Or perhaps it is simply too hard and there are more important
things on the agenda. If you need help immediately, consider obtaining a commercial support contract.

5.1. Identifying Bugs

Before you report a bug, please read and re-read the documentation to verify that you can really do
whatever it is you are trying. If it is not clear from the documentation whether you can do something or
not, please report that too; it is a bug in the documentation. If it turns out that a program does something
different from what the documentation says, that is a bug. That might include, but is not limited to, the
following circumstances:

- A program terminates with a fatal signal or an operating system error message that would point to a
problem in the program. (A counterexample might be a “disk full” message, since you have to fix that
yourself.)

« A program produces the wrong output for any given input.
- A program refuses to accept valid input (as defined in the documentation).

- A program accepts invalid input without a notice or error message. But keep in mind that your idea of
invalid input might be our idea of an extension or compatibility with traditional practice.

« PostgreSQL fails to compile, build, or install according to the instructions on supported platforms.
Here “program” refers to any executable, not only the backend server.

Being slow or resource-hogging is not necessarily a bug. Read the documentation or ask on one of the
mailing lists for help in tuning your applications. Failing to comply to the SQL standard is not necessarily
a bug either, unless compliance for the specific feature is explicitly claimed.

Before you continue, check on the TODO list and in the FAQ to see if your bug is already known. If you
cannot decode the information on the TODO list, report your problem. The least we can do is make the
TODO list clearer.

5.2. What to report

The most important thing to remember about bug reporting is to state all the facts and only facts. Do not
speculate what you think went wrong, what “it seemed to do”, or which part of the program has a fault.

If you are not familiar with the implementation you would probably guess wrong and not help us a bit.
And even if you are, educated explanations are a great supplement to but no substitute for facts. If we are
going to fix the bug we still have to see it happen for ourselves first. Reporting the bare facts is relatively

Preface

straightforward (you can probably copy and paste them from the screen) but all too often important details
are left out because someone thought it does not matter or the report would be understood anyway.

The following items should be contained in every bug report:

- The exact sequence of stefpsm program start-umecessary to reproduce the problem. This should
be self-contained,; it is not enough to send in a [&EFEECT statement without the precediREATE
TABLE andINSERT statements, if the output should depend on the data in the tables. We do not have
the time to reverse-engineer your database schema, and if we are supposed to make up our own data we
would probably miss the problem.

The best format for a test case for SQL-related problems is a file that can be run through the psql
frontend that shows the problem. (Be sure to not have anything inyaqsgirc start-up file.) An

easy start at this file is to use pg_dump to dump out the table declarations and data needed to set the
scene, then add the problem query. You are encouraged to minimize the size of your example, but this
is not absolutely necessary. If the bug is reproducible, we will find it either way.

If your application uses some other client interface, such as PHP, then please try to isolate the offending
queries. We will probably not set up a web server to reproduce your problem. In any case remember
to provide the exact input files; do not guess that the problem happens for “large files” or “midsize
databases”, etc. since this information is too inexact to be of use.

- The output you got. Please do not say that it “didn’t work” or “crashed”. If there is an error message,
show it, even if you do not understand it. If the program terminates with an operating system error,
say which. If nothing at all happens, say so. Even if the result of your test case is a program crash or
otherwise obvious it might not happen on our platform. The easiest thing is to copy the output from the
terminal, if possible.

Note: If you are reporting an error message, please obtain the most verbose form of the message.
In psql, say \set VERBOSITY verbose beforehand. If you are extracting the message from the
server log, set the run-time parameter log_error_verbosity to verbose so that all details are
logged.

Note: In case of fatal errors, the error message reported by the client might not contain all the
information available. Please also look at the log output of the database server. If you do not keep
your server's log output, this would be a good time to start doing so.

« The output you expected is very important to state. If you just write “This command gives me that
output.” or “This is not what | expected.”, we might run it ourselves, scan the output, and think it
looks OK and is exactly what we expected. We should not have to spend the time to decode the exact
semantics behind your commands. Especially refrain from merely saying that “This is not what SQL
says/Oracle does.” Digging out the correct behavior from SQL is not a fun undertaking, nor do we all
know how all the other relational databases out there behave. (If your problem is a program crash, you
can obviously omit this item.)

Vi

Preface

« Any command line options and other start-up options, including concerned environment variables or
configuration files that you changed from the default. Again, be exact. If you are using a prepackaged
distribution that starts the database server at boot time, you should try to find out how that is done.

« Anything you did at all differently from the installation instructions.

« The PostgreSQL version. You can run the comm@BdECT version(); to find out the version of
the server you are connected to. Most executable programs also suppertian option; at least
postmaster --version andpsgl --version should work. If the function or the options do not
exist then your version is more than old enough to warrant an upgrade. If you run a prepackaged version,
such as RPMs, say so, including any subversion the package may have. If you are talking about a CVS
shapshot, mention that, including its date and time.

If your version is older than 7.4.2 we will almost certainly tell you to upgrade. There are tons of bug
fixes in each new release, that is why we make new releases.

- Platform information. This includes the kernel name and version, C library, processor, memory infor-
mation. In most cases it is sufficient to report the vendor and version, but do not assume everyone knows
what exactly “Debian” contains or that everyone runs on Pentiums. If you have installation problems
then information about compilers, make, etc. is also necessary.

Do not be afraid if your bug report becomes rather lengthy. That is a fact of life. It is better to report
everything the first time than us having to squeeze the facts out of you. On the other hand, if your input
files are huge, it is fair to ask first whether somebody is interested in looking into it.

Do not spend all your time to figure out which changes in the input make the problem go away. This will
probably not help solving it. If it turns out that the bug cannot be fixed right away, you will still have time

to find and share your work-around. Also, once again, do not waste your time guessing why the bug exists.
We will find that out soon enough.

When writing a bug report, please choose non-confusing terminology. The software package in total is
called “PostgreSQL”, sometimes “Postgres” for short. If you are specifically talking about the backend
server, mention that, do not just say “PostgreSQL crashes”. A crash of a single backend server process is
quite different from crash of the parent “postmaster” process; please don't say “the postmaster crashed”
when you mean a single backend process went down, nor vice versa. Also, client programs such as the
interactive frontend “psql” are completely separate from the backend. Please try to be specific about
whether the problem is on the client or server side.

5.3. Where to report bugs

In general, send bug reports to the bug report mailing lispgsgl-bugs@postgresgl.org >. You are
requested to use a descriptive subject for your email message, perhaps parts of the error message.

Another method is to fill in the bug report web-form available at the project's web site
http://www.postgresqgl.org/. Entering a bug report this way causes it to be mailed to the
<pgsql-bugs@postgresgl.org > mailing list.

Do not send bug reports to any of the user mailing lists, suchpgsgksql@postgresql.org > or
<pgsgl-general@postgresql.org >, These mailing lists are for answering user questions, and their
subscribers normally do not wish to receive bug reports. More importantly, they are unlikely to fix them.

Vii

Preface

Also, please dmot send reports to the developers’ mailing ligtgsgl-hackers@postgresgl.org >,

This list is for discussing the development of PostgreSQL, and it would be nice if we could keep the bug
reports separate. We might choose to take up a discussion about your bug repgdldrackers | if

the problem needs more review.

If you have a problem with the documentation, the best place to report it is the documentation mailing

list <pgsql-docs@postgresql.org >. Please be specific about what part of the documentation you are
unhappy with.

If your bug is a portability problem on a non-supported platform, send mail to
<pgsql-ports@postgresql.org > so we (and you) can work on porting PostgreSQL to your
platform.

Note: Due to the unfortunate amount of spam going around, all of the above email addresses are
closed mailing lists. That is, you need to be subscribed to a list to be allowed to post on it. (You need
not be subscribed to use the bug-report web form, however.) If you would like to send mail but do not
want to receive list traffic, you can subscribe and set your subscription option to nomail . For more
information send mail to <majordomo@postgresql.org > with the single word help in the body of the
message.

viii

|. Tutorial

Welcome to the PostgreSQL Tutorial. The following few chapters are intended to give a simple introduc-
tion to PostgreSQL, relational database concepts, and the SQL language to those who are new to any one
of these aspects. We only assume some general knowledge about how to use computers. No particular
Unix or programming experience is required. This part is mainly intended to give you some hands-on
experience with important aspects of the PostgreSQL system. It makes no attempt to be a complete or
thorough treatment of the topics it covers.

After you have worked through this tutorial you might want to move on to readarg |l to gain a more
formal knowledge of the SQL language, Bart 1V for information about developing applications for
PostgreSQL. Those who set up and manage their own server should al§tarett

Chapter 1. Getting Started

1.1. Installation

Before you can use PostgreSQL you need to install it, of course. It is possible that PostgreSQL is already
installed at your site, either because it was included in your operating system distribution or because
the system administrator already installed it. If that is the case, you should obtain information from the
operating system documentation or your system administrator about how to access PostgreSQL.

If you are not sure whether PostgreSQL is already available or whether you can use it for your experimen-
tation then you can install it yourself. Doing so is not hard and it can be a good exercise. PostgreSQL can
be installed by any unprivileged user, no superuser (root) access is required.

If you are installing PostgreSQL yourself, then refeiGbapter 14for instructions on installation, and
return to this guide when the installation is complete. Be sure to follow closely the section about setting
up the appropriate environment variables.

If your site administrator has not set things up in the default way, you may have some more work to do. For
example, if the database server machine is a remote machine, you will need ta=&ttheenvironment
variable to the name of the database server machine. The environment vag&id&Tnay also have to

be set. The bottom line is this: if you try to start an application program and it complains that it cannot
connect to the database, you should consult your site administrator or, if that is you, the documentation
to make sure that your environment is properly set up. If you did not understand the preceding paragraph
then read the next section.

1.2. Architectural Fundamentals

Before we proceed, you should understand the basic PostgreSQL system architecture. Understanding how
the parts of PostgreSQL interact will make this chapter somewhat clearer.

In database jargon, PostgreSQL uses a client/server model. A PostgreSQL session consists of the follow-
ing cooperating processes (programs):

« A server process, which manages the database files, accepts connections to the database from client
applications, and performs actions on the database on behalf of the clients. The database server program
is calledpostmaster

- The user’s client (frontend) application that wants to perform database operations. Client applications
can be very diverse in nature: a client could be a text-oriented tool, a graphical application, a web server
that accesses the database to display web pages, or a specialized database maintenance tool. Some client
applications are supplied with the PostgreSQL distribution, most are developed by users.

As is typical of client/server applications, the client and the server can be on different hosts. In that case
they communicate over a TCP/IP network connection. You should keep this in mind, because the files that
can be accessed on a client machine might not be accessible (or might only be accessible using a different
file name) on the database server machine.

Chapter 1. Getting Started

The PostgreSQL server can handle multiple concurrent connections from clients. For that purpose it starts
(“forks™) a new process for each connection. From that point on, the client and the new server process
communicate without intervention by the origimaktmaster process. Thus, thestmaster is always
running, waiting for client connections, whereas client and associated server processes come and go. (All
of this is of course invisible to the user. We only mention it here for completeness.)

1.3. Creating a Database

The first test to see whether you can access the database server is to try to create a database. A running
PostgreSQL server can manage many databases. Typically, a separate database is used for each project or
for each user.

Possibly, your site administrator has already created a database for your use. He should have told you
what the name of your database is. In this case you can omit this step and skip ahead to the next section.

To create a new database, in this example nameih, you use the following command:
$ createdb mydb
This should produce as response:

CREATE DATABASE

If s0, this step was successful and you can skip over the remainder of this section.

If you see a message similar to

createdb: command not found

then PostgreSQL was not installed properly. Either it was not installed at all or the search path was not set
correctly. Try calling the command with an absolute path instead:

$ lusr/local/pgsqgl/bin/createdb mydb
The path at your site might be different. Contact your site administrator or check back in the installation
instructions to correct the situation.

Another response could be this:

createdb: could not connect to database templatel: could not connect to server:
No such file or directory

Is the server running locally and accepting

connections on Unix domain socket "/tmp/.s.PGSQL.5432"?

This means that the server was not started, or it was not started evbatralb expected it. Again, check
the installation instructions or consult the administrator.

If you do not have the privileges required to create a database, you will see the following:

createdb: database creation failed: ERROR: permission denied to create database

Not every user has authorization to create new databases. If PostgreSQL refuses to create databases for
you then the site administrator needs to grant you permission to create databases. Consult your site ad-

Chapter 1. Getting Started

ministrator if this occurs. If you installed PostgreSQL yourself then you should log in for the purposes of
this tutorial under the user account that you started the server as.

You can also create databases with other names. PostgreSQL allows you to create any number of databases
at a given site. Database names must have an alphabetic first character and are limited to 63 characters in
length. A convenient choice is to create a database with the same name as your current user name. Many
tools assume that database name as the default, so it can save you some typing. To create that database,

simply type

$ createdb

If you do not want to use your database anymore you can remove it. For example, if you are the owner
(creator) of the databaseydb, you can destroy it using the following command:

$ dropdb mydb

(For this command, the database name does not default to the user account name. You always need to
specify it.) This action physically removes all files associated with the database and cannot be undone, so
this should only be done with a great deal of forethought.

More aboutreatedb anddropdb may be found ircreatedlanddropdbrespectively.

1.4. Accessing a Database

Once you have created a database, you can access it by:

« Running the PostgreSQL interactive terminal program, calkgl which allows you to interactively
enter, edit, and execute SQL commands.

- Using an existing graphical frontend tool like PgAccess or an office suite with ODBC support to create
and manipulate a database. These possibilities are not covered in this tutorial.

« Writing a custom application, using one of the several available language bindings. These possibilities
are discussed further iPart IV.

You probably want to start upsgl , to try out the examples in this tutorial. It can be activated for the
mydb database by typing the command:

$ psqgl mydb

If you leave off the database name then it will default to your user account name. You already discovered
this scheme in the previous section.

In psql , you will be greeted with the following message:

Welcome to psqgl 7.4.2, the PostgreSQL interactive terminal.

1. As an explanation for why this works: PostgreSQL user names are separate from operating system user accounts. If you
connect to a database, you can choose what PostgreSQL user name to connect as; if you don't, it will default to the same name
as your current operating system account. As it happens, there will always be a PostgreSQL user account that has the same name
as the operating system user that started the server, and it also happens that that user always has permission to create databases.
Instead of logging in as that user you can also specifytheption everywhere to select a PostgreSQL user name to connect as.

Chapter 1. Getting Started

Type: \copyright for distribution terms
\h for help with SQL commands
\? for help on internal slash commands
\g or terminate with semicolon to execute query
\q to quit

mydb=>
The last line could also be
mydb=#

That would mean you are a database superuser, which is most likely the case if you installed PostgreSQL
yourself. Being a superuser means that you are not subject to access controls. For the purpose of this
tutorial this is not of importance.

If you have encountered problems startjrsgl then go back to the previous section. The diagnostics of
psgl andcreatedb are similar, and if the latter worked the former should work as well.

The last line printed out bysgl is the prompt, and it indicates thadqgl is listening to you and that you
can type SQL queries into a work space maintainegdday . Try out these commands:

mydb=> SELECT version();
version

PostgreSQL 7.4.2 on i586-pc-linux-gnu, compiled by GCC 2.96
(1 row)

mydb=> SELECT current_date;
date

2002-08-31
1 row)

mydb=> SELECT 2 + 2;
?column?

The psgl program has a number of internal commands that are not SQL commands. They begin with
the backslash charactey,” Some of these commands were listed in the welcome message. For example,
you can get help on the syntax of various PostgreSQL SQL commands by typing:

mydb=> \h

To get out ofpsql , type

mydb=> \q

Chapter 1. Getting Started

andpsgl will quit and return you to your command shell. (For more internal commands \tyja¢ the

psgl prompt.) The full capabilities gfsql are documented ipsql If PostgreSQL is installed correctly
you can also typean psgl atthe operating system shell prompt to see the documentation. In this tutorial
we will not use these features explicitly, but you can use them yourself when you see fit.

Chapter 2. The SQL Language

2.1. Introduction

This chapter provides an overview of how to use SQL to perform simple operations. This tutorial is only
intended to give you an introduction and is in no way a complete tutorial on SQL. Numerous books have
been written on SQL, including/nderstanding the New SQand A Guide to the SQL Standardou

should be aware that some PostgreSQL language features are extensions to the standard.

In the examples that follow, we assume that you have created a databasenmatineals described in the
previous chapter, and have started psq|l.

Examples in this manual can also be found in the PostgreSQL source distribution in the directory

src/tutorial/ . Refer to theREADMHile in that directory for how to use them. To start the tutorial, do
the following:
$ cd ... [srcltutorial

$ psqgl -s mydb

mydb=> \i basics.sql

The\i command reads in commands from the specified file.-§heption puts you in single step mode
which pauses before sending each statement to the server. The commands used in this section are in the
file basics.sql

2.2. Concepts

PostgreSQL is #elational database management sysi@DBMS). That means it is a system for man-
aging data stored irelations Relation is essentially a mathematical termtfdsle The notion of storing

data in tables is so commonplace today that it might seem inherently obvious, but there are a number of
other ways of organizing databases. Files and directories on Unix-like operating systems form an example
of a hierarchical database. A more modern development is the object-oriented database.

Each table is a named collectionmofvs Each row of a given table has the same set of nacoddnnsg

and each column is of a specific data type. Whereas columns have a fixed order in each row, it is important
to remember that SQL does not guarantee the order of the rows within the table in any way (although they
can be explicitly sorted for display).

Tables are grouped into databases, and a collection of databases managed by a single PostgreSQL server
instance constitutes a databahester.

2.3. Creating a New Table

You can create a new table by specifying the table name, along with all column names and their types:

CREATE TABLE weather (
city varchar(80),

Chapter 2. The SQL Language

temp_lo int, -- low temperature
temp_hi int, -- high temperature
prcp real, -- precipitation
date date

);

You can enter this intpsgl with the line breakspsgl will recognize that the command is not terminated
until the semicolon.

White space (i.e., spaces, tabs, and newlines) may be used freely in SQL commands. That means you can
type the command aligned differently than above, or even all on one line. Two dashé&giftroduce
comments. Whatever follows them is ignored up to the end of the line. SQL is case insensitive about key
words and identifiers, except when identifiers are double-quoted to preserve the case (not done above).

varchar(80) specifies a data type that can store arbitrary character strings up to 80 characters in length.
int is the normal integer typeeal is a type for storing single precision floating-point numbeese

should be self-explanatory. (Yes, the column of tgaee is also namedlate . This may be convenient

or confusing -- you choose.)

PostgreSQL supports the usual SQL typas, smallint , real , double precision , char(N),

varchar(N), date , time , timestamp , andinterval , as well as other types of general utility and a

rich set of geometric types. PostgreSQL can be customized with an arbitrary number of user-defined data
types. Consequently, type names are not syntactical key words, except where required to support special
cases in the SQL standard.

The second example will store cities and their associated geographical location:

CREATE TABLE cities (
name varchar(80),
location point

)i
Thepoint type is an example of a PostgreSQL-specific data type.

Finally, it should be mentioned that if you don’t need a table any longer or want to recreate it differently
you can remove it using the following command:

DROP TABLEtablename ;

2.4. Populating a Table With Rows

TheINSERT statement is used to populate a table with rows:

INSERT INTO weather VALUES ('San Francisco’, 46, 50, 0.25, '1994-11-27’);

Note that all data types use rather obvious input formats. Constants that are not simple numeric values
usually must be surrounded by single quotgsds in the example. Thiate type is actually quite flexible
in what it accepts, but for this tutorial we will stick to the unambiguous format shown here.

Thepoint type requires a coordinate pair as input, as shown here:

Chapter 2. The SQL Language

INSERT INTO cities VALUES ('San Francisco’, '(-194.0, 53.0)");

The syntax used so far requires you to remember the order of the columns. An alternative syntax allows
you to list the columns explicitly:

INSERT INTO weather (city, temp_lo, temp_hi, prcp, date)
VALUES ('San Francisco’, 43, 57, 0.0, '1994-11-29";

You can list the columns in a different order if you wish or even omit some columns, e.g., if the precipi-
tation is unknown:

INSERT INTO weather (date, city, temp_hi, temp_lo)
VALUES ('1994-11-29', 'Hayward’, 54, 37):
Many developers consider explicitly listing the columns better style than relying on the order implicitly.
Please enter all the commands shown above so you have some data to work with in the following sections.

You could also have usedOPYto load large amounts of data from flat-text files. This is usually faster
because theoPYcommand is optimized for this application while allowing less flexibility tH48ERT.
An example would be:

COPY weather FROM ’'/home/user/weather.txt’;

where the file name for the source file must be available to the backend server machine, not the client,
since the backend server reads the file directly. You can read more ab@@myeommand inCOPY.

2.5. Querying a Table

To retrieve data from a table, the tablegseried An SQL SELECT statement is used to do this. The
statement is divided into a select list (the part that lists the columns to be returned), a table list (the part
that lists the tables from which to retrieve the data), and an optional qualification (the part that specifies
any restrictions). For example, to retrieve all the rows of talelather , type:

SELECT * FROM weather;

(here* means “all columns”) and the output should be:

city | temp_lo | temp_hi | prcp | date
+ + oo +
San Francisco | 46 | 50 | 0.25 | 1994-11-27
San Francisco | 43 | 57 | 0 | 1994-11-29
Hayward | 37 | 54 | | 1994-11-29
(3 rows)

You may specify any arbitrary expressions in the select list. For example, you can do:
SELECT city, (temp_hi+temp_lo)/2 AS temp_avg, date FROM weather;

This should give:

Chapter 2. The SQL Language

city | temp_avg | date
San Francisco | 48 | 1994-11-27
San Francisco | 50 | 1994-11-29
Hayward | 45 | 1994-11-29
(3 rows)

Notice how theAs clause is used to relabel the output column. (It is optional.)

Arbitrary Boolean operator&(\D OR andNOT) are allowed in the qualification of a query. For example,
the following retrieves the weather of San Francisco on rainy days:

SELECT * FROM weather
WHERE city = 'San Francisco’
AND prcp > 0.0;

Result:
city | temp_lo | temp_hi | prcp | date
San Francisco | 46 | 50 | 0.25 | 1994-11-27
(2 row)

As a final note, you can request that the results of a query can be returned in sorted order or with duplicate
rows removed:

SELECT DISTINCT city
FROM weather
ORDER BY city;

Hayward
San Francisco
(2 rows)

DISTINCT andORDER BYan be used separately, of course.

2.6. Joins Between Tables

Thus far, our queries have only accessed one table at a time. Queries can access multiple tables at once, or
access the same table in such a way that multiple rows of the table are being processed at the same time.
A guery that accesses multiple rows of the same or different tables at one time is dalledjaery. As

an example, say you wish to list all the weather records together with the location of the associated city.
To do that, we need to compare the city column of each row of the weather table with the name column

of all rows in the cities table, and select the pairs of rows where these values match.

Note: This is only a conceptual model. The actual join may be performed in a more efficient manner,
but this is invisible to the user.

This would be accomplished by the following query:

Chapter 2. The SQL Language

SELECT *
FROM weather, cities
WHERE city = name;

city | temp_lo | temp_hi | prcp | date | name | location
+ + e + + +
San Francisco | 46 | 50 | 0.25 | 1994-11-27 | San Francisco | (-194,53)
San Francisco | 43 | 57 | 0 | 1994-11-29 | San Francisco | (-194,53)
(2 rows)

Observe two things about the result set:

- There is no result row for the city of Hayward. This is because there is no matching entryitiethe
table for Hayward, so the join ignores the unmatched rows in the weather table. We will see shortly how
this can be fixed.

- There are two columns containing the city name. This is correct because the lists of columns of the
weather and thecities table are concatenated. In practice this is undesirable, though, so you will
probably want to list the output columns explicitly rather than uging

SELECT city, temp_lo, temp_hi, prcp, date, location

FROM weather, cities
WHERE city = name;

Exercise: Attempt to find out the semantics of this query whenwWeERElause is omitted.

Since the columns all had different names, the parser automatically found out which table they belong to,
but it is good style to fully qualify column names in join queries:

SELECT weather.city, weather.temp_lo, weather.temp_hi,
weather.prcp, weather.date, cities.location
FROM weather, cities
WHERE cities.name = weather.city;

Join queries of the kind seen thus far can also be written in this alternative form:

SELECT *
FROM weather INNER JOIN cities ON (weather.city = cities.name);

This syntax is not as commonly used as the one above, but we show it here to help you understand the
following topics.

Now we will figure out how we can get the Hayward records back in. What we want the query to do is to
scan theweather table and for each row to find the matchitiges row. If no matching row is found

we want some “empty values” to be substituted for ¢hies table’s columns. This kind of query is
called anouter join (The joins we have seen so far are inner joins.) The command looks like this:

SELECT *
FROM weather LEFT OUTER JOIN cities ON (weather.city = cities.name);

10

Chapter 2. The SQL Language

city | temp_lo | temp_hi | prcp | date [name | location
Hayward | 37 | 54 | | 1994-11-29 | |
San Francisco | 46 | 50 | 0.25 | 1994-11-27 | San Francisco | (-194,53)
San Francisco | 43 | 57 | 0 | 1994-11-29 | San Francisco | (-194,53)
(3 rows)

This query is called &ft outer joinbecause the table mentioned on the left of the join operator will have
each of its rows in the output at least once, whereas the table on the right will only have those rows output
that match some row of the left table. When outputting a left-table row for which there is no right-table
match, empty (null) values are substituted for the right-table columns.

Exercise: There are also right outer joins and full outer joins. Try to find out what those do.

We can also join a table against itself. This is callegkH join As an example, suppose we wish to find

all the weather records that are in the temperature range of other weather records. So we need to compare
thetemp_lo andtemp_hi columns of eaclweather row to thetemp_lo andtemp_hi columns of all
otherweather rows. We can do this with the following query:

SELECT Wl.city, Wl.temp_lo AS low, Wl.temp_hi AS high,
W2.city, W2.temp_lo AS low, W2.temp_hi AS high
FROM weather W1, weather W2
WHERE W1l.temp_lo < W2.temp_lo
AND W1l.temp_hi > W2.temp_hi;

city | low | high | city | low | high
R S R
San Francisco | 43 | 57 | San Francisco | 46 | 50
Hayward | 37 | 54 | San Francisco | 46 | 50
(2 rows)

Here we have relabeled the weather tablgvaandwz2to be able to distinguish the left and right side of
the join. You can also use these kinds of aliases in other queries to save some typing, e.g.:

SELECT *
FROM weather w, cities ¢
WHERE w.city = c.name;

You will encounter this style of abbreviating quite frequently.

2.7. Aggregate Functions

Like most other relational database products, PostgreSQL supports aggregate functions. An aggregate
function computes a single result from multiple input rows. For example, there are aggregates to compute
thecount , sum, avg (average)max (maximum) andnin (minimum) over a set of rows.

As an example, we can find the highest low-temperature reading anywhere with

SELECT max(temp_lo) FROM weather;

11

Chapter 2. The SQL Language

1 row)

If we wanted to know what city (or cities) that reading occurred in, we might try
SELECT city FROM weather WHERE temp_lo = max(temp_lo); WRONG

but this will not work since the aggregateax cannot be used in th&vHERElause. (This restriction

exists because thwHERElause determines the rows that will go into the aggregation stage; so it has to

be evaluated before aggregate functions are computed.) However, as is often the case the query can be
restated to accomplish the intended result, here by ussupguery

SELECT city FROM weather
WHERE temp_lo = (SELECT max(temp_lo) FROM weather);

San Francisco
1 row)

This is OK because the subquery is an independent computation that computes its own aggregate sepa-
rately from what is happening in the outer query.

Aggregates are also very useful in combination WHROUP BYtlauses. For example, we can get the
maximum low temperature observed in each city with

SELECT city, max(temp_lo)
FROM weather
GROUP BY city;

city | max
_______________ R
Hayward | 37
San Francisco | 46
(2 rows)

which gives us one output row per city. Each aggregate result is computed over the table rows matching
that city. We can filter these grouped rows usiVING

SELECT city, max(temp_lo)
FROM weather
GROUP BY city
HAVING max(temp_lo) < 40;

city | max
_________ R R
Hayward | 37
(2 row)

which gives us the same results for only the cities that haveral_lo values below 40. Finally, if we
only care about cities whose names begin wih e might do

SELECT city, max(temp_lo)

12

Chapter 2. The SQL Language

FROM weather

WHERE city LIKE 'S%’ O
GROUP BY city

HAVING max(temp_lo) < 40;

0 TheLIKE operator does pattern matching and is explainegdation 9.6

It is important to understand the interaction between aggregates and ®QEBBNAHAVING clauses.

The fundamental difference betwedHERBNAHAVINGiIs this: WHERBelects input rows before groups

and aggregates are computed (thus, it controls which rows go into the aggregate computation), whereas
HAVING selects group rows after groups and aggregates are computed. ThwsjERElause must not

contain aggregate functions; it makes no sense to try to use an aggregate to determine which rows will be
inputs to the aggregates. On the other hat®l/INGclause always contains aggregate functions. (Strictly
speaking, you are allowed to writeHAVING clause that doesn’t use aggregates, but it's wasteful: The
same condition could be used more efficiently atwWi¢ERBtage.)

Observe that we can apply the city name restrictioWERESince it needs no aggregate. This is more
efficient than adding the restriction AVING because we avoid doing the grouping and aggregate cal-
culations for all rows that fail thevHEREheck.

2.8. Updates

You can update existing rows using theDATEcommand. Suppose you discover the temperature readings
are all off by 2 degrees as of November 28. You may update the data as follows:

UPDATE weather

SET temp_hi = temp_hi - 2, temp_lo = temp_lo - 2
WHERE date > '1994-11-28’;

Look at the new state of the data:

SELECT * FROM weather;

city | temp_lo | temp_hi | prcp | date
San Francisco | 46 | 50 | 0.25 | 1994-11-27
San Francisco | 41 | 55 | 0 | 1994-11-29
Hayward | 35 | 52 | | 1994-11-29
(3 rows)

13

Chapter 2. The SQL Language

2.9. Deletions

Suppose you are no longer interested in the weather of Hayward. Then you can do the following to delete
those rows from the table. Deletions are performed usin@gi&ETEcommand:

DELETE FROM weather WHERE city = 'Hayward’;
All weather records belonging to Hayward are removed.

SELECT * FROM weather;

city | temp_lo | temp_hi | prcp | date
+ + o +
San Francisco | 46 | 50 | 0.25 | 1994-11-27
San Francisco | 41 | 55 | 0 | 1994-11-29
(2 rows)

One should be wary of statements of the form

DELETE FROMablename ;

Without a qualificationDELETEwill removeall rows from the given table, leaving it empty. The system
will not request confirmation before doing this!

14

Chapter 3. Advanced Features

3.1. Introduction

In the previous chapter we have covered the basics of using SQL to store and access your data in Post-
greSQL. We will now discuss some more advanced features of SQL that simplify management and prevent
loss or corruption of your data. Finally, we will look at some PostgreSQL extensions.

This chapter will on occasion refer to examples foun€hapter 2o change or improve them, so it will

be of advantage if you have read that chapter. Some examples from this chapter can also be found in
advanced.sgl in the tutorial directory. This file also contains some example data to load, which is not
repeated here. (Refer ection 2.Xfor how to use the file.)

3.2. Views

Refer back to the queries 8ection 2.6Suppose the combined listing of weather records and city location
is of particular interest to your application, but you do not want to type the query each time you need it.
You can create giewover the query, which gives a name to the query that you can refer to like an ordinary
table.

CREATE VIEW myview AS
SELECT city, temp_lo, temp_hi, prcp, date, location
FROM weather, cities
WHERE city = name;

SELECT * FROM myview;

Making liberal use of views is a key aspect of good SQL database design. Views allow you to encapsulate
the details of the structure of your tables, which may change as your application evolves, behind consistent

interfaces.
Views can be used in almost any place a real table can be used. Building views upon other views is not
uncommon.

3.3. Foreign Keys

Recall theweather andcities tables fromChapter 2 Consider the following problem: You want to
make sure that no one can insert rows in Weather table that do not have a matching entry in the
cities table. This is called maintaining theferential integrityof your data. In simplistic database
systems this would be implemented (if at all) by first looking atdities table to check if a matching
record exists, and then inserting or rejecting the meather records. This approach has a number of
problems and is very inconvenient, so PostgreSQL can do this for you.

The new declaration of the tables would look like this:

CREATE TABLE cities (

15

Chapter 3. Advanced Features

city varchar(80) primary key,
location point

)i

CREATE TABLE weather (

city varchar(80) references cities,
temp_lo int,

temp_hi int,

prcp real,

date date

);

Now try inserting an invalid record:
INSERT INTO weather VALUES ('Berkeley’, 45, 53, 0.0, '1994-11-28;

ERROR: insert or update on table "weather" violates foreign key constraint "$1"
DETAIL: Key (city)=(Berkeley) is not present in table "cities".

The behavior of foreign keys can be finely tuned to your application. We will not go beyond this simple
example in this tutorial, but just refer you@hapter Sor more information. Making correct use of foreign

keys will definitely improve the quality of your database applications, so you are strongly encouraged to
learn about them.

3.4. Transactions

Transactionsare a fundamental concept of all database systems. The essential point of a transaction is that
it bundles multiple steps into a single, all-or-nothing operation. The intermediate states between the steps
are not visible to other concurrent transactions, and if some failure occurs that prevents the transaction
from completing, then none of the steps affect the database at all.

For example, consider a bank database that contains balances for various customer accounts, as well as
total deposit balances for branches. Suppose that we want to record a payment of $100.00 from Alice’s
account to Bob’s account. Simplifying outrageously, the SQL commands for this might look like

UPDATE accounts SET balance = balance - 100.00
WHERE name = ’'Alice’;
UPDATE branches SET balance = balance - 100.00
WHERE name = (SELECT branch_name FROM accounts WHERE name = ’Alice’);
UPDATE accounts SET balance = balance + 100.00
WHERE name = ’'Bob’;
UPDATE branches SET balance = balance + 100.00
WHERE name = (SELECT branch_name FROM accounts WHERE name

'Bob);

The details of these commands are not important here; the important point is that there are several separate
updates involved to accomplish this rather simple operation. Our bank’s officers will want to be assured
that either all these updates happen, or none of them happen. It would certainly not do for a system failure
to result in Bob receiving $100.00 that was not debited from Alice. Nor would Alice long remain a happy

16

Chapter 3. Advanced Features

customer if she was debited without Bob being credited. We need a guarantee that if something goes
wrong partway through the operation, none of the steps executed so far will take effect. Grouping the
updates into @ransactiongives us this guarantee. A transaction is said t@toenic from the point of

view of other transactions, it either happens completely or not at all.

We also want a guarantee that once a transaction is completed and acknowledged by the database system,
it has indeed been permanently recorded and won't be lost even if a crash ensues shortly thereafter. For
example, if we are recording a cash withdrawal by Bob, we do not want any chance that the debit to his
account will disappear in a crash just as he walks out the bank door. A transactional database guaran-
tees that all the updates made by a transaction are logged in permanent storage (i.e., on disk) before the
transaction is reported complete.

Another important property of transactional databases is closely related to the notion of atomic updates:
when multiple transactions are running concurrently, each one should not be able to see the incomplete
changes made by others. For example, if one transaction is busy totalling all the branch balances, it would
not do for it to include the debit from Alice’s branch but not the credit to Bob’s branch, nor vice versa.
So transactions must be all-or-nothing not only in terms of their permanent effect on the database, but
also in terms of their visibility as they happen. The updates made so far by an open transaction are in-
visible to other transactions until the transaction completes, whereupon all the updates become visible
simultaneously.

In PostgreSQL, a transaction is set up by surrounding the SQL commands of the transactBBGiith
andCOMMITcommands. So our banking transaction would actually look like

BEGIN;

UPDATE accounts SET balance = balance - 100.00
WHERE name = ’'Alice’;

-- etc etc

COMMIT;

If, partway through the transaction, we decide we do not want to commit (perhaps we just noticed that
Alice’s balance went negative), we can issue the comnRODUALBACKinstead ofCOMMIT and all our
updates so far will be canceled.

PostgreSQL actually treats every SQL statement as being executed within a transaction. If you do not is-
sue aBEGIN command, then each individual statement has an im@B&IN and (if successfultOMMIT
wrapped around it. A group of statements surroundeBBGIN andCOMMITis sometimes called sans-

action block

Note: Some client libraries issue BEGIN and COMMITcommands automatically, so that you may get the
effect of transaction blocks without asking. Check the documentation for the interface you are using.

3.5. Inheritance

Inheritance is a concept from object-oriented databases. It opens up interesting new possibilities of
database design.

17

Chapter 3. Advanced Features

Let's create two tables: A tabldties and a tableapitals . Naturally, capitals are also cities, so you
want some way to show the capitals implicitly when you list all cities. If you're really clever you might
invent some scheme like this:

CREATE TABLE capitals (

name text,
population real,

altitude int, -- (in ft)
state char(2)

);

CREATE TABLE non_capitals (

name text,
population real,
altitude int -- (in ft)

);

CREATE VIEW cities AS
SELECT name, population, altitude FROM capitals
UNION
SELECT name, population, altitude FROM non_capitals;

This works OK as far as querying goes, but it gets ugly when you need to update several rows, to name
one thing.

A better solution is this:

CREATE TABLE cities (

name text,
population real,
altitude int -- (in ft)

);

CREATE TABLE capitals (
state char(2)
) INHERITS (cities);

In this case, a row o€apitals inherits all columns fame, population , andaltitude) from its

parent cites . The type of the colummame is text , a native PostgreSQL type for variable length
character strings. State capitals have an extra column, state, that shows their state. In PostgreSQL, a table
can inherit from zero or more other tables.

For example, the following query finds the names of all cities, including state capitals, that are located at
an altitude over 500 ft.:

SELECT name, altitude
FROM cities
WHERE altitude > 500;

which returns:

name | altitude

18

Chapter 3. Advanced Features

___________ R —
Las Vegas | 2174
Mariposa | 1953
Madison | 845

(3 rows)

On the other hand, the following query finds all the cities that are not state capitals and are situated at an
altitude of 500 ft. or higher:

SELECT name, altitude
FROM ONLY cities
WHERE altitude > 500;

name | altitude
___________ 1
Las Vegas | 2174
Mariposa | 1953
(2 rows)

Here theONLYbeforecities indicates that the query should be run over onlydities table, and not
tables beloweities in the inheritance hierarchy. Many of the commands that we have already discussed
-- SELECT, UPDATE andDELETE-- support thiSONLYnotation.

3.6. Conclusion

PostgreSQL has many features not touched upon in this tutorial introduction, which has been oriented
toward newer users of SQL. These features are discussed in more detail in the remainder of this book.

If you feel you need more introductory material, please visit the PostgreSQL wélositimks to more
resources.

1. http://www.postgresgl.org

19

ll. The SQL Language

This part describes the use of the SQL language in PostgreSQL. We start with describing the general
syntax of SQL, then explain how to create the structures to hold data, how to populate the database, and
how to query it. The middle part lists the available data types and functions for use in SQL data commands.

The rest treats several aspects that are important for tuning a database for optimal performance.

The information in this part is arranged so that a novice user can follow it start to end to gain a full un-
derstanding of the topics without having to refer forward too many times. The chapters are intended to be
self-contained, so that advanced users can read the chapters individually as they choose. The information
in this part is presented in a narrative fashion in topical units. Readers looking for a complete description
of a particular command should look inRart VI.

Readers of this part should know how to connect to a PostgreSQL database and issue SQL commands.
Readers that are unfamiliar with these issues are encouraged t®aeatfirst. SQL commands are
typically entered using the PostgreSQL interactive terminal psqgl, but other programs that have similar
functionality can be used as well.

Chapter 4. SQL Syntax

This chapter describes the syntax of SQL. It forms the foundation for understanding the following chapters
which will go into detail about how the SQL commands are applied to define and modify data.

We also advise users who are already familiar with SQL to read this chapter carefully because there are
several rules and concepts that are implemented inconsistently among SQL databases or that are specific
to PostgreSQL.

4.1. Lexical Structure

SQL input consists of a sequenceadimmandsA command is composed of a sequencéokens ter-
minated by a semicolon (“;”). The end of the input stream also terminates a command. Which tokens are
valid depends on the syntax of the particular command.

A token can be &ey word anidentifier, aquoted identifieraliteral (or constant), or a special character
symbol. Tokens are normally separated by whitespace (space, tab, newline), but need not be if there is no
ambiguity (which is generally only the case if a special character is adjacent to some other token type).

Additionally, commentgan occur in SQL input. They are not tokens, they are effectively equivalent to
whitespace.

For example, the following is (syntactically) valid SQL input:

SELECT * FROM MY_TABLE;
UPDATE MY_TABLE SET A = 5;
INSERT INTO MY_TABLE VALUES (3, 'hi there’);

This is a sequence of three commands, one per line (although this is not required; more than one command
can be on a line, and commands can usefully be split across lines).

The SQL syntax is not very consistent regarding what tokens identify commands and which are operands
or parameters. The first few tokens are generally the command name, so in the above example we would
usually speak of a “SELECT”, an “UPDATE”, and an “INSERT” command. But for instanc&BRATE
command always requiresSET token to appear in a certain position, and this particular variation of
INSERT also requires & ALUESIn order to be complete. The precise syntax rules for each command are
described irPart VI.

4.1.1. Identifiers and Key Words

Tokens such aSELECT, UPDATE or VALUESIn the example above are exampleskeff wordsthat is,

words that have a fixed meaning in the SQL language. The tokengABLEand A are examples of
identifiers They identify names of tables, columns, or other database objects, depending on the command
they are used in. Therefore they are sometimes simply called “names”. Key words and identifiers have
the same lexical structure, meaning that one cannot know whether a token is an identifier or a key word
without knowing the language. A complete list of key words can be fourgppendix C

SQL identifiers and key words must begin with a lettez(but also letters with diacritical marks and
non-Latin letters) or an underscore) (Subsequent characters in an identifier or key word can be letters,
underscores, digit®©¢9), or dollar signs$). Note that dollar signs are not allowed in identifiers according

to the letter of the SQL standard, so their use may render applications less portable. The SQL standard

22

Chapter 4. SQL Syntax

will not define a key word that contains digits or starts or ends with an underscore, so identifiers of this
form are safe against possible conflict with future extensions of the standard.

The system uses no more thiRAMEDATALEN characters of an identifier; longer names can be written
in commands, but they will be truncated. By defallsMEDATALENs 64 so the maximum identifier
length is 63. If this limit is problematic, it can be raised by changing NW®EDATALENONStant in
src/include/postgres_ext.h

Identifier and key word names are case insensitive. Therefore
UPDATE MY_TABLE SET A = 5;
can equivalently be written as
uPDaTE my_TabLE SeT a = 5;
A convention often used is to write key words in upper case and names in lower case, e.g.,

UPDATE my_table SET a = 5;

There is a second kind of identifier: tdelimited identifieror quoted identifierlt is formed by enclosing

an arbitrary sequence of characters in double-qudtesA(delimited identifier is always an identifier,
never a key word. Stselect’ could be used to refer to a column or table named “select”, whereas an
unquotedselect would be taken as a key word and would therefore provoke a parse error when used
where a table or column name is expected. The example can be written with quoted identifiers like this:

UPDATE "my_table" SET "a" = 5;

Quoted identifiers can contain any character other than a double quote itself. (To include a double quote,
write two double quotes.) This allows constructing table or column names that would otherwise not be
possible, such as ones containing spaces or ampersands. The length limitation still applies.

Quoting an identifier also makes it case-sensitive, whereas unquoted names are always folded to lower
case. For example, the identifief©Q foo , and"foo" are considered the same by PostgreSQL, but
"Foo" and"FOO" are different from these three and each other. (The folding of unquoted names to lower
case in PostgreSQL is incompatible with the SQL standard, which says that unquoted names should be
folded to upper case. Thutso should be equivalent ttFOO" not"foo” according to the standard. If

you want to write portable applications you are advised to always quote a particular name or never quote

it.)

4.1.2. Constants

There are three kinds ahplicitly-typed constants PostgreSQL.: strings, bit strings, and numbers. Con-
stants can also be specified with explicit types, which can enable more accurate representation and more
efficient handling by the system. The implicit constants are described below; explicit constants are dis-
cussed afterwards.

23

Chapter 4. SQL Syntax

4.1.2.1. String Constants

A string constant in SQL is an arbitrary sequence of characters bounded by single guates (This

is a string’ . SQL allows single quotes to be embedded in strings by typing two adjacent single quotes,
e.g.,’'Dianne”s horse’ . In PostgreSQL single quotes may alternatively be escaped with a backslash
(\), e.g.,Dianne\'s horse’

C-style backslash escapes are also availablés a backspaceéf is a form feed)n is a newline)r is

a carriage returnt is a tab, and xxx , wherexxx is an octal number, is a byte with the corresponding
code. (Itis your responsibility that the byte sequences you create are valid characters in the server character
set encoding.) Any other character following a backslash is taken literally. Thus, to include a backslash in

a string constant, type two backslashes.

The character with the code zero cannot be in a string constant.

Two string constants that are only separated by whitespéheat least one newlinare concatenated and
effectively treated as if the string had been written in one constant. For example:

SELECT 'foo’
‘bar’;

is equivalent to

SELECT ’foobar’;

but

SELECT ’foo’ ‘bar’;

is not valid syntax. (This slightly bizarre behavior is specified by SQL; PostgreSQL is following the
standard.)

4.1.2.2. Bit-String Constants

Bit-string constants look like string constants wittBgupper or lower case) immediately before the
opening quote (no intervening whitespace), eBg.001’ . The only characters allowed within bit-string
constants are and1.

Alternatively, bit-string constants can be specified in hexadecimal notation, using a leafipger or
lower case), e.gX'1FF’ . This notation is equivalent to a bit-string constant with four binary digits for
each hexadecimal digit.

Both forms of bit-string constant can be continued across lines in the same way as regular string constants.

4.1.2.3. Numeric Constants

Numeric constants are accepted in these general forms:
digits
digits .[digits][e[+-] digits]

[digits]. digits [e[+-] digits]
digits e[+-] digits

24

Chapter 4. SQL Syntax

wheredigits is one or more decimal digits (0 through 9). At least one digit must be before or after the
decimal point, if one is used. At least one digit must follow the exponent maeleif ©One is present.

There may not be any spaces or other characters embedded in the constant. Note that any leading plus or
minus sign is not actually considered part of the constant; it is an operator applied to the constant.

These are some examples of valid numeric constants:

42

35

4,

.001

5e2
1.925e-3

A numeric constant that contains neither a decimal point nor an exponent is initially presumed to be type
integer if its value fits in typanteger (32 bits); otherwise it is presumed to be tytpgint if its value

fits in typebigint (64 bits); otherwise it is taken to be typemeric . Constants that contain decimal
points and/or exponents are always initially presumed to bertyeric .

The initially assigned data type of a numeric constant is just a starting point for the type resolution algo-
rithms. In most cases the constant will be automatically coerced to the most appropriate type depending
on context. When necessary, you can force a numeric value to be interpreted as a specific data type by
casting it. For example, you can force a numeric value to be treated astypédfloat4) by writing

REAL '1.23' -- string style
1.23:REAL -- PostgreSQL (historical) style

4.1.2.4. Constants of Other Types
A constant of ararbitrary type can be entered using any one of the following notations:
type ' string

"string i type
CAST ('string ' AS type)

The string’s text is passed to the input conversion routine for the type ¢gled. The result is a constant

of the indicated type. The explicit type cast may be omitted if there is no ambiguity as to the type the
constant must be (for example, when it is passed as an argument to a non-overloaded function), in which
case it is automatically coerced.

It is also possible to specify a type coercion using a function-like syntax:
typename (' string ')

but not all type names may be used in this way;Seetion 4.2.8or details.

The: , CAST(), and function-call syntaxes can also be used to specify run-time type conversions of
arbitrary expressions, as discussedaction 4.2.8But the formtype ’string ' can only be used to

25

Chapter 4. SQL Syntax

specify the type of a literal constant. Another restrictiorygre ° string ° is that it does not work for
array types; use or CAST() to specify the type of an array constant.

4.1.3. Operators
An operator name is a sequence of uNBMEDATALEN (63 by default) characters from the following
list:

+-*<>=~1@H#N"&|"'?

There are a few restrictions on operator names, however:

. -- and/* cannot appear anywhere in an operator name, since they will be taken as the start of a
comment.

« A multiple-character operator name cannot end or - , unless the name also contains at least one of
these characters:

~1@#ENN&|'?

For example@-is an allowed operator name, but is not. This restriction allows PostgreSQL to parse
SQL-compliant queries without requiring spaces between tokens.

When working with non-SQL-standard operator names, you will usually need to separate adjacent opera-
tors with spaces to avoid ambiguity. For example, if you have defined a left unary operator @ayoad
cannot writex*@Y, you must writex* @Yto ensure that PostgreSQL reads it as two operator names not
one.

4.1.4. Special Characters

Some characters that are not alphanumeric have a special meaning that is different from being an operator.
Details on the usage can be found at the location where the respective syntax element is described. This
section only exists to advise the existence and summarize the purposes of these characters.

- Adollar sign §) followed by digits is used to represent a positional parameter in the body of a function
definition or a prepared statement. In other contexts the dollar sign may be part of an identifier.

- Parentheseg)() have their usual meaning to group expressions and enforce precedence. In some cases
parentheses are required as part of the fixed syntax of a particular SQL command.

« Brackets [|) are used to select the elements of an array. Sestion 8.1(for more information on
arrays.

« Commas () are used in some syntactical constructs to separate the elements of a list.

« The semicolon;() terminates an SQL command. It cannot appear anywhere within a command, except
within a string constant or quoted identifier.

26

Chapter 4. SQL Syntax

« The colon () is used to select “slices” from arrays. (Sgection 8.10 In certain SQL dialects (such
as Embedded SQL), the colon is used to prefix variable names.

« The asterisk¥) has a special meaning when used in$EeECTcommand or with th€ OUNTaggregate
function.

- The period () is used in numeric constants, and to separate schema, table, and column names.

4.1.5. Comments

A comment is an arbitrary sequence of characters beginning with double dashes and extending to the end
of the line, e.g.:

-- This is a standard SQL comment

Alternatively, C-style block comments can be used:

/* multiline comment
* with nesting: /* nested block comment */
*/

where the comment begins with and extends to the matching occurrenc& afThese block comments
nest, as specified in the SQL standard but unlike C, so that one can comment out larger blocks of code
that may contain existing block comments.

A comment is removed from the input stream before further syntax analysis and is effectively replaced by
whitespace.

4.1.6. Lexical Precedence

Table 4-1shows the precedence and associativity of the operators in PostgreSQL. Most operators have
the same precedence and are left-associative. The precedence and associativity of the operators is hard-
wired into the parser. This may lead to non-intuitive behavior; for example the Boolean operatnds

> have a different precedence than the Boolean operatomnd >=. Also, you will sometimes need to

add parentheses when using combinations of binary and unary operators. For instance

SELECT 5! - 6;

will be parsed as
SELECT 5 ! (- 6);

because the parser has no idea -- until it is too late --!thatdefined as a postfix operator, not an infix
one. To get the desired behavior in this case, you must write

SELECT (5) - 6;

This is the price one pays for extensibility.

27

Table 4-1. Operator Precedence (decreasing)

Chapter 4. SQL Syntax

Operator/Element Associativity Description
left table/column name separator
left PostgreSQL-style typecast

[left array element selection

- right unary minus

" left exponentiation

*/ % left multiplication, division, modulo

+ - left addition, subtraction

IS IS TRUE, IS FALSE, IS
UNKNOWNS NULL

ISNULL test for null

NOTNULL test for not null

(any other) left all other native and user-defined
operators

IN set membership

BETWEEN containment

OVERLAPS time interval overlap

LIKE ILIKE SIMILAR string pattern matching

<> less than, greater than

= right equality, assignment

NOT right logical negation

IAND left logical conjunction

OR left logical disjunction

Note that the operator precedence rules also apply to user-defined operators that have the same names as
the built-in operators mentioned above. For example, if you define a “+” operator for some custom data
type it will have the same precedence as the built-in “+” operator, no matter what yours does.

When a schema-qualified operator name is used iIOBERATORYNtax, as for example in
SELECT 3 OPERATOR(pg_catalog.+) 4;

the OPERATORoONSstruct is taken to have the default precedence showalle 4-1for “any other” oper-
ator. This is true no matter which specific operator name appears DBIERATOR()

4.2. Value Expressions

Value expressions are used in a variety of contexts, such as in the target list3gtEETcommand,

as new column values INSERT or UPDATE or in search conditions in a number of commands. The
result of a value expression is sometimes calledalar, to distinguish it from the result of a table ex-
pression (which is a table). Value expressions are therefore also sed&d expression®r even simply

28

Chapter 4. SQL Syntax

expressions The expression syntax allows the calculation of values from primitive parts using arithmetic,
logical, set, and other operations.

A value expression is one of the following:

« A constant or literal value.

« A column reference.

- A positional parameter reference, in the body of a function definition or prepared statement.
+ A subscripted expression.

- Afield selection expression.
- An operator invocation.

A function call.

- An aggregate expression.

« Atype cast.

- A scalar subquery.

- An array constructor.

- Another value expression in parentheses, useful to group subexpressions and override precedence.

In addition to this list, there are a number of constructs that can be classified as an expression but do
not follow any general syntax rules. These generally have the semantics of a function or operator and are
explained in the appropriate location@hapter 9An example is théS NULL clause.

We have already discussed constantSéction 4.1.2The following sections discuss the remaining op-
tions.

4.2.1. Column References

A column can be referenced in the form

correlation . columnname

correlation is the name of a table (possibly qualified with a schema name), or an alias for a table
defined by means of @ROMlause, or one of the key wordiEwor OLD (NEWandOLDcan only appear in

rewrite rules, while other correlation names can be used in any SQL statement.) The correlation name and
separating dot may be omitted if the column name is unique across all the tables being used in the current
query. (See als€hapter 7)

4.2.2. Positional Parameters

A positional parameter reference is used to indicate a value that is supplied externally to an SQL statement.
Parameters are used in SQL function definitions and in prepared queries. Some client libraries also support

29

Chapter 4. SQL Syntax

specifying data values separately from the SQL command string, in which case parameters are used to
refer to the out-of-line data values. The form of a parameter reference is:

$number

For example, consider the definition of a functidapt , as

CREATE FUNCTION dept(texty RETURNS dept
AS 'SELECT * FROM dept WHERE name = $1’
LANGUAGE SQL;

Here the$1 will be replaced by the first function argument when the function is invoked.

4.2.3. Subscripts

If an expression yields a value of an array type, then a specific element of the array value can be extracted
by writing

expression [subscript]
or multiple adjacent elements (an “array slice”) can be extracted by writing
expression [lower_subscript : upper_subscript]

(Here, the brackets] are meant to appear literally.) Eashbscript s itself an expression, which
must yield an integer value.

In general the arragxpression must be parenthesized, but the parentheses may be omitted when the
expression to be subscripted is just a column reference or positional parameter. Also, multiple subscripts
can be concatenated when the original array is multi-dimensional. For example,

mytable.arraycolumn[4]
mytable.two_d_column[17][34]
$1[10:42]
(arrayfunction(a,b))[42]

The parentheses in the last example are requiredS8eigon 8.1Gor more about arrays.

4.2.4. Field Selection

If an expression yields a value of a composite type (row type), then a specific field of the row can be
extracted by writing

expression . fieldname

In general the rovexpression must be parenthesized, but the parentheses may be omitted when the
expression to be selected from is just a table reference or positional parameter. For example,

mytable.mycolumn

30

Chapter 4. SQL Syntax

$1.somecolumn
(rowfunction(a,b)).col3

(Thus, a qualified column reference is actually just a special case of the field selection syntax.)

4.2.5. Operator Invocations

There are three possible syntaxes for an operator invocation:

expression operator expression (binary infix operator)
operator expression (unary prefix operator)
expression operator (unary postfix operator)

where theoperator token follows the syntax rules &ection 4.1.3or is one of the key wordsNDQ OR
andNOT, or is a qualified operator name in the form

OPERATORgChema. operatorname)

Which particular operators exist and whether they are unary or binary depends on what operators have
been defined by the system or the u§drapter Aescribes the built-in operators.

4.2.6. Function Calls

The syntax for a function call is the name of a function (possibly qualified with a schema name), followed
by its argument list enclosed in parentheses:

function ([expression [[expression 1)

For example, the following computes the square root of 2:

sqr(2)

The list of built-in functions is irChapter 9 Other functions may be added by the user.

4.2.7. Aggregate Expressions

An aggregate expressiaepresents the application of an aggregate function across the rows selected by a
guery. An aggregate function reduces multiple inputs to a single output value, such as the sum or average
of the inputs. The syntax of an aggregate expression is one of the following:

aggregate_name (. expression)
aggregate_name (ALL expression)
aggregate_name (DISTINCT expression)
aggregate_name (*)

whereaggregate_name is a previously defined aggregate (possibly qualified with a schema name),
andexpression is any value expression that does not itself contain an aggregate expression.

31

Chapter 4. SQL Syntax

The first form of aggregate expression invokes the aggregate across all input rows for which the given
expression yields a non-null value. (Actually, it is up to the aggregate function whether to ignore null
values or not --- but all the standard ones do.) The second form is the same as the firgt| siigcthe
default. The third form invokes the aggregate for all distinct non-null values of the expression found in
the input rows. The last form invokes the aggregate once for each input row regardless of null or non-null
values; since no particular input value is specified, it is generally only useful faotim() aggregate
function.

For examplegcount(*) yields the total number of input rowspunt(fl) yields the number of input
rows in whichfl is non-null; count(distinct f1) yields the number of distinct non-null values of
fl.

The predefined aggregate functions are describ8eation 9.150ther aggregate functions may be added
by the user.

An aggregate expression may only appear in the result lidpdiNGclause of eSELECTcommand. It is
forbidden in other clauses, such\wsiEREbecause those clauses are logically evaluated before the results
of aggregates are formed.

When an aggregate expression appears in a subquergéstien 4.2.9andSection 9.15 the aggregate

is normally evaluated over the rows of the subquery. But an exception occurs if the aggregate’s argument
contains only outer-level variables: the aggregate then belongs to the nearest such outer level, and is
evaluated over the rows of that query. The aggregate expression as a whole is then an outer reference for
the subquery it appears in, and acts as a constant over any one evaluation of that subquery. The restriction
about appearing only in the result list HAVING clause applies with respect to the query level that the
aggregate belongs to.

4.2.8. Type Casts

A type cast specifies a conversion from one data type to another. PostgreSQL accepts two equivalent
syntaxes for type casts:

CAST (expression AS type)
expression :: type

The CASTsyntax conforms to SQL; the syntax with is historical PostgreSQL usage.

When a cast is applied to a value expression of a known type, it represents a run-time type conversion.
The cast will succeed only if a suitable type conversion function is available. Notice that this is subtly
different from the use of casts with constants, as shov8eirtion 4.1.2.4A cast applied to an unadorned
string literal represents the initial assignment of a type to a literal constant value, and so it will succeed
for any type (if the contents of the string literal are acceptable input syntax for the data type).

An explicit type cast may usually be omitted if there is no ambiguity as to the type that a value expression
must produce (for example, when it is assigned to a table column); the system will automatically apply
a type cast in such cases. However, automatic casting is only done for casts that are marked “OK to
apply implicitly” in the system catalogs. Other casts must be invoked with explicit casting syntax. This
restriction is intended to prevent surprising conversions from being applied silently.

It is also possible to specify a type cast using a function-like syntax:

typename (expression)

32

Chapter 4. SQL Syntax

However, this only works for types whose names are also valid as function names. For exianipée,

precision can't be used this way, but the equivaldéott8 can. Also, the namesterval , time
andtimestamp can only be used in this fashion if they are double-quoted, because of syntactic conflicts.
Therefore, the use of the function-like cast syntax leads to inconsistencies and should probably be avoided
in new applications. (The function-like syntax is in fact just a function call. When one of the two standard
cast syntaxes is used to do a run-time conversion, it will internally invoke a registered function to perform
the conversion. By convention, these conversion functions have the same name as their output type, and
thus the “function-like syntax” is nothing more than a direct invocation of the underlying conversion
function. Obviously, this is not something that a portable application should rely on.)

4.2.9. Scalar Subqueries

A scalar subquery is an ordinaBELECT query in parentheses that returns exactly one row with one
column. (SeeChapter 7for information about writing queries.) THRELECTquery is executed and the
single returned value is used in the surrounding value expression. It is an error to use a query that returns
more than one row or more than one column as a scalar subquery. (But if, during a particular execution,
the subquery returns no rows, there is no error; the scalar result is taken to be null.) The subquery can
refer to variables from the surrounding query, which will act as constants during any one evaluation of the
subquery. See alsdection 9.16or other expressions involving subqueries.

For example, the following finds the largest city population in each state:

SELECT name, (SELECT max(pop) FROM cities WHERE cities.state = states.name)
FROM states;

4.2.10. Array Constructors

An array constructor is an expression that builds an array value from values for its member elements. A
simple array constructor consists of the key wWARRAY a left square brackgt one or more expressions
(separated by commas) for the array element values, and finally a right square br&ake¢xample,

SELECT ARRAY[1,2,3+4];
array

The array element type is the common type of the member expressions, determined using the same rules
as forUNIONor CASEconstructs (se8ection 10.k

Multidimensional array values can be built by nesting array constructors. In the inner constructors, the
key wordARRAYmMay be omitted. For example, these produce the same result:

SELECT ARRAY[ARRAY[1,2], ARRAY[34]];
array

{{1.2},{3.4}}
1 row)

33

Chapter 4. SQL Syntax

SELECT ARRAY[[1,2],[3.4]];
array

{{1.2},{3.4}}
(1 row)

Since multidimensional arrays must be rectangular, inner constructors at the same level must produce
sub-arrays of identical dimensions.

Multidimensional array constructor elements can be anything yielding an array of the proper kind, not
only a SUbARRAYconstruct. For example:

CREATE TABLE arr(fl int[], f2 int[]);
INSERT INTO arr VALUES (ARRAY[[1,2],[3,4]], ARRAY][[5,6],[7,8]]);

SELECT ARRAYI[f1, f2, '{{9,10},{11,12}}:int[]] FROM arr;
array

{{{1,2}.{3,41}.{{5.6}.{7.8}},{{9,10},{11,12}}}
(1 row)

It is also possible to construct an array from the results of a subquery. In this form, the array constructor
is written with the key wordaRRAYfollowed by a parenthesized (not bracketed) subquery. For example:

SELECT ARRAY(SELECT oid FROM pg_proc WHERE proname LIKE ’bytea%;
?column?

{2011,1954,1948,1952,1951,1244,1950,2005,1949,1953,2006,31}
1 row)

The subquery must return a single column. The resulting one-dimensional array will have an element for
each row in the subquery result, with an element type matching that of the subquery’s output column.

The subscripts of an array value built witRRAYalways begin with one. For more information about
arrays, se&ection 8.10

4.2.11. Expression Evaluation Rules

The order of evaluation of subexpressions is not defined. In particular, the inputs of an operator or function
are not necessarily evaluated left-to-right or in any other fixed order.

Furthermore, if the result of an expression can be determined by evaluating only some parts of it, then
other subexpressions might not be evaluated at all. For instance, if one wrote

SELECT true OR somefunc();
thensomefunc() would (probably) not be called at all. The same would be the case if one wrote

SELECT somefunc() OR true;

34

Chapter 4. SQL Syntax
Note that this is not the same as the left-to-right “short-circuiting” of Boolean operators that is found in
some programming languages.

As a consequence, it is unwise to use functions with side effects as part of complex expressions. It is
particularly dangerous to rely on side effects or evaluation ord&@vHERENd HAVING clauses, since

those clauses are extensively reprocessed as part of developing an execution plan. Boolean expressions
(ANDORNOTcombinations) in those clauses may be reorganized in any manner allowed by the laws of
Boolean algebra.

When it is essential to force evaluation orderCcAaSE construct (se€section 9.12 may be used. For
example, this is an untrustworthy way of trying to avoid division by zero\WwHERElause:

SELECT ... WHERE x <> 0 AND y/x > 1.5
But this is safe:
SELECT ... WHERE CASE WHEN x> 0 THEN y/x > 1.5 ELSE false END;

A CASEconstruct used in this fashion will defeat optimization attempts, so it should only be done when
necessary. (In this particular example, it would doubtless be best to sidestep the problem byywriting
1.5*x instead.)

35

Chapter 5. Data Definition

This chapter covers how one creates the database structures that will hold one’s data. In a relational
database, the raw data is stored in tables, so the majority of this chapter is devoted to explaining how
tables are created and modified and what features are available to control what data is stored in the tables.
Subsequently, we discuss how tables can be organized into schemas, and how privileges can be assigned to
tables. Finally, we will briefly look at other features that affect the data storage, such as views, functions,
and triggers.

5.1. Table Basics

Atable in a relational database is much like a table on paper: It consists of rows and columns. The number
and order of the columns is fixed, and each column has a name. The number of rows is variable -- it
reflects how much data is stored at a given moment. SQL does not make any guarantees about the order of
the rows in a table. When a table is read, the rows will appear in random order, unless sorting is explicitly
requested. This is covered@hapter 7Furthermore, SQL does not assign unique identifiers to rows, so it

is possible to have several completely identical rows in a table. This is a consequence of the mathematical
model that underlies SQL but is usually not desirable. Later in this chapter we will see how to deal with
this issue.

Each column has a data type. The data type constrains the set of possible values that can be assigned to a
column and assigns semantics to the data stored in the column so that it can be used for computations. For
instance, a column declared to be of a numerical type will not accept arbitrary text strings, and the data
stored in such a column can be used for mathematical computations. By contrast, a column declared to be
of a character string type will accept almost any kind of data but it does not lend itself to mathematical
calculations, although other operations such as string concatenation are available.

PostgreSQL includes a sizable set of built-in data types that fit many applications. Users can also define
their own data types. Most built-in data types have obvious names and semantics, so we defer a detailed ex-
planation taChapter 8Some of the frequently used data typesiatkeger for whole numbersjumeric

for possibly fractional numbergext for character stringslate for datestime for time-of-day values,
andtimestamp for values containing both date and time.

To create a table, you use the aptly nan@REATE TABLEcommand. In this command you specify at
least a name for the new table, the names of the columns and the data type of each column. For example:

CREATE TABLE my_first_table (
first_column text,
second_column integer

);

This creates a table namedy first_table with two columns. The first column is named
first_column and has a data type afxt ; the second column has the naseeond_column and the

type integer . The table and column names follow the identifier syntax explainefeiction 4.1.1

The type names are usually also identifiers, but there are some exceptions. Note that the column list is
comma-separated and surrounded by parentheses.

Of course, the previous example was heavily contrived. Normally, you would give names to your tables
and columns that convey what kind of data they store. So let’s look at a more realistic example:

36

Chapter 5. Data Definition

CREATE TABLE products (
product_no integer,
name text,
price numeric

);

(Thenumeric type can store fractional components, as would be typical of monetary amounts.)

Tip: When you create many interrelated tables it is wise to choose a consistent naming pattern for the
tables and columns. For instance, there is a choice of using singular or plural nouns for table names,
both of which are favored by some theorist or other.

There is a limit on how many columns a table can contain. Depending on the column types, it is between
250 and 1600. However, defining a table with anywhere near this many columns is highly unusual and
often a questionable design.

If you no longer need a table, you can remove it usingdR®OP TABLEommand. For example:

DROP TABLE my_first_table;
DROP TABLE products;

Attempting to drop a table that does not exist is an error. Nevertheless, it is common in SQL script files to
unconditionally try to drop each table before creating it, ignoring the error messages.

If you need to modify a table that already exists look i8&ction 5.6ater in this chapter.

With the tools discussed so far you can create fully functional tables. The remainder of this chapter is
concerned with adding features to the table definition to ensure data integrity, security, or convenience. If
you are eager to fill your tables with data now you can skip ahe&htpter 6and read the rest of this
chapter later.

5.2. System Columns

Every table has severaystem columrihat are implicitly defined by the system. Therefore, these names
cannot be used as names of user-defined columns. (Note that these restrictions are separate from whether
the name is a key word or not; quoting a name will not allow you to escape these restrictions.) You do not
really need to be concerned about these columns, just know they exist.

oid
The object identifier (object ID) of a row. This is a serial number that is automatically added by
PostgreSQL to all table rows (unless the table was created WSIRgOUT OIDSIn which case this

column is not present). This column is of typid (same name as the column); section 8.1%or
more information about the type.

tableoid

The OID of the table containing this row. This column is particularly handy for queries that select
from inheritance hierarchies, since without it, it's difficult to tell which individual table a row came
from. Thetableoid can be joined against tlidd column ofpg_class to obtain the table name.

37

Chapter 5. Data Definition

xmin

The identity (transaction ID) of the inserting transaction for this row version. (A row version is an
individual state of a row; each update of a row creates a new row version for the same logical row.)

cmin
The command identifier (starting at zero) within the inserting transaction.
Xmax

The identity (transaction ID) of the deleting transaction, or zero for an undeleted row version. It
is possible for this column to be nonzero in a visible row version: That usually indicates that the
deleting transaction hasn’t committed yet, or that an attempted deletion was rolled back.

cmax
The command identifier within the deleting transaction, or zero.
ctid

The physical location of the row version within its table. Note that althougltitie can be used to
locate the row version very quickly, a ronésd will change each time it is updated or moved by
VACUUM FULLThereforectid is useless as a long-term row identifier. The OID, or even better a
user-defined serial number, should be used to identify logical rows.

OIDs are 32-bit quantities and are assigned from a single cluster-wide counter. In a large or long-lived
database, it is possible for the counter to wrap around. Hence, it is bad practice to assume that OIDs are
unique, unless you take steps to ensure that they are unique. Recommended practice when using OIDs for
row identification is to create a unique constraint on the OID column of each table for which the OID will

be used. Never assume that OIDs are unique across tables; use the combintiitsoidf and row

OID if you need a database-wide identifier. (Future releases of PostgreSQL are likely to use a separate
OID counter for each table, so thableoid = mustbe included to arrive at a globally unique identifier.)

Transaction identifiers are also 32-bit quantities. In a long-lived database it is possible for transaction IDs
to wrap around. This is not a fatal problem given appropriate maintenance proceduresapésr 2 Ior

details. It is unwise, however, to depend on the unigueness of transaction IDs over the long term (more
than one billion transactions).

Command identifiers are also 32-bit quantities. This creates a hard lim# @ Billion) SQL commands
within a single transaction. In practice this limit is not a problem --- note that the limit is on nhumber of
SQL commands, not number of rows processed.

5.3. Default Values

A column can be assigned a default value. When a new row is created and no values are specified for
some of the columns, the columns will be filled with their respective default values. A data manipulation
command can also request explicitly that a column be set to its default value, without knowing what this
value is. (Details about data manipulation commands a@hipter 6)

If no default value is declared explicitly, the null value is the default value. This usually makes sense
because a null value can be thought to represent unknown data.

In a table definition, default values are listed after the column data type. For example:

38

Chapter 5. Data Definition

CREATE TABLE products (
product_no integer,
name text,
price numeric DEFAULT 9.99

The default value may be a scalar expression, which will be evaluated whenever the default value is
inserted fotwhen the table is created).

5.4. Constraints

Data types are a way to limit the kind of data that can be stored in a table. For many applications, however,
the constraint they provide is too coarse. For example, a column containing a product price should prob-
ably only accept positive values. But there is no data type that accepts only positive numbers. Another
issue is that you might want to constrain column data with respect to other columns or rows. For example,
in a table containing product information, there should only be one row for each product number.

To that end, SQL allows you to define constraints on columns and tables. Constraints give you as much
control over the data in your tables as you wish. If a user attempts to store data in a column that would
violate a constraint, an error is raised. This applies even if the value came from the default value definition.

5.4.1. Check Constraints

A check constraint is the most generic constraint type. It allows you to specify that the value in a certain
column must satisfy an arbitrary expression. For instance, to require positive product prices, you could
use:

CREATE TABLE products (
product_no integer,
name text,
price numeric CHECK (price > 0)

As you see, the constraint definition comes after the data type, just like default value definitions. Default
values and constraints can be listed in any order. A check constraint consists of the kegHÐ
followed by an expression in parentheses. The check constraint expression should involve the column
thus constrained, otherwise the constraint would not make too much sense.

You can also give the constraint a separate name. This clarifies error messages and allows you to refer to
the constraint when you need to change it. The syntax is:

CREATE TABLE products (
product_no integer,
name text,
price numeric CONSTRAINT positive_price CHECK (price > 0)

39

Chapter 5. Data Definition

So, to specify a named constraint, use the key wilbtSTRAINTfollowed by an identifier followed by
the constraint definition.

A check constraint can also refer to several columns. Say you store a regular price and a discounted price,
and you want to ensure that the discounted price is lower than the regular price.

CREATE TABLE products (
product_no integer,
name text,
price numeric CHECK (price > 0),
discounted_price numeric CHECK (discounted_price > 0),
CHECK (price > discounted_price)

The first two constraints should look familiar. The third one uses a new syntax. It is not attached to a
particular column, instead it appears as a separate item in the comma-separated column list. Column
definitions and these constraint definitions can be listed in mixed order.

We say that the first two constraints are column constraints, whereas the third one is a table constraint
because it is written separately from the column definitions. Column constraints can also be written as
table constraints, while the reverse is not necessarily possible. The above example could also be written
as

CREATE TABLE products (
product_no integer,
name text,
price numeric,
CHECK (price > 0),
discounted_price numeric,
CHECK (discounted_price > 0),
CHECK (price > discounted_price)

);
or even

CREATE TABLE products (
product_no integer,
name text,
price numeric CHECK (price > 0),
discounted_price numeric,
CHECK (discounted_price > 0 AND price > discounted_price)

);
It's a matter of taste.

It should be noted that a check constraint is satisfied if the check expression evaluates to true or the null
value. Since most expressions will evaluate to the null value if one operand is null, they will not prevent
null values in the constrained columns. To ensure that a column does not contain null values, the not-null
constraint described in the next section should be used.

40

Chapter 5. Data Definition

5.4.2. Not-Null Constraints

A not-null constraint simply specifies that a column must not assume the null value. A syntax example:

CREATE TABLE products (
product_no integer NOT NULL
name text NOT NULL
price numeric

A not-null constraint is always written as a column constraint. A not-null constraint is functionally equiv-
alent to creating a check constraBHECK ¢olumn_name IS NOT NULL), butin PostgreSQL creating

an explicit not-null constraint is more efficient. The drawback is that you cannot give explicit names to
not-null constraints created that way.

Of course, a column can have more than one constraint. Just write the constraints after one another:

CREATE TABLE products (

product_no integer NOT NULL,

name text NOT NULL,

price numeric NOT NULL CHECK (price > 0)
);

The order doesn’t matter. It does not necessarily determine in which order the constraints are checked.

TheNOT NULLconstraint has an inverse: tNeJLL constraint. This does not mean that the column must

be null, which would surely be useless. Instead, this simply defines the default behavior that the column
may be null. TheNULL constraint is not defined in the SQL standard and should not be used in portable
applications. (It was only added to PostgreSQL to be compatible with some other database systems.) Some
users, however, like it because it makes it easy to toggle the constraint in a script file. For example, you
could start with

CREATE TABLE products (
product_no integer NULL,
name text NULL,
price numeric NULL

);

and then insert thiOTkey word where desired.

Tip: In most database designs the majority of columns should be marked not null.

5.4.3. Unique Constraints

Unique constraints ensure that the data contained in a column or a group of columns is unique with respect
to all the rows in the table. The syntax is

CREATE TABLE products (
product_no integer UNIQUE

41

Chapter 5. Data Definition

name text,
price numeric

);
when written as a column constraint, and

CREATE TABLE products (
product_no integer,
name text,
price numeric,
UNIQUE (product_no)

);

when written as a table constraint.

If a unique constraint refers to a group of columns, the columns are listed separated by commas:

CREATE TABLE example (
a integer,
b integer,
c integer,
UNIQUE (a, ¢)

It is also possible to assign names to unique constraints:

CREATE TABLE products (

product_no integer CONSTRAINT must_be_different UNIQUE,
name text,
price numeric

In general, a unique constraint is violated when there are (at least) two rows in the table where the values
of each of the corresponding columns that are part of the constraint are equal. However, null values are
not considered equal in this consideration. That means even in the presence of a unique constraint it is
possible to store an unlimited number of rows that contain a null value in at least one of the constrained
columns. This behavior conforms to the SQL standard, but we have heard that other SQL databases may
not follow this rule. So be careful when developing applications that are intended to be portable.

5.4.4. Primary Keys

Technically, a primary key constraint is simply a combination of a unique constraint and a not-null con-
straint. So, the following two table definitions accept the same data:

CREATE TABLE products (

product_no integer UNIQUE NOT NULL,
name text,
price numeric

42

Chapter 5. Data Definition

CREATE TABLE products (
product_no integer PRIMARY KEY
name text,
price numeric

Primary keys can also constrain more than one column; the syntax is similar to unigue constraints:

CREATE TABLE example (
a integer,
b integer,
c integer,
PRIMARY KEY (a, c)

A primary key indicates that a column or group of columns can be used as a unique identifier for rows in
the table. (This is a direct consequence of the definition of a primary key. Note that a unique constraint
does not, by itself, provide a unique identifier because it does not exclude null values.) This is useful
both for documentation purposes and for client applications. For example, a GUI application that allows
modifying row values probably needs to know the primary key of a table to be able to identify rows
uniquely.

A table can have at most one primary key (while it can have many unique and not-null constraints).
Relational database theory dictates that every table must have a primary key. This rule is not enforced by
PostgreSQL, but it is usually best to follow it.

5.4.5. Foreign Keys

A foreign key constraint specifies that the values in a column (or a group of columns) must match the
values appearing in some row of another table. We say this maintaireféential integritybetween two
related tables.

Say you have the product table that we have used several times already:

CREATE TABLE products (
product_no integer PRIMARY KEY,
name text,
price numeric

):

Let's also assume you have a table storing orders of those products. We want to ensure that the orders table
only contains orders of products that actually exist. So we define a foreign key constraint in the orders
table that references the products table:

CREATE TABLE orders (
order_id integer PRIMARY KEY,
product_no integer REFERENCES products (product_no)
quantity integer

43

Chapter 5. Data Definition

Now it is impossible to create orders withoduct_no entries that do not appear in the products table.

We say that in this situation the orders table isréferencingable and the products table is tieéerenced
table. Similarly, there are referencing and referenced columns.

You can also shorten the above command to

CREATE TABLE orders (
order_id integer PRIMARY KEY,
product_no integer REFERENCES products,
quantity integer

);

because in absence of a column list the primary key of the referenced table is used as the referenced
column.

A foreign key can also constrain and reference a group of columns. As usual, it then needs to be written
in table constraint form. Here is a contrived syntax example:

CREATE TABLE t1 (

a integer PRIMARY KEY,

b integer,

c integer,

FOREIGN KEY (b, ¢) REFERENCES other_table (cl, c2)
);

Of course, the number and type of the constrained columns needs to match the number and type of the
referenced columns.

A table can contain more than one foreign key constraint. This is used to implement many-to-many rela-
tionships between tables. Say you have tables about products and orders, but now you want to allow one
order to contain possibly many products (which the structure above did not allow). You could use this
table structure:

CREATE TABLE products (
product_no integer PRIMARY KEY,
name text,
price numeric

);

CREATE TABLE orders (
order_id integer PRIMARY KEY,
shipping_address text,

);

CREATE TABLE order_items (
product_no integer REFERENCES products,
order_id integer REFERENCES orders,
quantity integer,
PRIMARY KEY (product_no, order_id)

);

Note also that the primary key overlaps with the foreign keys in the last table.

44

Chapter 5. Data Definition

We know that the foreign keys disallow creation of orders that do not relate to any products. But what if
a product is removed after an order is created that references it? SQL allows you to specify that as well.
Intuitively, we have a few options:

- Disallow deleting a referenced product
« Delete the orders as well
« Something else?

To illustrate this, let’'s implement the following policy on the many-to-many relationship example above:
When someone wants to remove a product that is still referenced by an orderdgtiaitems), we
disallow it. If someone removes an order, the order items are removed as well.

CREATE TABLE products (
product_no integer PRIMARY KEY,
name text,
price numeric

);

CREATE TABLE orders (
order_id integer PRIMARY KEY,
shipping_address text,

);

CREATE TABLE order_items (
product_no integer REFERENCES products ON DELETE RESTRICT
order_id integer REFERENCES orders ON DELETE CASCADE

quantity integer,
PRIMARY KEY (product_no, order_id)

Restricting and cascading deletes are the two most common opRBB3RICT can also be written as

NO ACTIONand it's also the default if you do not specify anything. There are two other options for
what should happen with the foreign key columns when a primary key is deleEad:NULLand SET
DEFAULT Note that these do not excuse you from observing any constraints. For example, if an action
specifiesSET DEFAULTbut the default value would not satisfy the foreign key, the deletion of the primary
key will fail.

Analogous toON DELETEhere is alsctON UPDATEvhich is invoked when a primary key is changed
(updated). The possible actions are the same.

More information about updating and deleting data i€hapter 6

Finally, we should mention that a foreign key must reference columns that are either a primary key or
form a unique constraint. If the foreign key references a unique constraint, there are some additional
possibilities regarding how null values are matched. These are explained in the reference documentation
for CREATE TABLE

45

Chapter 5. Data Definition

5.5. Inheritance

Let's create two tables. The capitals table contains state capitals which are also cities. Naturally, the
capitals table should inherit from cities.

CREATE TABLE cities (

name text,
population float,
altitude int -- (in ft)

);

CREATE TABLE capitals (
state char(2)
) INHERITS (cities);

In this case, a row of capitaisheritsall attributes (name, population, and altitude) from its parent, cities.

The type of the attribute name tsxt , a native PostgreSQL type for variable length character strings.

The type of the attribute population fieat , a native PostgreSQL type for double precision floating-

point numbers. State capitals have an extra attribute, state, that shows their state. In PostgreSQL, a table
can inherit from zero or more other tables, and a query can reference either all rows of a table or all rows
of a table plus all of its descendants.

Note: The inheritance hierarchy is actually a directed acyclic graph.

For example, the following query finds the names of all cities, including state capitals, that are located at
an altitude over 500ft:

SELECT name, altitude
FROM cities
WHERE altitude > 500;

which returns:

name | altitude
___________ &
Las Vegas | 2174
Mariposa | 1953
Madison | 845

On the other hand, the following query finds all the cities that are not state capitals and are situated at an
altitude over 500ft:

SELECT name, altitude

FROM ONLY cities
WHERE altitude > 500;

name | altitude
___________ N

46

Chapter 5. Data Definition

Las Vegas | 2174
Mariposa | 1953

Here the “ONLY” before cities indicates that the query should be run over only cities and not tables below
cities in the inheritance hierarchy. Many of the commands that we have already discuS&tacT,
UPDATEandDELETE-- support this “ONLY” notation.

In some cases you may wish to know which table a particular row originated from. There is a system
column calledTABLEOID in each table which can tell you the originating table:

SELECT c.tableoid, c.name, c.altitude
FROM cities ¢
WHERE c.altitude > 500;

which returns:

tableoid | name | altitude
+ +
139793 | Las Vegas | 2174
139793 | Mariposa | 1953
139798 | Madison | 845

(If you try to reproduce this example, you will probably get different numeric OIDs.) By doing a join with
pg_class Yyou can see the actual table names:

SELECT p.relname, c.name, c.altitude
FROM cities c, pg_class p
WHERE c.altitude > 500 and c.tableoid = p.oid;

which returns:

relname | name | altitude
+ +

cities | Las Vegas | 2174

cites | Mariposa | 1953

capitals | Madison | 845

Deprecated: In previous versions of PostgreSQL, the default behavior was not to include child tables
in queries. This was found to be error prone and is also in violation of the SQL99 standard. Under the
old syntax, to get the sub-tables you append * to the table name. For example

SELECT * from cities*;

You can still explicitly specify scanning child tables by appending *, as well as explicitly specify not
scanning child tables by writing “ONLY”. But beginning in version 7.1, the default behavior for an
undecorated table name is to scan its child tables too, whereas before the default was not to do so.
To get the old default behavior, set the configuration option SQL_Inheritance to off, e.g.,

SET SQL_Inheritance TO OFF;

or add a line in your postgresgl.conf file.

47

Chapter 5. Data Definition

A limitation of the inheritance feature is that indexes (including unique constraints) and foreign key con-
straints only apply to single tables, not to their inheritance children. Thus, in the above example, specify-
ing that another table’s colunREFERENCES cities(name) would allow the other table to contain city
names but not capital names. This deficiency will probably be fixed in some future release.

5.6. Modifying Tables

When you create a table and you realize that you made a mistake, or the requirements of the application
changed, then you can drop the table and create it again. But this is not a convenient option if the table
is already filled with data, or if the table is referenced by other database objects (for instance a foreign
key constraint). Therefore PostgreSQL provides a family of commands to make modifications on existing
tables.

You can

« Add columns,

« Remove columns,

« Add constraints,

- Remove constraints,
« Change default values,
« Rename columns,

« Rename tables.

All these actions are performed using thieTER TABLEcommand.

5.6.1. Adding a Column

To add a column, use this command:

ALTER TABLE products ADD COLUMN description text;

The new column will initially be filled with null values in the existing rows of the table.

You can also define a constraint on the column at the same time, using the usual syntax:

ALTER TABLE products ADD COLUMN description text CHECK (description <> ")

A new column cannot have a not-null constraint since the column initially has to contain null values.
But you can add a not-null constraint later. Also, you cannot define a default value on a new column.
According to the SQL standard, this would have to fill the new columns in the existing rows with the

default value, which is not implemented yet. But you can adjust the column default later on.

5.6.2. Removing a Column

To remove a column, use this command:

ALTER TABLE products DROP COLUMN description;

48

Chapter 5. Data Definition

5.6.3. Adding a Constraint

To add a constraint, the table constraint syntax is used. For example:

ALTER TABLE products ADD CHECK (name <> ");
ALTER TABLE products ADD CONSTRAINT some_name UNIQUE (product_no);
ALTER TABLE products ADD FOREIGN KEY (product_group_id) REFERENCES product_groups;

To add a not-null constraint, which cannot be written as a table constraint, use this syntax:

ALTER TABLE products ALTER COLUMN product_ no SET NOT NULL;

The constraint will be checked immediately, so the table data must satisfy the constraint before it can be
added.

5.6.4. Removing a Constraint

To remove a constraint you need to know its name. If you gave it a name then that’s easy. Otherwise the
system assigned a generated name, which you need to find out. The psql commghtename can
be helpful here; other interfaces might also provide a way to inspect table details. Then the command is:

ALTER TABLE products DROP CONSTRAINT some_name;

(If you are dealing with a generated constraint namesikedon't forget that you'll need to double-quote
it to make it a valid identifier.)

This works the same for all constraint types except not-null constraints. To drop a not null constraint use

ALTER TABLE products ALTER COLUMN product_ no DROP NOT NULL;

(Recall that not-null constraints do not have names.)

5.6.5. Changing the Default

To set a new default for a column, use a command like this:

ALTER TABLE products ALTER COLUMN price SET DEFAULT 7.77;

To remove any default value, use
ALTER TABLE products ALTER COLUMN price DROP DEFAULT;

This is equivalent to setting the default to null, at least in PostgreSQL. As a consequence, it is not an error
to drop a default where one hadn’t been defined, because the default is implicitly the null value.

49

Chapter 5. Data Definition
5.6.6. Renaming a Column
To rename a column:

ALTER TABLE products RENAME COLUMN product_ no TO product_number;

5.6.7. Renaming a Table

To rename a table:

ALTER TABLE products RENAME TO items;

5.7. Privileges

When you create a database object, you become its owner. By default, only the owner of an object can do
anything with the object. In order to allow other users to uggritilegesmust be granted. (There are also
users that have the superuser privilege. Those users can always access any object.)

Note: To change the owner of a table, index, sequence, or view, use the ALTER TABLE command.

There are several different privilegeSELECT, INSERT, UPDATE DELETE RULE REFERENCES

TRIGGER CREATE TEMPORARYEXECUTE USAGE andALL PRIVILEGES. For complete information
on the different types of privileges supported by PostgreSQL, refer t&B®NT reference page. The
following sections and chapters will also show you how those privileges are used.

The right to modify or destroy an object is always the privilege of the owner only.

To assign privileges, theRANTcommand is used. So, jfe is an existing user, anaccounts is an
existing table, the privilege to update the table can be granted with

GRANT UPDATE ON accounts TO joe;
The user executing this command must be the owner of the table. To grant a privilege to a group, use
GRANT SELECT ON accounts TO GROUP staff;

The special “user” namBUBLIC can be used to grant a privilege to every user on the system. Writing
ALL in place of a specific privilege specifies that all privileges will be granted.

To revoke a privilege, use the fittingly namr&VOKEommand:

REVOKE ALL ON accounts FROM PUBLIC;

50

Chapter 5. Data Definition

The special privileges of the table owner (i.e., the right toDilRDP GRANT REVOKE etc.) are always
implicit in being the owner, and cannot be granted or revoked. But the table owner can choose to revoke
his own ordinary privileges, for example to make a table read-only for himself as well as others.

5.8. Schemas

A PostgreSQL database cluster contains one or more named databases. Users and groups of users are
shared across the entire cluster, but no other data is shared across databases. Any given client connection
to the server can access only the data in a single database, the one specified in the connection request.

Note: Users of a cluster do not necessarily have the privilege to access every database in the cluster.
Sharing of user names means that there cannot be different users named, say, joe in two databasesin
the same cluster; but the system can be configured to allow joe access to only some of the databases.

A database contains one or more nanseddemaswhich in turn contain tables. Schemas also contain
other kinds of named objects, including data types, functions, and operators. The same object name can
be used in different schemas without conflict; for example, Botfemal and myschema may contain

tables namechytable . Unlike databases, schemas are not rigidly separated: a user may access objects in
any of the schemas in the database he is connected to, if he has privileges to do so.

There are several reasons why one might want to use schemas:

- To allow many users to use one database without interfering with each other.
- To organize database objects into logical groups to make them more manageable.

- Third-party applications can be put into separate schemas so they cannot collide with the names of
other objects.

Schemas are analogous to directories at the operating system level, except that schemas cannot be nested.

5.8.1. Creating a Schema

To create a separate schema, use the com@BBATE SCHEMGive the schema a name of your choice.
For example:

CREATE SCHEMA myschema;

To create or access objects in a schema, wrgaalified nameconsisting of the schema name and table
name separated by a dot:

schema. table
Actually, the even more general syntax

database .schema. table

51

Chapter 5. Data Definition

can be used too, but at present this is just for pro-forma compliance with the SQL standard; if you write a
database name it must be the same as the database you are connected to.

So to create a table in the new schema, use

CREATE TABLE myschema.mytable (

%

This works anywhere a table name is expected, including the table modification commands and the data
access commands discussed in the following chapters.

To drop a schema if it's empty (all objects in it have been dropped), use
DROP SCHEMA myschema;
To drop a schema including all contained objects, use

DROP SCHEMA myschema CASCADE;

SeeSection 5.1For a description of the general mechanism behind this.

Often you will want to create a schema owned by someone else (since this is one of the ways to restrict
the activities of your users to well-defined namespaces). The syntax for that is:

CREATE SCHEMAchemaname AUTHORIZATION username ;

You can even omit the schema name, in which case the schema name will be the same as the user name.
SeeSection 5.8.60r how this can be useful.

Schema names beginning with_ are reserved for system purposes and may not be created by users.

5.8.2. The Public Schema

In the previous sections we created tables without specifying any schema names. By default, such tables
(and other objects) are automatically put into a schema named “public”. Every new database contains such
a schema. Thus, the following are equivalent:

CREATE TABLE products (...);
and

CREATE TABLE public.products (...);

5.8.3. The Schema Search Path

Qualified names are tedious to write, and it's often best not to wire a particular schema name into applica-
tions anyway. Therefore tables are often referred torgualified namesvhich consist of just the table

name. The system determines which table is meant by followsepech pathwhich is a list of schemas

to look in. The first matching table in the search path is taken to be the one wanted. If there is no match in
the search path, an error is reported, even if matching table names exist in other schemas in the database.

52

Chapter 5. Data Definition

The first schema named in the search path is called the current schema. Aside from being the first schema
searched, it is also the schema in which new tables will be createddfREATE TABLEommand does
not specify a schema name.

To show the current search path, use the following command:

SHOW search_path;

In the default setup this returns:

search_path

$user,public

The first element specifies that a schema with the same name as the current user is to be searched. If no
such schema exists, the entry is ignored. The second element refers to the public schema that we have
seen already.

The first schema in the search path that exists is the default location for creating new objects. That is
the reason that by default objects are created in the public schema. When objects are referenced in any
other context without schema qualification (table modification, data modification, or query commands)
the search path is traversed until a matching object is found. Therefore, in the default configuration, any
unqualified access again can only refer to the public schema.

To put our new schema in the path, we use
SET search_path TO myschema,public;

(We omit thesuser here because we have no immediate need for it.) And then we can access the table
without schema qualification:

DROP TABLE mytable;

Also, sincemyschema is the first element in the path, new objects would by default be created in it.

We could also have written

SET search_path TO myschema;

Then we no longer have access to the public schema without explicit qualification. There is nothing special
about the public schema except that it exists by default. It can be dropped, too.
See alsection 9.13or other ways to access the schema search path.

The search path works in the same way for data type names, function names, and operator names as it
does for table names. Data type and function names can be qualified in exactly the same way as table
names. If you need to write a qualified operator name in an expression, there is a special provision: you
must write

OPERATORgChema. operator)

This is needed to avoid syntactic ambiguity. An example is

SELECT 3 OPERATOR(pg_catalog.+) 4;

53

Chapter 5. Data Definition

In practice one usually relies on the search path for operators, so as not to have to write anything so ugly
as that.

5.8.4. Schemas and Privileges

By default, users cannot access any objects in schemas they do not own. To allow that, the owner of the
schema needs to grant ti8AGHrivilege on the schema. To allow users to make use of the objects in the
schema, additional privileges may need to be granted, as appropriate for the object.

A user can also be allowed to create objects in someone else’s schema. To allow tbREAEprivilege

on the schema needs to be granted. Note that by default, everyoa®BATEand USAGHrivileges on

the schemaublic . This allows all users that are able to connect to a given database to create objects in
its public schema. If you do not want to allow that, you can revoke that privilege:

REVOKE CREATE ON SCHEMA public FROM PUBLIC;

(The first “public” is the schema, the second “public” means “every user”. In the first sense it is an
identifier, in the second sense it is a reserved word, hence the different capitalization; recall the guidelines
from Section 4.1.)

5.8.5. The System Catalog Schema

In addition topublic and user-created schemas, each database containsatalog schema, which
contains the system tables and all the built-in data types, functions, and operqtossalog is always
effectively part of the search path. If it is not named explicitly in the path then it is implicitly searched
beforesearching the path’s schemas. This ensures that built-in names will always be findable. However,
you may explicitly placepg_catalog at the end of your search path if you prefer to have user-defined
names override built-in names.

In PostgreSQL versions before 7.3, table names beginningpgithwere reserved. This is no longer true:

you may create such a table name if you wish, in any non-system schema. However, it's best to continue
to avoid such names, to ensure that you won't suffer a conflict if some future version defines a system
table named the same as your table. (With the default search path, an unqualified reference to your table
name would be resolved as the system table instead.) System tables will continue to follow the convention
of having names beginning wiiby_, so that they will not conflict with unqualified user-table names so

long as users avoid they_ prefix.

5.8.6. Usage Patterns

Schemas can be used to organize your data in many ways. There are a few usage patterns that are recom-
mended and are easily supported by the default configuration:

- If you do not create any schemas then all users access the public schema implicitly. This simulates the
situation where schemas are not available at all. This setup is mainly recommended when there is only
a single user or a few cooperating users in a database. This setup also allows smooth transition from the
non-schema-aware world.

54

Chapter 5. Data Definition

« You can create a schema for each user with the same name as that user. Recall that the default search
path starts witt$user , which resolves to the user name. Therefore, if each user has a separate schema,
they access their own schemas by default.

If you use this setup then you might also want to revoke access to the public schema (or drop it alto-
gether), so users are truly constrained to their own schemas.

- To install shared applications (tables to be used by everyone, additional functions provided by third
parties, etc.), put them into separate schemas. Remember to grant appropriate privileges to allow the
other users to access them. Users can then refer to these additional objects by qualifying the names with
a schema name, or they can put the additional schemas into their path, as they choose.

5.8.7. Portability

In the SQL standard, the notion of objects in the same schema being owned by different users does not
exist. Moreover, some implementations do not allow you to create schemas that have a different name
than their owner. In fact, the concepts of schema and user are nearly equivalent in a database system
that implements only the basic schema support specified in the standard. Therefore, many users consider
gualified names to really consist afername . tablename . This is how PostgreSQL will effectively
behave if you create a per-user schema for every user.

Also, there is no concept of @ublic schema in the SQL standard. For maximum conformance to the
standard, you should not use (perhaps even removeutiie schema.

Of course, some SQL database systems might not implement schemas at all, or provide namespace sup-
port by allowing (possibly limited) cross-database access. If you need to work with those systems, then
maximum portability would be achieved by not using schemas at alll.

5.9. Other Database Objects

Tables are the central objects in a relational database structure, because they hold your data. But they are
not the only objects that exist in a database. Many other kinds of objects can be created to make the use

and management of the data more efficient or convenient. They are not discussed in this chapter, but we

give you a list here so that you are aware of what is possible.

+ Views
- Functions, operators, data types, domains
« Triggers and rewrite rules

Detailed information on these topics appearPant V.

55

Chapter 5. Data Definition

5.10. Dependency Tracking

When you create complex database structures involving many tables with foreign key constraints, views,
triggers, functions, etc. you will implicitly create a net of dependencies between the objects. For instance,
a table with a foreign key constraint depends on the table it references.

To ensure the integrity of the entire database structure, PostgreSQL makes sure that you cannot drop
objects that other objects still depend on. For example, attempting to drop the products table we had
considered irBection 5.4.5with the orders table depending on it, would result in an error message such
as this:

DROP TABLE products;

NOTICE: constraint $1 on table orders depends on table products
ERROR: cannot drop table products because other objects depend on it
HINT: Use DROP ... CASCADE to drop the dependent objects too.

The error message contains a useful hint: if you do not want to bother deleting all the dependent objects
individually, you can run

DROP TABLE products CASCADE;

and all the dependent objects will be removed. In this case, it doesn’t remove the orders table, it only
removes the foreign key constraint. (If you want to check wbROP ... CASCADE will do, run DROP
without CASCADEnNd read th&lOTICEmessages.)

All drop commands in PostgreSQL support specify@gSCADEOf course, the nature of the possible
dependencies varies with the type of the object. You can also RESTRICTinstead 0fCASCADEO get
the default behavior, which is to prevent drops of objects that other objects depend on.

Note: According to the SQL standard, specifying either RESTRICTor CASCADEs required. No database
system actually implements it that way, but whether the default behavior is RESTRICTor CASCADwaries
across systems.

Note: Foreign key constraint dependencies and serial column dependencies from PostgreSQL ver-
sions prior to 7.3 are not maintained or created during the upgrade process. All other dependency
types will be properly created during an upgrade.

56

Chapter 6. Data Manipulation

The previous chapter discussed how to create tables and other structures to hold your data. Now it is
time to fill the tables with data. This chapter covers how to insert, update, and delete table data. We also
introduce ways to effect automatic data changes when certain events occur: triggers and rewrite rules. The
chapter after this will finally explain how to extract your long-lost data back out of the database.

6.1. Inserting Data

When a table is created, it contains no data. The first thing to do before a database can be of much use is
to insert data. Data is conceptually inserted one row at a time. Of course you can also insert more than one
row, but there is no way to insert less than one row at a time. Even if you know only some column values,

a complete row must be created.

To create a new row, use thieSERT command. The command requires the table name and a value for
each of the columns of the table. For example, consider the products tabl€frapter 5

CREATE TABLE products (
product_no integer,
name text,
price numeric

)i
An example command to insert a row would be:

INSERT INTO products VALUES (1, 'Cheese’, 9.99);
The data values are listed in the order in which the columns appear in the table, separated by commas.
Usually, the data values will be literals (constants), but scalar expressions are also allowed.

The above syntax has the drawback that you need to know the order of the columns in the table. To avoid
that you can also list the columns explicitly. For example, both of the following commands have the same
effect as the one above:

INSERT INTO products (product_no, name, price) VALUES (1, 'Cheese’, 9.99);
INSERT INTO products (name, price, product_no) VALUES ('Cheese’, 9.99, 1);

Many users consider it good practice to always list the column names.

If you don’t have values for all the columns, you can omit some of them. In that case, the columns will be
filled with their default values. For example,

INSERT INTO products (product_no, name) VALUES (1, 'Cheese’);
INSERT INTO products VALUES (1, 'Cheese’);

The second form is a PostgreSQL extension. It fills the columns from the left with as many values as are
given, and the rest will be defaulted.

For clarity, you can also request default values explicitly, for individual columns or for the entire row:

INSERT INTO products (product_no, name, price) VALUES (1, 'Cheese’, DEFAULT);
INSERT INTO products DEFAULT VALUES;

57

Chapter 6. Data Manipulation

Tip: To do “bulk loads”, that is, inserting a lot of data, take a look at the COPY command. It is not as
flexible as the INSERT command, but is more efficient.

6.2. Updating Data

The modification of data that is already in the database is referred to as updating. You can update individual
rows, all the rows in a table, or a subset of all rows. Each column can be updated separately; the other
columns are not affected.

To perform an update, you need three pieces of information:

1. The name of the table and column to update,
2. The new value of the column,
3. Which row(s) to update.

Recall fromChapter hat SQL does not, in general, provide a unique identifier for rows. Therefore it is
not necessarily possible to directly specify which row to update. Instead, you specify which conditions
a row must meet in order to be updated. Only if you have a primary key in the table (no matter whether
you declared it or not) can you reliably address individual rows, by choosing a condition that matches the
primary key. Graphical database access tools rely on this fact to allow you to update rows individually.

For example, this command updates all products that have a price of 5 to have a price of 10:
UPDATE products SET price = 10 WHERE price = 5;

This may cause zero, one, or many rows to be updated. It is not an error to attempt an update that does not
match any rows.

Let’s look at that command in detail: First is the key wa@DATEollowed by the table name. As usual,

the table name may be schema-qualified, otherwise it is looked up in the path. Next is the keeword
followed by the column name, an equals sign and the new column value. The new column value can be
any scalar expression, not just a constant. For example, if you want to raise the price of all products by
10% you could use:

UPDATE products SET price = price * 1.10;

As you see, the expression for the new value can also refer to the old value. We also left\WHERE
clause. If it is omitted, it means that all rows in the table are updated. If it is present, only those rows
that match the condition after th@HEREre updated. Note that the equals sign in 38 clause is an
assignment while the one in thieHERElause is a comparison, but this does not create any ambiguity. Of
course, the condition does not have to be an equality test. Many other operators are availéthejsee

9). But the expression needs to evaluate to a Boolean result.

You can also update more than one column iv&DATECcommand by listing more than one assignment
in the SET clause. For example:

58

Chapter 6. Data Manipulation

UPDATE mytable SET a = 5, b =3, ¢ =1 WHERE a > 0;

6.3. Deleting Data

So far we have explained how to add data to tables and how to change data. What remains is to discuss how
to remove data that is no longer needed. Just as adding data is only possible in whole rows, you can only
remove entire rows from a table. In the previous section we discussed that SQL does not provide a way
to directly address individual rows. Therefore, removing rows can only be done by specifying conditions
that the rows to be removed have to match. If you have a primary key in the table then you can specify the
exact row. But you can also remove groups of rows matching a condition, or you can remove all rows in
the table at once.

You use theDELETEcommand to remove rows; the syntax is very similar toWP®ATEcommand. For
instance, to remove all rows from the products table that have a price of 10, use

DELETE FROM products WHERE price = 10;
If you simply write

DELETE FROM products;

then all rows in the table will be deleted! Caveat programmer.

59

Chapter 7. Queries

The previous chapters explained how to create tables, how to fill them with data, and how to manipulate
that data. Now we finally discuss how to retrieve the data out of the database.

7.1. Overview

The process of retrieving or the command to retrieve data from a database is aglled/dn SQL the
SELECTcommand is used to specify queries. The general syntax &fEhECTcommand is

SELECT select_list FROMtable_expression [sort_specification]

The following sections describe the details of the select list, the table expression, and the sort specification.

The simplest kind of query has the form

SELECT * FROM tablel,;

Assuming that there is a table calletlel , this command would retrieve all rows and all columns from
tablel . (The method of retrieval depends on the client application. For example, the psql program will
display an ASCll-art table on the screen, while client libraries will offer functions to extract individual
values from the query result.) The select list specificatianeans all columns that the table expression
happens to provide. A select list can also select a subset of the available columns or make calculations
using the columns. For exampletiblel has columns namedl b, andc (and perhaps others) you can

make the following query:

SELECT a, b + ¢ FROM tablel;

(assuming thatt andc are of a numerical data type). S8ection 7.3or more details.

FROM tablel is a particularly simple kind of table expression: it reads just one table. In general, table
expressions can be complex constructs of base tables, joins, and subqueries. But you can also omit the
table expression entirely and use 8®_.ECTcommand as a calculator:

SELECT 3 * 4,

This is more useful if the expressions in the select list return varying results. For example, you could call
a function this way:

SELECT random();

7.2. Table Expressions

A table expressiocomputes a table. The table expression contairR@Mclause that is optionally fol-

lowed by WHEREGROUP BYandHAVING clauses. Trivial table expressions simply refer to a table on

disk, a so-called base table, but more complex expressions can be used to modify or combine base tables
in various ways.

60

Chapter 7. Queries

The optionaWHEREGROUP BYandHAVINGclauses in the table expression specify a pipeline of succes-
sive transformations performed on the table derived irFth@Mclause. All these transformations produce
a virtual table that provides the rows that are passed to the select list to compute the output rows of the

query.

7.2.1. The FROMClause

TheFROMlause derives a table from one or more other tables given in a comma-separated table reference
list.

FROMtable_reference [, table_reference [, ...

A table reference may be a table name (possibly schema-qualified), or a derived table such as a subquery,
a table join, or complex combinations of these. If more than one table reference is listedFRQM

clause they are cross-joined (see below) to form the intermediate virtual table that may then be subject to
transformations by th&/yHEREGROUP BYandHAVINGclauses and is finally the result of the overall table
expression.

When a table reference names a table that is the supertable of a table inheritance hierarchy, the table
reference produces rows of not only that table but all of its subtable successors, unless the kayword
precedes the table name. However, the reference produces only the columns that appear in the named table
--- any columns added in subtables are ignored.

7.2.1.1. Joined Tables

A joined table is a table derived from two other (real or derived) tables according to the rules of the
particular join type. Inner, outer, and cross-joins are available.

Join Types
Cross join
T1 CROSS JOINT2

For each combination of rows froifil and T2, the derived table will contain a row consisting of
all columns inT1 followed by all columns inr2. If the tables have N and M rows respectively, the
joined table will have N * M rows.

FROMT1 CROSS JOINT2 is equivalentt-ROMT1, T2. Itis also equivalentteROMT1 INNER
JOIN T2 ON TRUHEsee below).

Qualified joins

T1 { [INNER] | { LEFT | RIGHT | FULL } [OUTER] } JOIN T2 ON boolean_expression
T1 { [INNER] | { LEFT | RIGHT | FULL } [OUTER] } JOIN T2 USING (join column list
T1 NATURAL { [INNER] | { LEFT | RIGHT | FULL } [OUTER] } JOIN T2

The worddNNER andOUTERare optional in all formdNNER s the defaultLEFT, RIGHT, andFULL
imply an outer join.

Thejoin conditionis specified in thedNor USING clause, or implicitly by the wordlATURAL The
join condition determines which rows from the two source tables are considered to “match”, as
explained in detail below.

61

Chapter 7. Queries

The ONclause is the most general kind of join condition: it takes a Boolean value expression of the
same kind as is used in@HERElause. A pair of rows fronT1 andT2 match if theONexpression
evaluates to true for them.

USING is a shorthand notation: it takes a comma-separated list of column names, which the joined
tables must have in common, and forms a join condition specifying equality of each of these pairs
of columns. Furthermore, the output of@IN USING has one column for each of the equated pairs

of input columns, followed by all of the other columns from each table. THB#NG (a, b, c)

is equivalent tdON (tl1.a = t2.a AND tl.b = t2.b AND tl.c = t2.c) with the exception

that if ONis used there will be two columnrs b, andc in the result, whereas wittiSING there will

be only one of each.

Finally, NATURALIs a shorthand form ofiSING. it forms aUSING list consisting of exactly those
column names that appear in both input tables. As WEBING, these columns appear only once in
the output table.

The possible types of qualified join are:

INNER JOIN

For each row R1 of T1, the joined table has a row for each row in T2 that satisfies the join
condition with R1.

LEFT OUTER JOIN

First, an inner join is performed. Then, for each row in T1 that does not satisfy the join condition
with any row in T2, a joined row is added with null values in columns of T2. Thus, the joined
table unconditionally has at least one row for each row in T1.

RIGHT OUTER JOIN

First, an inner join is performed. Then, for each row in T2 that does not satisfy the join condition
with any row in T1, a joined row is added with null values in columns of T1. This is the converse
of a left join: the result table will unconditionally have a row for each row in T2.

FULL OUTER JOIN

First, an inner join is performed. Then, for each row in T1 that does not satisfy the join condition
with any row in T2, a joined row is added with null values in columns of T2. Also, for each row
of T2 that does not satisfy the join condition with any row in T1, a joined row with null values
in the columns of T1 is added.

Joins of all types can be chained together or nested: either or bdth ahd T2 may be joined tables.
Parentheses may be used aroumN clauses to control the join order. In the absence of parentheses,
JOIN clauses nest left-to-right.

To put this together, assume we have talies

num | name

62

3]c

andt2

num | value

1] xxx
31 yyy
5| zzz

then we get the following results for the various joins:

=> SELECT * FROM t1 CROSS JOIN t2;
num | name | num | value

+ + +
T T T

| xxx
[yyy
| zzz
| xxx
| yyy
| zzz
| xxx
I

I

yyy
277

W WNNNRE PP
O 0 0 oo TCUoTY 9O
O WkFrF JgwkEkOowek

3
(9 rows)

=> SELECT * FROM t1 INNER JOIN t2 ON tl.num = t2.num;
num | name | num | value

+ + +
t t 1

1| a | 1| xxx
31lc I 31 vyy
(2 rows)

=> SELECT * FROM t1 INNER JOIN t2 USING (num);
num | name | value

_____ I O E——
1| a | xxx
31c | yyy

(2 rows)

=> SELECT * FROM t1 NATURAL INNER JOIN t2;
num | name | value

_____ I O E——
1| a | xxx
31c | yyy

(2 rows)

=> SELECT * FROM t1 LEFT JOIN t2 ON tl.num = t2.num;
num | name | num | value

Chapter 7. Queries

63

Chapter 7. Queries

(3 rows)

=> SELECT * FROM t1 LEFT JOIN t2 USING (num);
num | name | value

_____ I S R ——
1] a | xxx
2|b I
3]c | yyy

(3 rows)

=> SELECT * FROM t1 RIGHT JOIN t2 ON tl.num = t2.num;
num | name | num | value

----- S SRR R —
1] a | 1| xxx
3]c | 31wy

| | 5| zzz

(3 rows)

=> SELECT * FROM t1 FULL JOIN t2 ON tl.num = t2.num;
num | name | nhum | value

The join condition specified witbNcan also contain conditions that do not relate directly to the join. This
can prove useful for some queries but needs to be thought out carefully. For example:

=> SELECT * FROM t1 LEFT JOIN t2 ON tl.num = t2.num AND t2.value = 'xxx’;
num | name | num | value

+ et

1 | xxx

w N -

O T o

(3 rows)

7.2.1.2. Table and Column Aliases

A temporary name can be given to tables and complex table references to be used for references to the
derived table in further processing. This is calletdlale alias

To create a table alias, write

FROMtable_reference AS alias

or

64

Chapter 7. Queries
FROMtable_reference alias

TheASkey word is noisealias can be any identifier.

A typical application of table aliases is to assign short identifiers to long table names to keep the join
clauses readable. For example:

SELECT * FROM some_very long_table_name s JOIN another_fairly_long_name a ON s.id = a.num;

The alias becomes the new name of the table reference for the current query -- it is no longer possible to
refer to the table by the original name. Thus

SELECT * FROM my_table AS m WHERE my_table.a > 5;

is not valid SQL syntax. What will actually happen (this is a PostgreSQL extension to the standard) is that
an implicit table reference is added to tfROMlause, so the query is processed as if it were written as

SELECT * FROM my_table AS m, my_table AS my_table WHERE my_table.a > 5;

which will result in a cross join, which is usually not what you want.

Table aliases are mainly for notational convenience, but it is necessary to use them when joining a table
to itself, e.qg.,

SELECT * FROM my_table AS a CROSS JOIN my_table AS b ...

Additionally, an alias is required if the table reference is a subquerySseton 7.2.1.8

Parentheses are used to resolve ambiguities. The following statement will assign thet@liae result
of the join, unlike the previous example:

SELECT * FROM (my_table AS a CROSS JOIN my_table) AS b ...

Another form of table aliasing also gives temporary names to the columns of the table:

FROMtable_reference [AS] alias (columnl [, column2 [, ..]])

If fewer column aliases are specified than the actual table has columns, the remaining columns are not
renamed. This syntax is especially useful for self-joins or subqueries.

When an alias is applied to the output ofi@IN clause, using any of these forms, the alias hides the
original names within th@OIN . For example,

SELECT a.* FROM my_table AS a JOIN your_table AS b ON ...
is valid SQL, but
SELECT a.* FROM (my_table AS a JOIN your_table AS b ON ...) AS ¢

is not valid: the table alias is not visible outside the alias

65

Chapter 7. Queries

7.2.1.3. Subqueries

Subqueries specifying a derived table must be enclosed in parenthesesisthe assigned a table alias
name. (Se&ection 7.2.1.2 For example:

FROM (SELECT * FROM tablel) AS alias_name

This example is equivalent BROM tablel AS alias_name . More interesting cases, which can't be
reduced to a plain join, arise when the subquery involves grouping or aggregation.

7.2.1.4. Table Functions

Table functions are functions that produce a set of rows, made up of either base data types (scalar types)
or composite data types (table rows). They are used like a table, view, or subquerFrtielause of

a query. Columns returned by table functions may be includ&tirECT, JOIN, or WHERElauses in the

same manner as a table, view, or subquery column.

If a table function returns a base data type, the single result column is named like the function. If the
function returns a composite type, the result columns get the same names as the individual attributes of
the type.

A table function may be aliased in ti#ROMclause, but it also may be left unaliased. If a function is used
in theFROMlause with no alias, the function name is used as the resulting table name.

Some examples:

CREATE TABLE foo (fooid int, foosubid int, fooname text);

CREATE FUNCTION getfoo(int) RETURNS SETOF foo AS
SELECT * FROM foo WHERE fooid = $1;
" LANGUAGE SQL;

SELECT * FROM getfoo(1) AS t1;

SELECT * FROM foo
WHERE foosubid IN (select foosubid from getfoo(foo.fooid) z
where z.fooid = foo.fooid);

CREATE VIEW vw_getfoo AS SELECT * FROM getfoo(1);
SELECT * FROM vw_getfoo;

In some cases it is useful to define table functions that can return different column sets depending on how
they are invoked. To support this, the table function can be declared as returning the pserstdotgpe

When such a function is used in a query, the expected row structure must be specified in the query itself,
so that the system can know how to parse and plan the query. Consider this example:

SELECT *
FROM dblink("dbname=mydb’, 'select proname, prosrc from pg_proc’)
AS tl(proname name, prosrc text)
WHERE proname LIKE ’'bytea%’;

66

Chapter 7. Queries

Thedblink function executes a remote query (seetrib/dblink). It is declared to returnecord
since it might be used for any kind of query. The actual column set must be specified in the calling query
so that the parser knows, for example, whahould expand to.

7.2.2. The WHERElause
The syntax of th&VHERElause is

WHEREsearch_condition

wheresearch_condition is any value expression as definedSaction 4.2that returns a value of
typeboolean .

After the processing of thEROMlause is done, each row of the derived virtual table is checked against
the search condition. If the result of the condition is true, the row is kept in the output table, otherwise
(that s, if the result is false or null) it is discarded. The search condition typically references at least some
column in the table generated in tAROMlause; this is not required, but otherwise WHERElause will

be fairly useless.

Note: Before the implementation of the JOIN syntax, it was necessary to put the join condition of an
inner join in the WHERElause. For example, these table expressions are equivalent:

FROM a, b WHERE a.d = b.id AND bval > 5
and

FROM a INNER JOIN b ON (a.id = b.id) WHERE b.val > 5
or perhaps even

FROM a NATURAL JOIN b WHERE b.val> 5

Which one of these you use is mainly a matter of style. The JOIN syntax in the FROMlause is probably
not as portable to other SQL database management systems. For outer joins there is no choice in any
case: they must be done in the FROMclause. An ONUSING clause of an outer join is not equivalent to
a WHEREondition, because it determines the addition of rows (for unmatched input rows) as well as
the removal of rows from the final result.

Here are some exampleswHEREIlauses:

SELECT ... FROM fdt WHERE c1 > 5

SELECT ... FROM fdt WHERE c1 IN (1, 2, 3)

SELECT ... FROM fdt WHERE c1 IN (SELECT cl FROM t2)

SELECT ... FROM fdt WHERE c1 IN (SELECT c3 FROM t2 WHERE c2 = fdt.cl + 10)

SELECT ... FROM fdt WHERE c¢1 BETWEEN (SELECT c¢3 FROM t2 WHERE c¢2 = fdt.c1 + 10) AND 100

67

Chapter 7. Queries
SELECT ... FROM fdt WHERE EXISTS (SELECT c¢1 FROM t2 WHERE c2 > fdt.cl)

fdt is the table derived in thEROMclause. Rows that do not meet the search condition ofMHERE
clause are eliminated frofdt . Notice the use of scalar subqueries as value expressions. Just like any
other query, the subqueries can employ complex table expressions. Notice al&h hmwreferenced in

the subqueries. Qualifyingl asfdt.c1 is only necessary ifl is also the name of a column in the derived
input table of the subquery. But qualifying the column name adds clarity even when it is not needed. This
example shows how the column naming scope of an outer query extends into its inner queries.

7.2.3. The GROUP B¥and HAVING Clauses

After passing thavHERHilter, the derived input table may be subject to grouping, usingaReUP BY
clause, and elimination of group rows using th&VINGclause.

SELECT select_list
FROM ...
[WHERE ..]
GROUP BYgrouping_column_reference [, grouping_column_reference]

TheGROUP B¥lause is used to group together those rows in a table that share the same values in all the
columns listed. The order in which the columns are listed does not matter. The purpose is to reduce each
group of rows sharing common values into one group row that is representative of all rows in the group.
This is done to eliminate redundancy in the output and/or compute aggregates that apply to these groups.
For instance:

=> SELECT * FROM testl;

x|y
——tam

al|3
c| 2
b|5
alil
(4 rows)

(3 rows)

In the second query, we could not have writ&LECT * FROM testl GROUP BY xbecause there is
no single value for the columy that could be associated with each group. The grouped-by columns can
be referenced in the select list since they have a known constant value per group.

In general, if a table is grouped, columns that are not used in the grouping cannot be referenced except in
aggregate expressions. An example with aggregate expressions is:

=> SELECT x, sum(y) FROM testl GROUP BY x;

68

Chapter 7. Queries

X | sum
RS S

a | 4
b| 5
c | 2
(3 rows)

Heresum is an aggregate function that computes a single value over the entire group. More information
about the available aggregate functions can be fourgkstion 9.15

Tip: Grouping without aggregate expressions effectively calculates the set of distinct values in a col-
umn. This can also be achieved using the DISTINCT clause (see Section 7.3.3).

Here is another example: it calculates the total sales for each product (rather than the total sales on all
products).

SELECT product_id, p.name, (sum(s.units) * p.price) AS sales
FROM products p LEFT JOIN sales s USING (product_id)
GROUP BY product_id, p.name, p.price;

In this example, the colummsoduct_id , p.name , andp.price must be in theSROUP B¥lause since

they are referenced in the query select list. (Depending on how exactly the products table is set up, name
and price may be fully dependent on the product ID, so the additional groupings could theoretically be
unnecessary, but this is not implemented yet.) The colsiomits does not have to be in tlH&ROUP BY

list since it is only used in an aggregate expresssom(...)), which represents the sales of a product.

For each product, the query returns a summary row about all sales of the product.

In strict SQL,GROUP BYan only group by columns of the source table but PostgreSQL extends this to
also allowGROUP BYo group by columns in the select list. Grouping by value expressions instead of
simple column names is also allowed.

If a table has been grouped usin@gsROUP BYlause, but then only certain groups are of interest, the
HAVING clause can be used, much likeAHERElause, to eliminate groups from a grouped table. The
syntax is:

SELECT select_list FROM ... [WHERE ..] GROUP BY ... HAVING boolean_expression

Expressions in thelAVING clause can refer both to grouped expressions and to ungrouped expressions
(which necessarily involve an aggregate function).

Example:

=> SELECT x, sum(y) FROM testl GROUP BY x HAVING sum(y) > 3;

X | sum
R

a | 4
b| 5
(2 rows)

=> SELECT x, sum(y) FROM testl GROUP BY x HAVING x < 'c’
X | sum
R S

69

Chapter 7. Queries

a | 4
b|] 5
(2 rows)

Again, a more realistic example:

SELECT product_id, p.name, (sum(s.units) * (p.price - p.cost)) AS profit
FROM products p LEFT JOIN sales s USING (product_id)
WHERE s.date > CURRENT_DATE - INTERVAL ’'4 weeks'’
GROUP BY product_id, p.name, p.price, p.cost
HAVING sum(p.price * s.units) > 5000;

In the example above, theHEREIlause is selecting rows by a column that is not grouped (the expression

is only true for sales during the last four weeks), while iH#/ING clause restricts the output to groups

with total gross sales over 5000. Note that the aggregate expressions do not necessarily need to be the
same in all parts of the query.

7.3. Select Lists

As shown in the previous section, the table expression isEuECTcommand constructs an intermediate
virtual table by possibly combining tables, views, eliminating rows, grouping, etc. This table is finally
passed on to processing by thelect list The select list determines whidolumnsof the intermediate
table are actually output.

7.3.1. Select-List Items

The simplest kind of select list iswhich emits all columns that the table expression produces. Otherwise,
a select listis a comma-separated list of value expressions (as deftdection 4.2. For instance, it could
be a list of column names:

SELECT a, b, ¢ FROM ...

The columns names, b, andc are either the actual names of the columns of tables referenced in the
FROMlause, or the aliases given to them as explainekkiction 7.2.1.2The name space available in the
select list is the same as in tieHERElause, unless grouping is used, in which case it is the same as in
theHAVINGclause.

If more than one table has a column of the same name, the table name must also be given, as in
SELECT tbll.a, tbl2.a, thll.b FROM ...

When working with multiple tables, it can also be useful to ask for all the columns of a particular table:
SELECT tbl1.*, thl2.a FROM ...

(See alscsection 7.2.9

If an arbitrary value expression is used in the select list, it conceptually adds a new virtual column to the
returned table. The value expression is evaluated once for each result row, with the row’s values substituted

70

Chapter 7. Queries

for any column references. But the expressions in the select list do not have to reference any columns in the
table expression of theROMlause; they could be constant arithmetic expressions as well, for instance.

7.3.2. Column Labels

The entries in the select list can be assigned names for further processing. The “further processing” in
this case is an optional sort specification and the client application (e.g., column headers for display). For
example:

SELECT a AS value, b + ¢ AS sum FROM ...

If no output column name is specified usiag, the system assigns a default name. For simple column
references, this is the name of the referenced column. For function calls, this is the name of the function.
For complex expressions, the system will generate a generic name.

Note: The naming of output columns here is different from that done in the FROMlause (see Section
7.2.1.2). This pipeline will in fact allow you to rename the same column twice, but the name chosen in
the select list is the one that will be passed on.

7.3.3. DISTINCT
After the select list has been processed, the result table may optionally be subject to the elimination of
duplicates. Th®ISTINCT key word is written directly after thBELECTto enable this:

SELECT DISTINCT select_list

(Instead oDISTINCT the wordALL can be used to select the default behavior of retaining all rows.)

Obviously, two rows are considered distinct if they differ in at least one column value. Null values are
considered equal in this comparison.

Alternatively, an arbitrary expression can determine what rows are to be considered distinct:
SELECT DISTINCT ON (expression [, expression) select_list

Hereexpression is an arbitrary value expression that is evaluated for all rows. A set of rows for which

all the expressions are equal are considered duplicates, and only the first row of the set is kept in the
output. Note that the “first row” of a set is unpredictable unless the query is sorted on enough columns
to guarantee a unique ordering of the rows arriving atDI&TINCT filter. (DISTINCT ON processing

occurs afteORDER Borting.)

TheDISTINCT ONclause is not part of the SQL standard and is sometimes considered bad style because
of the potentially indeterminate nature of its results. With judicious useR®UP B¥and subqueries in
FROMhe construct can be avoided, but it is often the most convenient alternative.

71

Chapter 7. Queries

7.4. Combining Queries

The results of two queries can be combined using the set operations union, intersection, and difference.
The syntax is

queryl UNION [ALL] query2
queryl INTERSECT [ALL] query2
queryl EXCEPT [ALL] query2

gueryl andquery2 are queries thatcan use any of the features discussed up to this point. Set operations
can also be nested and chained, for example

queryl UNION query2 UNION query3
which really says

(queryl UNION query2) UNION query3

UNIONeffectively appends the result qéiery2 to the result ofjueryl (although there is no guarantee
that this is the order in which the rows are actually returned). Furthermore, it eliminates all duplicate rows,
in the sense dDISTINCT, unlessUNION ALLis used.

INTERSECTreturns all rows that are both in the resuligpferyl and in the result ofjluery2 . Duplicate
rows are eliminated unle$STERSECT ALLis used.

EXCEPTreturns all rows that are in the result qfieryl but not in the result ofjuery2 . (This is
sometimes called thdifferencebetween two queries.) Again, duplicates are eliminated UEHESEPT
ALL is used.

In order to calculate the union, intersection, or difference of two queries, the two queries must be “union
compatible”, which means that they both return the same number of columns, and that the corresponding
columns have compatible data types, as describ&kation 10.5

7.5. Sorting Rows

After a query has produced an output table (after the select list has been processed) it can optionally be
sorted. If sorting is not chosen, the rows will be returned in random order. The actual order in that case
will depend on the scan and join plan types and the order on disk, but it must not be relied on. A particular
output ordering can only be guaranteed if the sort step is explicitly chosen.

TheORDER BYlause specifies the sort order:

SELECT select_list
FROMtable_expression
ORDER BYcolumnl [ASC | DESC] [, column2 [ASC | DESC] ..]

columnl , etc., refer to select list columns. These can be either the output name of a colurBe¢ter
7.3.2 or the number of a column. Some examples:

SELECT a, b FROM tablel ORDER BY a;
SELECT a + b AS sum, ¢ FROM tablel ORDER BY sum;

72

Chapter 7. Queries

SELECT a, sum(b) FROM tablel GROUP BY a ORDER BY 1;

As an extension to the SQL standard, PostgreSQL also allows ordering by arbitrary expressions:
SELECT a, b FROM tablel ORDER BY a + b;
References to column names in #ROMlause that are renamed in the select list are also allowed:

SELECT a AS b FROM tablel ORDER BY a;

But these extensions do not work in queries involvioiglON INTERSECT, or EXCEPT and are not
portable to other SQL databases.

Each column specification may be followed by an optiox&tor DESCto set the sort direction to ascend-
ing or descendingdSCorder is the default. Ascending order puts smaller values first, where “smaller” is
defined in terms of the: operator. Similarly, descending order is determined with:thaperator?

If more than one sort column is specified, the later entries are used to sort rows that are equal under the
order imposed by the earlier sort columns.

7.6. LIMIT and OFFSET

LIMIT andOFFSETallow you to retrieve just a portion of the rows that are generated by the rest of the
query:

SELECT select_list
FROMtable_expression
[LIMIT { number | ALL }] [OFFSET number]

If a limit count is given, no more than that many rows will be returned (but possibly less, if the query itself
yields less rows)LIMIT ALL isthe same as omitting théMIT clause.

OFFSETsays to skip that many rows before beginning to return r@#=SET 0is the same as omitting
the OFFSETclause. If bothOFFSETandLIMIT appear, the@FFSETrows are skipped before starting to
count theLIMIT rows that are returned.

When usind.IMIT , itis important to use a@RDER B¥lause that constrains the result rows into a unique
order. Otherwise you will get an unpredictable subset of the query’s rows. You may be asking for the tenth
through twentieth rows, but tenth through twentieth in what ordering? The ordering is unknown, unless
you specifiedRDER BY

The query optimizer takddMIT into account when generating a query plan, so you are very likely to get
different plans (yielding different row orders) depending on what you givelfatT andOFFSET Thus,
using differentLIMIT /OFFSETvalues to select different subsets of a query resilltgive inconsistent
resultsunless you enforce a predictable result ordering WR’DER BYThis is not a bug; it is an inherent

1. Actually, PostgreSQL uses tliefault B-tree operator clager the column’s data type to determine the sort orderingh\ee
andDESC Conventionally, data types will be set up so thatt¢hend> operators correspond to this sort ordering, but a user-defined
data type’s designer could choose to do something different.

73

Chapter 7. Queries

consequence of the fact that SQL does not promise to deliver the results of a query in any particular order
unlessORDER BYs used to constrain the order.

74

Chapter 8. Data Types

PostgreSQL has a rich set of native data types available to users. Users may add new types to PostgreSQL
using theCREATE TYPEommand.

Table 8-1shows all built-in general-purpose data types. Most of the alternative names listed in the
“Aliases” column are the names used internally by PostgreSQL for historical reasons. In addition, some
internally used or deprecated types are available, but they are not listed here.

Table 8-1. Data Types

Name Aliases Description

bigint int8 signed eight-byte integer

bigserial serial8 autoincrementing eight-byte
integer

bit fixed-length bit string

bit varying(n) varbit(n) \variable-length bit string

boolean bool logical Boolean (true/false)

box rectangular box in the plane

bytea binary data

character varying(n) varchar(n) \variable-length character string

character(n) char(n) fixed-length character string

cidr IPv4 or IPv6 network address

circle circle in the plane

date calendar date (year, month, day

double precision float8 double precision floating-point
number

inet IPv4 or IPv6 host address

integer int ,int4 signed four-byte integer

interval(p) time span

line infinite line in the plane (not fully
implemented)

Iseg line segment in the plane

macaddr MAC address

money currency amount

numeric [(p, s)] decimal [(p, s)] exact numeric with selectable
precision

path open and closed geometric path in
the plane

point geometric point in the plane

polygon closed geometric path in the plane

75

Chapter 8. Data Types

Name Aliases Description

real float4 single precision floating-point
number

smallint int2 signed two-byte integer

serial serial4 autoincrementing four-byte integer

text \variable-length character string

time [(p)] [without time of day

time zone]

time [(p)] with time timetz time of day, including time zone

zone

timestamp [(p)] without timestamp date and time

time zone

timestamp [(p)] [with timestamptz date and time, including time zone

time zone]

Compatibility: The following types (or spellings thereof) are specified by SQL: bit , bit varying ,
boolean , char , character varying , Character , varchar , date , double precision , integer
interval , numeric , decimal , real , smallint ,time (with or without time zone), timestamp (with or
without time zone).

Each data type has an external representation determined by its input and output functions. Many of the
built-in types have obvious external formats. However, several types are either unique to PostgreSQL,
such as open and closed paths, or have several possibilities for formats, such as the date and time types.
Some of the input and output functions are not invertible. That is, the result of an output function may
lose accuracy when compared to the original input.

Some of the operators and functions (e.g., addition and multiplication) do not perform run-time error-
checking in the interests of improving execution speed. On some systems, for example, the numeric oper-
ators for some data types may silently cause underflow or overflow.

8.1. Numeric Types

Numeric types consist of two-, four-, and eight-byte integers, four- and eight-byte floating-point numbers,
and fixed-precision decimal$able 8-2lists the available types.

Table 8-2. Numeric Types

Name Storage Size Description Range

smallint 2 bytes small-range integer -32768 to +32767

integer 4 bytes usual choice for integer 12147483648 to
+2147483647

76

Chapter 8. Data Types

Name Storage Size Description Range
bigint 8 bytes large-range integer -9223372036854775808
to
9223372036854775807
decimal \variable user-specified precisionjno limit
exact
numeric \variable user-specified precisionjno limit
exact
real 4 bytes \variable-precision, 6 decimal digits precision
inexact
double precision 8 bytes \variable-precision, 15 decimal digits
inexact precision
serial 4 bytes autoincrementing integet to 2147483647
bigserial 8 bytes large autoincrementing [1 to
integer 9223372036854775807

The syntax of constants for the numeric types is describ&dation 4.1.2The numeric types have a full
set of corresponding arithmetic operators and functions. Ref€hapter 9for more information. The
following sections describe the types in detail.

8.1.1. Integer Types

The typessmallint , integer , andbigint store whole numbers, that is, numbers without fractional
components, of various ranges. Attempts to store values outside of the allowed range will result in an
error.

The typeinteger is the usual choice, as it offers the best balance between range, storage size, and
performance. Themallint type is generally only used if disk space is at a premium.fifiet type
should only be used if thiateger range is not sufficient, because the latter is definitely faster.

Thebigint type may not function correctly on all platforms, since it relies on compiler support for eight-
byte integers. On a machine without such suppsgint acts the same asteger (but still takes up

eight bytes of storage). However, we are not aware of any reasonable platform where this is actually the
case.

SQL only specifies the integer typagseger (orint) andsmallint . The typebigint , and the type
namesnt2 ,int4 ,andint8 are extensions, which are shared with various other SQL database systems.

Note: If you have a column of type smallint or bigint ~ with an index, you may encounter problems
getting the system to use that index. For instance, a clause of the form

.... WHERE smallint_column = 42

will not use an index, because the system assigns type integer to the constant 42, and PostgreSQL
currently cannot use an index when two different data types are involved. A workaround is to single-
guote the constant, thus:

.... WHERE smallint_column = 42’

This will cause the system to delay type resolution and will assign the right type to the constant.

77

Chapter 8. Data Types

8.1.2. Arbitrary Precision Numbers

The typenumeric can store numbers with up to 1000 digits of precision and perform calculations ex-
actly. It is especially recommended for storing monetary amounts and other quantities where exactness is
required. However, theumeric type is very slow compared to the floating-point types described in the
next section.

In what follows we use these terms: Témaleof anumeric is the count of decimal digits in the fractional

part, to the right of the decimal point. Tipgecisionof anumeric is the total count of significant digits in

the whole number, that is, the number of digits to both sides of the decimal point. So the number 23.5141
has a precision of 6 and a scale of 4. Integers can be considered to have a scale of zero.

Both the precision and the scale of the numeric type can be configured. To declare a column of type
numeric use the syntax

NUMERIC(recision , scale)
The precision must be positive, the scale zero or positive. Alternatively,

NUMERICfrecision)

selects a scale of 0. Specifying

NUMERIC

without any precision or scale creates a column in which numeric values of any precision and scale can
be stored, up to the implementation limit on precision. A column of this kind will not coerce input values
to any particular scale, whereagsmeric columns with a declared scale will coerce input values to that
scale. (The SQL standard requires a default scale of 0, i.e., coercion to integer precision. We find this a bit
useless. If you're concerned about portability, always specify the precision and scale explicitly.)

If the precision or scale of a value is greater than the declared precision or scale of a column, the system
will attempt to round the value. If the value cannot be rounded so as to satisfy the declared limits, an error
is raised.

The typesdecimal andnumeric are equivalent. Both types are part of the SQL standard.

8.1.3. Floating-Point Types

The data typegeal anddouble precision are inexact, variable-precision numeric types. In practice,
these types are usually implementations of IEEE Standard 754 for Binary Floating-Point Arithmetic (sin-
gle and double precision, respectively), to the extent that the underlying processor, operating system, and
compiler support it.

Inexact means that some values cannot be converted exactly to the internal format and are stored as
approximations, so that storing and printing back out a value may show slight discrepancies. Managing
these errors and how they propagate through calculations is the subject of an entire branch of mathematics
and computer science and will not be discussed further here, except for the following points:

78

Chapter 8. Data Types

- If you require exact storage and calculations (such as for monetary amounts), usenthie type
instead.

- If you want to do complicated calculations with these types for anything important, especially if you
rely on certain behavior in boundary cases (infinity, underflow), you should evaluate the implementation
carefully.

- Comparing two floating-point values for equality may or may not work as expected.

On most platforms, thesal type has a range of at least 1E-37 to 1E+37 with a precision of at least 6
decimal digits. Thelouble precision type typically has a range of around 1E-307 to 1E+308 with a
precision of at least 15 digits. Values that are too large or too small will cause an error. Rounding may take
place if the precision of an input number is too high. Numbers too close to zero that are not representable
as distinct from zero will cause an underflow error.

PostgreSQL also supports the SQL-standard notafioats andfloat(p) for specifying inexact nu-
meric types. Herep specifies the minimum acceptable precision in binary digits. PostgreSQL accepts
float(1) to float(24) as selecting thesal type, whilefloat(25) to float(53) selectdouble
precision . Values ofp outside the allowed range draw an erffrat ~ with no precision specified is
taken to meandouble precision

Note: Prior to PostgreSQL 7.4, the precision in float(p) was taken to mean so many decimal digits.
This has been corrected to match the SQL standard, which specifies that the precision is measured
in binary digits. The assumption that real and double precision have exactly 24 and 53 bits in
the mantissa respectively is correct for IEEE-standard floating point implementations. On non-IEEE
platforms it may be off a little, but for simplicity the same ranges of p are used on all platforms.

8.1.4. Serial Types

The data typeserial andbigserial are not true types, but merely a notational convenience for set-
ting up unique identifier columns (similar to tA&JTO_INCREMENTProperty supported by some other
databases). In the current implementation, specifying

CREATE TABLEtablename (
colname SERIAL

);
is equivalent to specifying:

CREATE SEQUENCtablename _colname _seq;
CREATE TABLEtablename (
colname integer DEFAULT nextval(’ tablename _colname _seq’) NOT NULL

);

Thus, we have created an integer column and arranged for its default values to be assigned from a sequence
generator. ANOT NULLconstraint is applied to ensure that a null value cannot be explicitly inserted, either.

In most cases you would also want to attaddNIQUEoOr PRIMARY KEYconstraint to prevent duplicate

values from being inserted by accident, but this is not automatic.

79

Chapter 8. Data Types

Note: Prior to PostgreSQL 7.3, serial implied UNIQUE This is no longer automatic. If you wish a
serial column to be in a unique constraint or a primary key, it must now be specified, same as with any
other data type.

To insert the next value of the sequence intodtrgal column, specify that theerial column should
be assigned its default value. This can be done either by excluding the column from the list of columns in
the INSERT statement, or through the use of hEFAULTkey word.

The type nameserial andserial4 are equivalent: both creabeteger columns. The type names
bigserial andserial8 work just the same way, except that they credigmt column.bigserial
should be used if you anticipate the use of more tiard2ntifiers over the lifetime of the table.

The sequence created fogexial column is automatically dropped when the owning column is dropped,

and cannot be dropped otherwise. (This was not true in PostgreSQL releases before 7.3. Note that this
automatic drop linkage will not occur for a sequence created by reloading a dump from a pre-7.3 database;
the dump file does not contain the information needed to establish the dependency link.) Furthermore,
this dependency between sequence and column is made only fegrthle column itself; if any other
columns reference the sequence (perhaps by manually callimgttval function), they will be broken

if the sequence is removed. Usingserial column’s sequence in such a fashion is considered bad
form; if you wish to feed several columns from the same sequence generator, create the sequence as an
independent object.

8.2. Monetary Types

Note: The money type is deprecated. Use numeric or decimal instead, in combination with the
to_char function.

The money type stores a currency amount with a fixed fractional precision;Tabée 8-3 Input is ac-
cepted in a variety of formats, including integer and floating-point literals, as well as “typical” currency
formatting, such a$1,000.00' . Output is generally in the latter form but depends on the locale.

Table 8-3. Monetary Types

Name Storage Size Description Range
money 4 bytes currency amount -21474836.48 to
+21474836.47

8.3. Character Types

Table 8-4. Character Types

’Name Description

80

Chapter 8. Data Types

Name Description

character varying(n), varchar(n) \variable-length with limit
character(n), char(n) fixed-length, blank padded
text \variable unlimited length

Table 8-4shows the general-purpose character types available in PostgreSQL.

SQL defines two primary character typebaracter varying(n) andcharacter(n), wheren is a

positive integer. Both of these types can store strings updbaracters in length. An attempt to store a
longer string into a column of these types will result in an error, unless the excess characters are all spaces,
in which case the string will be truncated to the maximum length. (This somewhat bizarre exception is
required by the SQL standard.) If the string to be stored is shorter than the declared length, values of type

character will be space-padded; values of typkaracter varying will simply store the shorter
string.
If one explicitly casts a value tcharacter varying(n) orcharacter(n),then an over-length value

will be truncated tan characters without raising an error. (This too is required by the SQL standard.)

Note: Prior to PostgreSQL 7.2, strings that were too long were always truncated without raising an
error, in either explicit or implicit casting contexts.

The notations varchar(n) and char(n) are aliases for character varying(n) and
character(n), respectivelycharacter ~ without length specifier is equivalent tharacter(1) ; if
character varying is used without length specifier, the type accepts strings of any size. The latter is

a PostgreSQL extension.

In addition, PostgreSQL provides thext type, which stores strings of any length. Although the type
text is notinthe SQL standard, several other SQL database management systems have it as well.

The storage requirement for data of these types is 4 bytes plus the actual string, and icbasetef

plus the padding. Long strings are compressed by the system automatically, so the physical requirement
on disk may be less. Long values are also stored in background tables so they do not interfere with rapid
access to the shorter column values. In any case, the longest possible character string that can be stored
is about 1 GB. (The maximum value that will be allowed foin the data type declaration is less than

that. It wouldn'’t be very useful to change this because with multibyte character encodings the number of
characters and bytes can be quite different anyway. If you desire to store long strings with no specific upper
limit, usetext or character varying without a length specifier, rather than making up an arbitrary
length limit.)

Tip: There are no performance differences between these three types, apart from the increased stor-
age size when using the blank-padded type.

Refer toSection 4.1.2.for information about the syntax of string literals, andioapter For information
about available operators and functions.

Example 8-1. Using the character types

CREATE TABLE testl (a character(4));

81

INSERT INTO testl VALUES (‘ok’);

SELECT a, char_length(a) FROM testl; -- ad
a | char_length
______ S S
ok | 4

CREATE TABLE test2 (b varchar(5));
INSERT INTO test2 VALUES (‘ok’);

INSERT INTO test2 VALUES ('good);
INSERT INTO test2 VALUES (too long’);

ERROR:

value too long for type character varying(5)

Chapter 8. Data Types

INSERT INTO test2 VALUES ('too long’::varchar(5)); -- explicit truncation
SELECT b, char_length(b) FROM test2;

b | char_length
_______ I N —

ok | 2
good | 5
too | | 5

O Thechar_length

function is discussed iBection 9.4

There are two other fixed-length character types in PostgreSQL, sholablie 8-5 Thenametype exists

onlyfor storage of identifiers in the internal system catalogs and is not intended for use by the general user.
Its length is currently defined as 64 bytes (63 usable characters plus terminator) but should be referenced
using the constaMAMEDATALEN he length is set at compile time (and is therefore adjustable for special

uses); the default maximum length may change in a future release. Theigpe (note the quotes) is

different fromchar(1)

as a poor-man’s enumeration type.

Table 8-5. Special Character Types

in that it only uses one byte of storage. It is internally used in the system catalogs

Name Storage Size Description
"char" 1 byte single-character internal type
name 64 bytes internal type for object names

8.4. Binary Data Types

Thebytea data type allows storage of binary strings; 3able 8-6

Table 8-6. Binary Data Types

Name

Storage Size

Description

bytea

4 bytes plus the actual binary
string

\variable-length binary string

A binary string is a sequence of octets (or bytes). Binary strings are distinguished from characters strings
by two characteristics: First, binary strings specifically allow storing octets of value zero and other “non-

82

Chapter 8. Data Types

printable” octets (defined as octets outside the range 32 to 126). Second, operations on binary strings
process the actual bytes, whereas the encoding and processing of character strings depends on locale
settings.

When enteringpytea values, octets of certain valussistbe escaped (but all octet valuasybe escaped)

when used as part of a string literal in an SQL statement. In general, to escape an octet, it is converted
into the three-digit octal number equivalent of its decimal octet value, and preceded by two backslashes.
Table 8-7contains the characters which must be escaped, and gives the alternate escape sequences where
applicable.

Table 8-7.bytea Literal Escaped Octets

Decimal Octet Description Escaped Input Example Output
Value Representation Representation
0 zero octet "\\000’ SELECT 000
"\\000::bytea;
39 single quote \"or’\\047’ SELECT ’
'\"::bytea;
92 backslash ALY or'\\134' |SELECT \
"\\W::bytea;
0to 31 and 127 to [‘non-printable” '\ xxx (octal SELECT 001
255 octets value) "\001::bytea;

The requirement to escape “non-printable” octets actually varies depending on locale settings. In some
instances you can get away with leaving them unescaped. Note that the result in each of the examples
in Table 8-7was exactly one octet in length, even though the output representation of the zero octet and
backslash are more than one character.

The reason that you have to write so many backslashes, as sh@alnléB-7 is that an input string written

as a string literal must pass through two parse phases in the PostgreSQL server. The first backslash of each
pair is interpreted as an escape character by the string-literal parser and is therefore consumed, leaving the
second backslash of the pair. The remaining backslash is then recognizediptetheinput function as

starting either a three digit octal value or escaping another backslash. For example, a string literal passed

to the server ad\001’ becomed001 after passing through the string-literal parser. Yoo is then

sent to thebytea input function, where it is converted to a single octet with a decimal value of 1. Note

that the apostrophe character is not treated speciallytea , so it follows the normal rules for string

literals. (See als&ection 4.1.2.)

Bytea octets are also escaped in the output. In general, each “non-printable” octet is converted into its
equivalent three-digit octal value and preceded by one backslash. Most “printable” octets are represented
by their standard representation in the client character set. The octet with decimal value 92 (backslash)
has a special alternative output representation. Details diahile 8-8

Table 8-8.bytea Output Escaped Octets

Decimal Octet Description Escaped Output [Example Output Result
Value Representation
92 backslash \ SELECT \

"\\134"::bytea;

83

Chapter 8. Data Types

Decimal Octet Description Escaped Output [Example Output Result

\Value Representation

0 to 31 and 127 to [‘non-printable” xxx (octal value) |SELECT 001

255 octets '\001"::bytea;

32 to 126 “printable” octets [client character setSELECT ~
representation "\176'::bytea;

Depending on the front end to PostgreSQL you use, you may have additional work to do in terms of
escaping and unescapibgtea strings. For example, you may also have to escape line feeds and carriage
returns if your interface automatically translates these.

The SQL standard defines a different binary string type, ca@ledBor BINARY LARGE OBJECTThe
input format is different compared toytea , but the provided functions and operators are mostly the
same.

8.5. Date/Time Types
PostgreSQL supports the full set of SQL date and time types, showabie 8-9

Table 8-9. Date/Time Types

Name Storage Size |Description Low Value High Value Resolution
timestamp [8 bytes both date and 4713 BC 5874897 AD (1 microsecond
(p) 11 time 14 digits
without time

zone |

timestamp [8 bytes both date and 4713 BC 5874897 AD |1 microsecond
(p) 1 with time, with time 14 digits

time zone zone

interval [12 bytes time intervals |-178000000 [178000000 years microsecond
(p)] years

date 4 bytes dates only 4713 BC 32767 AD 1 day

time [(p)] 8bytes times of day onl$0:00:00.00 23:59:59.99 1 microsecond
[without

time zone]

time [(p)] [12bytes times of day |00:00:00.00+12[23:59:59.99-12 [1 microsecond
with time only, with time

zone zone

Note: Prior to PostgreSQL 7.3, writing just timestamp was equivalent to timestamp with time
zone . This was changed for SQL compliance.

time , timestamp , andinterval accept an optional precision valpewhich specifies the number of
fractional digits retained in the seconds field. By default, there is no explicit bound on precision. The

84

Chapter 8. Data Types

allowed range op is from 0 to 6 for theimestamp andinterval types.

Note: When timestamp values are stored as double precision floating-point numbers (currently the
default), the effective limit of precision may be less than 6. timestamp values are stored as seconds
before or after midnight 2000-01-01. Microsecond precision is achieved for dates within a few years of
2000-01-01, but the precision degrades for dates further away. When timestamp values are stored as
eight-byte integers (a compile-time option), microsecond precision is available over the full range of
values. However eight-byte integer timestamps have a more limited range of dates than shown above:
from 4713 BC up to 294276 AD.

For thetime types, the allowed range pfis from 0 to 6 when eight-byte integer storage is used, or from
0 to 10 when floating-point storage is used.

The typetime with time zone is defined by the SQL standard, but the definition exhibits properties
which lead to questionable usefulness. In most cases, a combinatidateof time , timestamp
without time zone , and timestamp with time zone should provide a complete range of
date/time functionality required by any application.

The typesabstime andreltime are lower precision types which are used internally. You are discour-
aged from using these types in new applications and are encouraged to move any old ones over when
appropriate. Any or all of these internal types might disappear in a future release.

8.5.1. Date/Time Input

Date and time input is accepted in almost any reasonable format, including 1ISO 8601, SQL-compatible,
traditional POSTGRES, and others. For some formats, ordering of month, day, and year in date input is
ambiguous and there is support for specifying the expected ordering of these fields. Gatstyte

parameter tdADYto select month-day-year interpretati@MYto select day-month-year interpretation, or
YMDto select year-month-day interpretation.

PostgreSQL is more flexible in handling date/time input than the SQL standard requirédgselix B
for the exact parsing rules of date/time input and for the recognized text fields including months, days of
the week, and time zones.

Remember that any date or time literal input needs to be enclosed in single quotes, like text strings. Refer
to Section 4.1.2.4or more information. SQL requires the following syntax

type [(p)]’ value’

wherep in the optional precision specification is an integer corresponding to the number of fractional
digits in the seconds field. Precision can be specifiedifar , timestamp , andinterval ~ types. The
allowed values are mentioned above. If no precision is specified in a constant specification, it defaults to
the precision of the literal value.

8.5.1.1. Dates
Table 8-10shows some possible inputs for tthete type.

Table 8-10. Date Input

85

Chapter 8. Data Types

Example Description

January 8, 1999 unambiguous in anglatestyle input mode

1999-01-08 ISO 8601; January 8 in any mode (recommended
format)

1/8/1999 January 8 ilMDYmode; August 1 ibMYmode

1/18/1999 January 18 iMDYmode; rejected in other modes

01/02/03 January 2, 2003 iMmDYmode; February 1, 2003 in
DMYmode; February 3, 2001 ivDmode

1999-Jan-08 January 8 in any mode

Jan-08-1999 January 8 in any mode

08-Jan-1999 January 8 in any mode

99-Jan-08 January 8 iryMDmode, else error

08-Jan-99 January 8, except error iviDmode

Jan-08-99 January 8, except error MiviDmode

19990108 ISO 8601; January 8, 1999 in any mode

990108 ISO 8601; January 8, 1999 in any mode

1999.008 lyear and day of year

J2451187 Julian day

January 8, 99 BC year 99 before the Common Era

8.5.1.2. Times

The time-of-day types aréme [(p)] without time zone andtime [(p)] with time

zone . Writing justtime is equivalent taime without time zone

Valid input for these types consists of a time of day followed by an optional time zoneTébé=8-11
and Table 8-12) If a time zone is specified in the input fome without time zone , it is silently
ignored.

Table 8-11. Time Input

Example Description

04:05:06.789 ISO 8601

04:05:06 ISO 8601

04:05 ISO 8601

040506 ISO 8601

04:05 AM same as 04:05; AM does not affect value
04:05 PM same as 16:05; input hour must be <= 12
04:05:06.789-8 ISO 8601

04:05:06-08:00 ISO 8601

04:05-08:00 ISO 8601

040506-08 ISO 8601

86

Chapter 8. Data Types

Example

Description

04:05:06 PST

time zone specified by name

Table 8-12. Time Zone Input

Example Description

PST Pacific Standard Time

-8:00 ISO-8601 offset for PST
-800 ISO-8601 offset for PST

-8 ISO-8601 offset for PST

zulu Military abbreviation for UTC
z Short form ofzulu

8.5.1.3. Time Stamps
Valid input for the time stamp types consists of a concatenation of a date and a time, followed by an
optionalADor BC, followed by an optional time zone. Thus

1999-01-08 04:05:06

and

1999-01-08 04:05:06 -8:00

are valid values, which follow the ISO 8601 standard. In addition, the wide-spread format

January 8 04:05:06 1999 PST

is supported.

For timestamp [without time zone] , any explicit time zone specified in the input is silently ig-
nored. That is, the resulting date/time value is derived from the explicit date/time fields in the input value,
and is not adjusted for time zone.

Fortimestamp with time zone , the internally stored value is always in UTC (Universal Coordinated
Time, traditionally known as Greenwich Mean Time, GMT). An input value that has an explicit time zone
specified is converted to UTC using the appropriate offset for that time zone. If no time zone is stated in
the input string, then it is assumed to be in the time zone indicated by the systesaisne parameter,

and is converted to UTC using the offset for tiieezone zone.

When atimestamp with time zone value is output, it is always converted from UTC to the current
timezone zone, and displayed as local time in that zone. To see the time in another time zone, either
changeimezone or use theAT TIME ZONEconstruct (se&ection 9.8.3

Conversions betwedimestamp without time zone andtimestamp with time zone normally
assume that thémestamp without time zone value should be taken or given tezone local
time. A different zone reference can be specified for the conversion ASINHME ZONE

87

Chapter 8. Data Types

8.5.1.4. Intervals

interval values can be written with the following syntax:
[@] quantity unit [quantity unit ..] [direction]

Where:quantity is a number (possibly signed)nit is second , minute , hour , day, week, month ,
year , decade , century , millennium , or abbreviations or plurals of these unidétection can be
ago or empty. The at sign@ is optional noise. The amounts of different units are implicitly added up
with appropriate sign accounting.

Quantities of days, hours, minutes, and seconds can be specified without explicit unit markings. For ex-
ample,;1 12:59:10’ is read the same &b day 12 hours 59 min 10 sec’

The optional precisiop should be between 0 and 6, and defaults to the precision of the input literal.

8.5.1.5. Special Values

The following SQL-compatible functions can be used as date or time values for the corresponding data
type: CURRENT_DATECURRENT_TIME CURRENT_TIMESTAMR.OCALTIME LOCALTIMESTAMPThe
latter four accept an optional precision specification. (SeeZdstion 9.8.9

PostgreSQL also supports several special date/time input values for convenience, as Sade8na13

The valuesnfinity and-infinity are specially represented inside the system and will be displayed
the same way; but the others are simply notational shorthands that will be converted to ordinary date/time
values when read. All of these values are treated as normal constants and need to be written in single
quotes.

Table 8-13. Special Date/Time Inputs

Input String \Valid Types Description
epoch date , timestamp 1970-01-01 00:(
infinity timestamp later than all oth
-infinity timestamp earlier than all o
now date , time , timestamp current transact
today date , timestamp midnight today
tomorrow date , timestamp midnight tomorr
yesterday date , timestamp midnight yesterc
allballs time 00:00:00.00 UT(

8.5.2. Date/Time Output

The output format of the date/time types can be set to one of the four styles ISO 8601, SQL (Ingres), tra-
ditional POSTGRES, and German, using the comn&®d datestyle . The default is the ISO format.

(The SQL standard requires the use of the ISO 8601 format. The name of the “SQL” output format is a
historical accident.Jable 8-14shows examples of each output style. The output ofithe andtime

types is of course only the date or time part in accordance with the given examples.

88

Chapter 8. Data Types

Table 8-14. Date/Time Output Styles

Style Specification Description Example

ISO ISO 8601/SQL standard 1997-12-17 07:37:16-08

SQL traditional style 12/17/1997 07:37:16.00 PST
POSTGRES original style \Wed Dec 17 07:37:16 1997 PST
German regional style 17.12.1997 07:37:16.00 PST

In the SQL and POSTGRES styles, day appears before month if DMY field ordering has been specified,
otherwise month appears before day. (Seetion 8.5.Xor how this setting also affects interpretation of
input values.)lable 8-15shows an example.

Table 8-15. Date Order Conventions

datestyle Setting Input Ordering Example Output

SQL, DMY day /month /year 17/12/1997 15:37:16.00 CET
SQL, MDY month /day /year 12/17/1997 07:37:16.00 PST
Postgres, DMY day /month /year Wed 17 Dec 07:37:16 1997 PST

interval ~ output looks like the input format, except that units likentury or wek are converted to
years and days and thado is converted to an appropriate sign. In ISO mode the output looks like

[quantity unit [.. 111 days] [hours : minutes :sekunden]

The date/time styles can be selected by the user using§Bfedatestyle command, thelatestyle
parameter in thpostgresql.conf configuration file, or th€GDATESTYLENvironment variable on the
server or client. The formatting functian_char (seeSection 9.7 is also available as a more flexible
way to format the date/time output.

8.5.3. Time Zones

Time zones, and time-zone conventions, are influenced by political decisions, not just earth geometry.
Time zones around the world became somewhat standardized during the 1900’s, but continue to be prone
to arbitrary changes. PostgreSQL uses your operating system’s underlying features to provide output time-
zone support, and these systems usually contain information for only the time period 1902 through 2038
(corresponding to the full range of conventional Unix system tini@gstamp with time zone and

time with time zone will use time zone information only within that year range, and assume that
times outside that range are in UTC. But since time zone support is derived from the underlying operating
system time-zone capabilities, it can handle daylight-saving time and other special behavior.

PostgreSQL endeavors to be compatible with the SQL standard definitions for typical usage. However,
the SQL standard has an odd mix of date and time types and capabilities. Two obvious problems are:

- Although thedate type does not have an associated time zonetitee type can. Time zones in the
real world can have no meaning unless associated with a date as well as a time since the offset may
vary through the year with daylight-saving time boundaries.

89

Chapter 8. Data Types

- The default time zone is specified as a constant numeric offset from UTC. It is not possible to adapt to
daylight-saving time when doing date/time arithmetic across DST boundaries.

To address these difficulties, we recommend using date/time types that contain both date and time when
using time zones. We recommendt using the typaime with time zone (though it is supported by
PostgreSQL for legacy applications and for compatibility with other SQL implementations). PostgreSQL
assumes your local time zone for any type containing only date or time.

All dates and times are stored internally in UTC. Times are converted to local time on the database server
before being sent to the client, hence by default are in the server time zone.

There are several ways to select the time zone used by the server:

- The Tz environment variable on the server host is used by the server as the default time zone, if no
other is specified.

« Thetimezone configuration parameter can be set in thegidetgresgl.conf

- ThePGTZenvironment variable, if set at the client, is used by libpg applications to s&Ed ariIME
ZONEcommand to the server upon connection.

+ The SQL comman8ET TIME ZONEsets the time zone for the session.

Note: If an invalid time zone is specified, the time zone becomes UTC (on most systems anyway).

Refer toAppendix Bfor a list of available time zones.

8.5.4. Internals

PostgreSQL uses Julian dates for all date/time calculations. They have the nice property of correctly
predicting/calculating any date more recent than 4713 BC to far into the future, using the assumption that
the length of the year is 365.2425 days.

Date conventions before the 19th century make for interesting reading, but are not consistent enough to
warrant coding into a date/time handler.

8.6. Boolean Type

PostgreSQL provides the standard SQL tigpelean . boolean can have one of only two states: “true”
or “false”. A third state, “unknown”, is represented by the SQL null value.

Valid literal values for the “true” state are:

TRUE
"
‘true’
Yy

90

’

yes
T

1

For the “false” state, the following values can be used:

FAL
lf!
'fals
"
'no
0

)

Using the key word§RUEandFALSE s preferred (and SQL-compliant).

SE

e’

Example 8-2. Using theboolean type

CREATE TABLE testl (a boolean, b text);

INSERT INTO testl VALUES (TRUE, ’'sic est);
INSERT INTO testl VALUES (FALSE, 'non est);
SELECT * FROM testl;

a | b

N S

SELECT * FROM testl WHERE a;

t | sic est
f | non est

a | b

JE S,

Example 8-Zhows thaboolean values are output using the letterandf .

Tip: Values of the boolean
integer)
THEN ‘value if true’ ELSE ‘value if false’ END

t | sic est

boolean uses 1 byte of storage.

8.7. Geome

tric Types

Chapter 8. Data Types

type cannot be cast directly to other types (e.g., CAST (boolval
does not work). This can be accomplished using the CASEexpression: CASE WHENboolval

. See also Section 9.12.

AS

Geometric data types represent two-dimensional spatial objesitée 8-16shows the geometric types
available in PostgreSQL. The most fundamental type, the point, forms the basis for all of the other types.

Table 8-16. Geometric Types

Name

Storage Size

Representation

Description

point

16 bytes

Point on the plane

(x,y)

91

Chapter 8. Data Types

Name Storage Size Representation Description

line 32 bytes Infinite line (not fully |((x1,y1),(x2,y2))
implemented)

Iseg 32 bytes Finite line segment ((x1,y1),(x2,y2))

box 32 bytes Rectangular box ((x1,y1),(x2,y2))

path 16+16n bytes Closed path (similar to |((x1,y1),...)
polygon)

path 16+16n bytes Open path [(x1,y1),...]

polygon 40+16n bytes Polygon (similar to close@x1,y1),...)
path)

circle 24 bytes Circle <(x,y),r> (center and

radius)

Arich set of functions and operators is available to perform various geometric operations such as scaling,
translation, rotation, and determining intersections. They are explairgekiton 9.9

8.7.1. Points

Points are the fundamental two-dimensional building block for geometric types. Values pbiype are
specified using the following syntax:

wherex andy are the respective coordinates as floating-point numbers.

8.7.2. Line Segments

Line segmentsifeg) are represented by pairs of points. Values of tigeg are specified using the
following syntax:

(C xx, y1),(x2,vy2))
(xt,yl),(x2, y2)
x1, yl X2 , y2

where(x1, y1) and(x2, y2) are the end points of the line segment.

8.7.3. Boxes

Boxes are represented by pairs of points that are opposite corners of the box. Values lafxtyige
specified using the following syntax:

(C xx, y1),(x2,vy2))
(xt,yl),(x2, y2)
x1, yl X2 , y2

where(x1, y1) and(x2, y2) are the opposite corners of the box.

92

Chapter 8. Data Types

Boxes are output using the first syntax. The corners are reordered on input to store the upper right corner,
then the lower left corner. Other corners of the box can be entered, but the lower left and upper right
corners are determined from the input and stored corners.

8.7.4. Paths

Paths are represented by connected sets of points. Paths cparbehere the first and last points in the
set are not connected, anlbsed where the first and last point are connected. The funciopsn(p)
andpclose(p) are supplied to force a path to be open or closed, and the fundsiomesn(p) and
isclosed(p) are supplied to test for either type in an expression.

Values of typepath are specified using the following syntax:

(Cx1, yl), ... (xn o, yn))
[C x1, yl), o (xn ., yn)]
(x1, y1), .., (Xn , yn)
(x1, y1 , e xn , yn)
x1 , vyl y e Xn , yn

where the points are the end points of the line segments comprising the path. Square hfarketgate
an open path, while parenthes@s)indicate a closed path.

Paths are output using the first syntax.

8.7.5. Polygons

Polygons are represented by sets of points. Polygons should probably be considered equivalent to closed
paths, but are stored differently and have their own set of support routines.

Values of typepolygon are specified using the following syntax:

(Cx1, yl), ... (xn o, yn))
(x1, y1), .., (Xn , yn)
(x1, y1 , e Xn , yn)

x1 , vyl y e Xn , yn

where the points are the end points of the line segments comprising the boundary of the polygon.

Polygons are output using the first syntax.

8.7.6. Circles

Circles are represented by a center point and a radius. Values otitgge are specified using the
following syntax:

<(x,vy), r >
(Cx,y), r)
(x,y),r
X,y , I

where(x, y) is the center and is the radius of the circle.

93

Chapter 8. Data Types

Circles are output using the first syntax.

8.8. Network Address Types

PostgreSQL offers data types to store IPv4, IPv6, and MAC addresses, shdalmier8-17 It is prefer-
able to use these types over plain text types, because these types offer input error checking and several
specialized operators and functions.

Table 8-17. Network Address Types

Name Storage Size Description

cidr 12 or 24 bytes IPv4 or IPv6 networks

inet 12 or 24 bytes IPv4 and IPv6 hosts and networks
macaddr 6 bytes MAC addresses

When sortingnet orcidr data types, IPv4 addresses will always sort before IPv6 addresses, including
IPv4 addresses encapsulated or mapped into IPv6 addresses, such as ::10.2.3.4 or ::ffff:;:10.4.3.2.

8.8.1. inet

Theinet type holds an IPv4 or IPv6 host address, and optionally the identity of the subnet it is in, all

in one field. The subnet identity is represented by stating how many bits of the host address represent the
network address (the “netmask”). If the netmask is 32 and the address is IPv4, then the value does not
indicate a subnet, only a single host. In IPv6, the address length is 128 bits, so 128 bits will specify a
unique host address. Note that if you want to accept networks only, you should wsdr thiype rather
thaninet .

The input format for this type iaddress/ly = whereaddress is an IPv4 or IPv6 address agdis the
number of bits in the netmask. If thg part is left off, then the netmask is 32 for IPv4 and 128 for
IPv6, and the value represents just a single host. On displajy th@ortion is suppressed if the netmask
specifies a single host.

8.8.2. cidr

The cidr type holds an IPv4 or IPv6 network specification. Input and output formats follow Class-
less Internet Domain Routing conventions. The format for specifying networkddeessly where
address is the network represented as an IPv4 or IPv6 addressyaisdthe number of bits in the
netmask. Ify is omitted, it is calculated using assumptions from the older classful network numbering
system, except that it will be at least large enough to include all of the octets written in the input. It is an
error to specify a network address that has bits set to the right of the specified netmask.

Table 8-18shows some examples.

Table 8-18.cidr Type Input Examples

cidr Input cidr Output abbrev (cidr)

94

Chapter 8. Data Types

cidr Input cidr Output abbrev (cidr)
192.168.100.128/25 192.168.100.128/25 192.168.100.128/25
192.168/24 192.168.0.0/24 192.168.0/24
192.168/25 192.168.0.0/25 192.168.0.0/25
192.168.1 192.168.1.0/24 192.168.1/24
192.168 192.168.0.0/24 192.168.0/24
128.1 128.1.0.0/16 128.1/16

128 128.0.0.0/16 128.0/16

128.1.2 128.1.2.0/24 128.1.2/24

10.1.2 10.1.2.0/24 10.1.2/24

10.1 10.1.0.0/16 10.1/16

10 10.0.0.0/8 10/8

10.1.2.3/32 10.1.2.3/32 10.1.2.3/32
2001:4f8:3:ba::/64 2001:4f8:3:ba::/64 2001:4f8:3:ba::/64
2001:4f8:3:ba:2e0:81ff:fe22:d1fPARB:4f8:3:ba:2e0:81ff:fe22:d1fPAAB.4f8:3:ba:2e0:81ff:fe22:d 1fl
::ffff:1.2.3.0/120 -:ffff:1.2.3.0/120 offff:1.2.3/120
::ffff:1.2.3.0/128 -offff:1.2.3.0/128 -offff:1.2.3.0/128
8.8.3. inet vs. cidr

The essential difference betweiant
to the right of the netmask, whereasr

Tip: If you do not like the output format for inet

abbrev .

8.8.4. macaddr

The macaddr type stores MAC addresses, i.e., Ethernet card hardware addresses (although MAC ad-
dresses are used for other purposes as well). Input is accepted in various customary formats, including

'08002b:010203’
'08002b-010203’
'0800.2b01.0203’
'08-00-2b-01-02-03'
'08:00:2h:01:02:03’

andcidr
does not.

or cidr values

data types is thabet

accepts values with nonzero bits

, try the functions host , text , and

which would all specify the same address. Upper and lower case is accepted for tha thgitsghf .
Output is always in the last of the shown forms.

95

Chapter 8. Data Types

The directorycontrib/mac in the PostgreSQL source distribution contains tools that can be used to map
MAC addresses to hardware manufacturer names.

8.9. Bit String Types

Bit strings are strings of 1's and 0’s. They can be used to store or visualize bit masks. There are two SQL
bit types:bit(n) andbit varying(n) , wheren is a positive integer.

bit type data must match the lengthexactly; it is an error to attempt to store shorter or longer bit
strings. bit varying data is of variable length up to the maximum lengthlonger strings will be
rejected. Writingbit without a length is equivalent toit(1) , while bit varying without a length
specification means unlimited length.

Note: If one explicitly casts a bit-string value to bit(n), it will be truncated or zero-padded on the
right to be exactly n bits, without raising an error. Similarly, if one explicitly casts a bit-string value to
bit varying(n), it will be truncated on the right if it is more than n bits.

Note: Prior to PostgreSQL 7.2, bit data was always silently truncated or zero-padded on the right,
with or without an explicit cast. This was changed to comply with the SQL standard.

Refer toSection 4.1.2.2or information about the syntax of bit string constants. Bit-logical operators and
string manipulation functions are available; €&apter 9

Example 8-3. Using the bit string types

CREATE TABLE test (a BIT(3), b BIT VARYING(5));
INSERT INTO test VALUES (B'101', B’00);

INSERT INTO test VALUES (B'10’, B'101");

ERROR: bit string length 2 does not match type bit(3)
INSERT INTO test VALUES (B’10:bit(3), B'101");
SELECT * FROM test;

a | b
_____ tommm
101 | 00
100 | 101
8.10. Arrays

PostgreSQL allows columns of a table to be defined as variable-length multidimensional arrays. Arrays
of any built-in type or user-defined type can be created.

96

Chapter 8. Data Types
8.10.1. Declaration of Array Types
To illustrate the use of array types, we create this table:

CREATE TABLE sal_emp (

name text,
pay_by_quarter integer[],
schedule text[][]

);

As shown, an array data type is named by appending square bragkets the data type name of the
array elements. The above command will create a table naaieeinp with a column of typetext
(name), a one-dimensional array of tyjreeger (pay_by_quarter), which represents the employee’s
salary by quarter, and a two-dimensional arrayesf (schedule), which represents the employee’s
weekly schedule.

The syntax folCREATE TABLRllows the exact size of arrays to be specified, for example:

CREATE TABLE tictactoe (
squares integer[3][3]
);
However, the current implementation does not enforce the array size limits --- the behavior is the same as
for arrays of unspecified length.

Actually, the current implementation does not enforce the declared number of dimensions either. Arrays
of a particular element type are all considered to be of the same type, regardless of size or number of
dimensions. So, declaring number of dimensions or siz€RIBATE TABLES simply documentation, it

does not affect runtime behavior.

An alternative, SQL99-standard syntax may be used for one-dimensional aeays; quarter could
have been defined as:

pay_by_quarter integer ARRAY[4],

This syntax requires an integer constant to denote the array size. As before, however, PostgreSQL does
not enforce the size restriction.

8.10.2. Array Value Input

To write an array value as a literal constant, enclose the element values within curly braces and separate
them by commas. (If you know C, this is not unlike the C syntax for initializing structures.) You may put
double quotes around any element value, and must do so if it contains commas or curly braces. (More
details appear below.) Thus, the general format of an array constant is the following:

{ wvall delim val2 delim v ¥

wheredelim is the delimiter character for the type, as recorded ipdtsype entry. (For all built-in
types, this is the comma character’.) Eachval is either a constant of the array element type, or a
subarray. An example of an array constant is

'{{1,2,3},{4,5,6}.{7,8,9}}

97

Chapter 8. Data Types

This constant is a two-dimensional, 3-by-3 array consisting of three subarrays of integers.

(These kinds of array constants are actually only a special case of the generic type constants discussed
in Section 4.1.2.4The constant is initially treated as a string and passed to the array input conversion
routine. An explicit type specification might be necessary.)

Now we can show SOm@ISERT statements.

INSERT INTO sal_emp
VALUES (Bill',
'{10000, 10000, 10000, 10000},
{"meeting", "lunch"}, {}});

INSERT INTO sal_emp
VALUES ('Carol’,
{20000, 25000, 25000, 25000},
{{"talk", "consult"}, {"meeting"}});

A limitation of the present array implementation is that individual elements of an array cannot be SQL

null values. The entire array can be set to null, but you can’t have an array with some elements null and
some not.

This can lead to surprising results. For example, the result of the previous two inserts looks like this:

SELECT * FROM sal_emp;

name | pay_by_quarter | schedule
+ +

Bill | {10000,10000,10000,10000} | {{meeting}{"}}

Carol | {20000,25000,25000,25000} | {{talk},{meeting}}

(2 rows)

Because th¢2][2] element ofschedule is missing in each of théNSERT statements, th§i][2]
element is discarded.

Note: Fixing this is on the to-do list.

The ARRAYexpression syntax may also be used:

INSERT INTO sal_emp
VALUES (Bill’,
ARRAY[10000, 10000, 10000, 10000],
ARRAY[['meeting’, 'lunch’, [","1));

INSERT INTO sal_emp
VALUES ('Carol’,
ARRAY[20000, 25000, 25000, 25000],
ARRAY(['talk’, 'consult’], ['meeting’, "]);
SELECT * FROM sal_emp;
name | pay_by_quarter | schedule

+
T

Bill | {10000,10000,10000,10000} | {{meeting,lunch}{",""}}

98

Chapter 8. Data Types

Carol | {20000,25000,25000,25000} | {{talk,consult},{meeting,"}}
(2 rows)

Note that with this syntax, multidimensional arrays must have matching extents for each dimension. A
mismatch causes an error report, rather than silently discarding values as in the previous case. For exam-

ple:

INSERT INTO sal_emp
VALUES ('Carol’,
ARRAY[20000, 25000, 25000, 25000],
ARRAY(['talk’, 'consult’], ['meeting’]]);
ERROR: multidimensional arrays must have array expressions with matching dimensions

Also notice that the array elements are ordinary SQL constants or expressions; for instance, string literals
are single quoted, instead of double quoted as they would be in an array literadRR#erexpression
syntax is discussed in more detail$ection 4.2.10

8.10.3. Accessing Arrays

Now, we can run some queries on the table. First, we show how to access a single element of an array at
a time. This query retrieves the names of the employees whose pay changed in the second quarter:

SELECT name FROM sal_emp WHERE pay_by_quarter[l] <> pay_by_quarter[2];

The array subscript numbers are written within square brackets. By default PostgreSQL uses the one-
based numbering convention for arrays, that is, an array @fements starts withrray[1] and ends
with array[n] .

This query retrieves the third quarter pay of all employees:

SELECT pay_by_quarter[3] FROM sal_emp;

pay_by_quarter

10000
25000
(2 rows)

We can also access arbitrary rectangular slices of an array, or subarrays. An array slice is denoted by writ-
ing lower-bound : upper-bound for one or more array dimensions. For example, this query retrieves
the first item on Bill's schedule for the first two days of the week:

SELECT schedule[1:2][1:1]] FROM sal_emp WHERE name = 'Bill’;

schedule

99

Chapter 8. Data Types

{{meeting},{""}}
(2 row)

We could also have written
SELECT schedule[1:2][1] FROM sal_emp WHERE name = 'Bill’;

with the same result. An array subscripting operation is always taken to represent an array slice if any of
the subscripts are written in the forimwer : upper . A lower bound of 1 is assumed for any subscript
where only one value is specified, as in this example:

SELECT schedule[1:2][2] FROM sal_emp WHERE name = 'Bill’;
schedule

{{meeting,lunch},{","}
1 row)

The current dimensions of any array value can be retrieved witarthg dims function:

SELECT array_dims(schedule) FROM sal_emp WHERE name = 'Carol’;

array_dims

[1:2][1:1]
1 row)

array_dims produces &ext result, which is convenient for people to read but perhaps not so convenient
for programs. Dimensions can also be retrieved withy upper andarray_lower , which return the
upper and lower bound of a specified array dimension, respectively.

SELECT array_upper(schedule, 1) FROM sal_emp WHERE name = 'Carol’;

array_upper

8.10.4. Modifying Arrays

An array value can be replaced completely:

UPDATE sal_emp SET pay_by quarter = '{25000,25000,27000,27000}
WHERE name = 'Carol’;

or using theARRAYexpression syntax:

UPDATE sal_emp SET pay_by quarter = ARRAY[25000,25000,27000,27000]
WHERE name = ’'Carol’;

100

Chapter 8. Data Types

An array may also be updated at a single element:

UPDATE sal_emp SET pay_by quarter[4] = 15000
WHERE name = 'Bill’;

or updated in a slice:

UPDATE sal_emp SET pay_by_quarter[1:2] = '{27000,27000}
WHERE name = 'Carol’;

A stored array value can be enlarged by assigning to an element adjacent to those already present, or by
assigning to a slice that is adjacent to or overlaps the data already present. For examplem§aregy

currently has 4 elements, it will have five elements after an update that assigyesrtay[5] . Currently,
enlargement in this fashion is only allowed for one-dimensional arrays, not multidimensional arrays.

Array slice assignment allows creation of arrays that do not use one-based subscripts. For example one
might assign tenyarray[-2:7] to create an array with subscript values running from -2 to 7.

New array values can also be constructed by using the concatenation opgrator,

SELECT ARRAY[1,2] || ARRAYI3,4];
?column?

234
(1 row)

SELECT ARRAY[5,6] || ARRAYI[1,2].[3.4]l;
?column?

{{5.6},{1,2}.{3.4}}
1 row)

The concatenation operator allows a single element to be pushed on to the beginning or end of a
one-dimensional array. It also accepts tWbdimensional arrays, or am-dimensional and an
N+1-dimensional array.

When a single element is pushed on to the beginning of a one-dimensional array, the result is an array
with a lower bound subscript equal to the right-hand operand’s lower bound subscript, minus one. When

a single element is pushed on to the end of a one-dimensional array, the result is an array retaining the
lower bound of the left-hand operand. For example:

SELECT array_dims(1 || ARRAY[2,3]);
array_dims

SELECT array_dims(ARRAY[1,2] || 3);
array_dims

101

Chapter 8. Data Types

1 row)

When two arrays with an equal number of dimensions are concatenated, the result retains the lower bound
subscript of the left-hand operand’s outer dimension. The result is an array comprising every element of
the left-hand operand followed by every element of the right-hand operand. For example:

SELECT array_dims(ARRAY[1,2] || ARRAYI[3,4,5]);
array_dims

SELECT array_dims(ARRAY[[1,2].[3.4]] || ARRAY[[5,6].[7.8],[9,01]):
array_dims

i)
1 row)

When anN-dimensional array is pushed on to the beginning or end dfelzdimensional array, the result
is analogous to the element-array case above. Bagimensional sub-array is essentially an element of
theN+1-dimensional array’s outer dimension. For example:

SELECT array_dims(ARRAY[1,2] || ARRAY][3,4],[5,6]]);
array_dims

202
(1 row)

An array can also be constructed by using the functi@nay prepend , array_append

or array_cat . The first two only support one-dimensional arrays, lautay cat supports
multidimensional arrays. Note that the concatenation operator discussed above is preferred over direct
use of these functions. In fact, the functions are primarily for use in implementing the concatenation

operator. However, they may be directly useful in the creation of user-defined aggregates. Some
examples:

SELECT array_prepend(1, ARRAY([2,3]);
array_prepend

SELECT array_append(ARRAY([1,2], 3);
array_append

SELECT array_cat(ARRAY[1,2], ARRAYI[3,4]);

102

Chapter 8. Data Types

array_cat

234
(1 row)

SELECT array_cat(ARRAY([[1,2],[3,4]], ARRAY/[5,6]);
array_cat

{{1.2},{3,4}.{5,6}}
1 row)

SELECT array_cat(ARRAYI[5,6], ARRAYI[1,2],[3,4]]);
array_cat

{{5.6}.{1,2}.{3.4}}

8.10.5. Searching in Arrays

To search for a value in an array, you must check each value of the array. This can be done by hand, if you
know the size of the array. For example:

SELECT * FROM sal_ emp WHERE pay_by quarter[1] = 10000 OR
pay_by quarter[2] = 10000 OR
pay_by_quarter[3] 10000 OR
pay_by_quarter[4] 10000;

However, this quickly becomes tedious for large arrays, and is not helpful if the size of the array is
uncertain. An alternative method is describe&®etction 9.17The above query could be replaced by:

SELECT * FROM sal_emp WHERE 10000 = ANY (pay_by_quarter);

In addition, you could find rows where the array had all values equal to 10000 with:

SELECT * FROM sal_emp WHERE 10000 = ALL (pay_by_quarter);

Tip: Arrays are not sets; searching for specific array elements may be a sign of database misdesign.
Consider using a separate table with a row for each item that would be an array element. This will be
easier to search, and is likely to scale up better to large numbers of elements.

8.10.6. Array Input and Output Syntax

The external text representation of an array value consists of items that are interpreted according to the
I/0 conversion rules for the array’s element type, plus decoration that indicates the array structure. The
decoration consists of curly bracgs dnd}) around the array value plus delimiter characters between
adjacent items. The delimiter character is usually a commbu(t can be something else: it is determined

103

Chapter 8. Data Types

by thetypdelim setting for the array’s element type. (Among the standard data types provided in the
PostgreSQL distribution, typsox uses a semicolon | but all the others use comma.) In a multidimen-
sional array, each dimension (row, plane, cube, etc.) gets its own level of curly braces, and delimiters must
be written between adjacent curly-braced entities of the same level. You may write whitespace before a
left brace, after a right brace, or before any individual item string. Whitespace after an item is not ignored,
however: after skipping leading whitespace, everything up to the next right brace or delimiter is taken as
the item value.

As shown previously, when writing an array value you may write double quotes around any individ-
ual array element. Yomustdo so if the element value would otherwise confuse the array-value parser.
For example, elements containing curly braces, commas (or whatever the delimiter character is), double
guotes, backslashes, or leading white space must be double-quoted. To put a double quote or backslash in
a quoted array element value, precede it with a backslash. Alternatively, you can use backslash-escaping
to protect all data characters that would otherwise be taken as array syntax or ignorable white space.

The array output routine will put double quotes around element values if they are empty strings or contain
curly braces, delimiter characters, double quotes, backslashes, or white space. Double quotes and back-
slashes embedded in element values will be backslash-escaped. For numeric data types it is safe to assume
that double quotes will never appear, but for textual data types one should be prepared to cope with either
presence or absence of quotes. (This is a change in behavior from pre-7.2 PostgreSQL releases.)

Note: Remember that what you write in an SQL command will first be interpreted as a string literal,
and then as an array. This doubles the number of backslashes you need. For example, to insert a
text array value containing a backslash and a double quote, you'd need to write

INSERT ... VALUES ({W","\"});

The string-literal processor removes one level of backslashes, so that what arrives at the array-value
parser looks like {"\","\""} . In turn, the strings fed to the text data type’s input routine become \
and " respectively. (If we were working with a data type whose input routine also treated backslashes
specially, bytea for example, we might need as many as eight backslashes in the command to get
one backslash into the stored array element.)

Tip: The ARRAYconstructor syntax is often easier to work with than the array-literal syntax when
writing array values in SQL commands. In ARRAY individual element values are written the same way
they would be written when not members of an array.

8.11. Object Identifier Types

Object identifiers (OIDs) are used internally by PostgreSQL as primary keys for various system tables.
Also, an OID system column is added to user-created tables (WWE$$OUT OIDSis specified at ta-

ble creation time). Typeid represents an object identifier. There are also several alias typei for
regproc , regprocedure , regoper , regoperator |, regclass , andregtype . Table 8-19shows an
overview.

104

Chapter 8. Data Types

Theoid type is currently implemented as an unsigned four-byte integer. Therefore, it is not large enough
to provide database-wide uniqueness in large databases, or even in large individual tables. So, using a
user-created table’s OID column as a primary key is discouraged. OIDs are best used only for references
to system tables.

Theoid type itself has few operations beyond comparison. It can be cast to integer, however, and then
manipulated using the standard integer operators. (Beware of possible signed-versus-unsigned confusion
if you do this.)

The OID alias types have no operations of their own except for specialized input and output routines.
These routines are able to accept and display symbolic names for system objects, rather than the raw nu-
meric value that typeid would use. The alias types allow simplified lookup of OID values for objects: for
example, one may writenytable’::regclass to get the OID of tablenytable , rather thar6ELECT

oid FROM pg_class WHERE relname = 'mytable’ . (In reality, a much more complicatSELECT

would be needed to deal with selecting the right OID when there are multiple tables nagimabté in

different schemas.)

Table 8-19. Object Identifier Types

Name References Description \Value Example
oid any numeric object identifier564182
regproc pg_proc function name sum
regprocedure pg_proc function with argument |sum(int4)
types
regoper pg_operator operator name +
regoperator pg_operator operator with argument [¥(integer,integer)
types or -(NONE,integer)
regclass pg_class relation name pg_type
regtype pg_type data type name integer

All of the OID alias types accept schema-qualified names, and will display schema-qualified nhames on
output if the object would not be found in the current search path without being qualifiededgiec
andregoper alias types will only accept input names that are unique (not overloaded), so they are of
limited use; for most usesegprocedure Or regoperator IS more appropriate. Faegoperator

unary operators are identified by writingDNEor the unused operand.

Another identifier type used by the systenxis , or transaction (abbreviated xact) identifier. This is the
data type of the system columrgin andxmax. Transaction identifiers are 32-bit quantities.

A third identifier type used by the systentid , or command identifier. This is the data type of the system
columnscmin andcmax. Command identifiers are also 32-bit quantities.

A final identifier type used by the systemtig , or tuple identifier (row identifier). This is the data type
of the system columntid . A tuple ID is a pair (block number, tuple index within block) that identifies
the physical location of the row within its table.

(The system columns are further explaine®ection 5.2

105

Chapter 8. Data Types

8.12. Pseudo-Types

The PostgreSQL type system contains a number of special-purpose entries that are collectively called
pseudo-typesA pseudo-type cannot be used as a column data type, but it can be used to declare a func-
tion’s argument or result type. Each of the available pseudo-types is useful in situations where a function’s
behavior does not correspond to simply taking or returning a value of a specific SQL daftetylge8-20

lists the existing pseudo-types.

Table 8-20. Pseudo-Types

Name Description

any Indicates that a function accepts any input data type
whatever.

anyarray Indicates that a function accepts any array data type
(seeSection 33.2.b

anyelement Indicates that a function accepts any data type (see
Section 33.2.p

cstring Indicates that a function accepts or returns a
null-terminated C string.

internal Indicates that a function accepts or returns a
server-internal data type.

language_handler A procedural language call handler is declared tp
returnlanguage_handler

record Identifies a function returning an unspecified row
type.

trigger /A trigger function is declared to retutrigger.

void Indicates that a function returns no value.

opaque /An obsolete type name that formerly served all the

above purposes.

Functions coded in C (whether built-in or dynamically loaded) may be declared to accept or return any of
these pseudo data types. Itis up to the function author to ensure that the function will behave safely when
a pseudo-type is used as an argument type.

Functions coded in procedural languages may use pseudo-types only as allowed by their implementation
languages. At present the procedural languages all forbid use of a pseudo-type as argument type, and allow
only void andrecord as a result type (plusigger when the function is used as a trigger). Some also
support polymorphic functions using the typesyarray andanyelement .

Theinternal ~ pseudo-type is used to declare functions that are meant only to be called internally by the
database system, and not by direct invocation in a SQL query. If a function has at leastoae -type
argument then it cannot be called from SQL. To preserve the type safety of this restriction it is important
to follow this coding rule: do not create any function that is declared to réttenmal unless it has at

least onenternal argument.

106

Chapter 9. Functions and Operators

PostgreSQL provides a large number of functions and operators for the built-in data types. Users can also
define their own functions and operators, as describ&aibV. The psgql commandsf and\do can be
used to show the list of all actually available functions and operators, respectively.

If you are concerned about portability then take note that most of the functions and operators described
in this chapter, with the exception of the most trivial arithmetic and comparison operators and some
explicitly marked functions, are not specified by the SQL standard. Some of the extended functionality is
present in other SQL database management systems, and in many cases this functionality is compatible
and consistent between the various implementations.

9.1. Logical Operators

The usual logical operators are available:

AND

OR

NOT
SQL uses a three-valued Boolean logic where the null value represents “unknown”. Observe the following
truth tables:
a b a AND b a ORDb
TRUE TRUE TRUE TRUE
TRUE FALSE FALSE TRUE
TRUE NULL NULL TRUE
FALSE FALSE FALSE FALSE
FALSE NULL FALSE NULL
NULL NULL NULL NULL
a NOT a
TRUE FALSE
FALSE TRUE
NULL NULL

The operatordNDand ORare commutative, that is, you can switch the left and right operand without
affecting the result. But se®ection 4.2.1Tor more information about the order of evaluation of subex-

pressions.

9.2. Comparison Operators

The usual comparison operators are available, showalite 9-1

107

Chapter 9. Functions and Operators

Table 9-1. Comparison Operators

Operator Description

< less than

> greater than

<= less than or equal to
>= greater than or equal to
= equal

<> 0r!= not equal

Note: The != operator is converted to <> in the parser stage. It is not possible to implement != and
<> operators that do different things.

Comparison operators are available for all data types where this makes sense. All comparison operators are
binary operators that return values of tymlean ; expressions like < 2 < 3 are not valid (because
there is no< operator to compare a Boolean value wa)h

In addition to the comparison operators, the speRfafWEENONstruct is available.
a BETWEENx ANDYy
is equivalent to
a >=x ANDa <=y
Similarly,
a NOT BETWEEM ANDy
is equivalent to
a < x ORa >y

There is no difference between the two respective forms apart from the CPU cycles required to rewrite the
first one into the second one internally.

To check whether a value is or is not null, use the constructs

expression IS NULL
expression IS NOT NULL

or the equivalent, but nonstandard, constructs

expression ISNULL
expression NOTNULL

Do notwrite expression = NULL becaus&ULL is not “equal to”"NULL (The null value represents an
unknown value, and it is not known whether two unknown values are equal.)

108

Chapter 9. Functions and Operators

Some applications may (incorrectly) require tlapression = NULL returns true ifexpression
evaluates to the null value. To support these applications, the run-time optisform_null_equals
can be turned on (e.gSET transform_null_equals TO ON;). PostgreSQL will then convert =

NULLclauses tx IS NULL . This was the default behavior in releases 6.5 through 7.1.

Boolean values can also be tested using the constructs

expression IS TRUE
expression IS NOT TRUE
expression IS FALSE
expression IS NOT FALSE
expression IS UNKNOWN
expression IS NOT UNKNOWN

These are similar t&8 NULL in that they will always return true or false, never a null value, even when
the operand is null. A null input is treated as the logical value “unknown”.

9.3. Mathematical Functions and Operators

Mathematical operators are provided for many PostgreSQL types. For types without common mathemat-
ical conventions for all possible permutations (e.g., date/time types) we describe the actual behavior in
subsequent sections.

Table 9-2shows the available mathematical operators.

Table 9-2. Mathematical Operators

Operator Description Example Result

+ addition 2 + 3 5

- subtraction 2 -3 -1

* multiplication 2 * 3

/ division (integer division4 / 2 2
truncates results)

% modulo (remainder) 5 % 4 1

n exponentiation 20 ~ 3.0 8

I/ square root |/ 25.0 5

I/ cube root ||/ 27.0 3

! factorial 5 1 120

1! factorial (prefix operator)! 5 120

@ absolute value @ -5.0 5

& bitwise AND 91 & 15 11

| bitwise OR 32 | 3 35

bitwise XOR 17 # 5 20

~ bitwise NOT ~1 -2

<< bitwise shift left 1 << 4 16

109

Chapter 9. Functions and Operators

Operator Description
>> bitwise shift right

Example Result
8 >> 2 2

The bitwise operators are also available for the bit string tpiesandbit varying , as shown ifmable
9-3. Bit string operands of, | , and# must be of equal length. When bit shifting, the original length of
the string is preserved, as shown in the table.

Table 9-3. Bit String Bitwise Operators

Example Result
B'10001' & B’01101 00001
B’'10001’ | B'01101’ 11101
B'10001" # B'01101 11110
~ B’10001 01110
B’'10001" << 3 01000
B'10001" >> 2 00100

Table 9-4shows the available mathematical functions. In the tadpeindicatesdouble precision

Many of these functions are provided in multiple forms with different argument types. Except where
noted, any given form of a function returns the same data type as its argument. The functions working
with double precision data are mostly implemented on top of the host system’s C library; accuracy
and behavior in boundary cases may therefore vary depending on the host system.

Table 9-4. Mathematical Functions

Function Return Type Description Example Result
abs (x) (same ax) absolute value abs(-17.4) 17.4
cbrt (dp) dp cube root cbrt(27.0) 3

ceil (dp or (same as input) |smallest integer noteil(-42.8) -42
numeric) less than argument

degrees (dp)

dp

radians to degrees

degrees(0.5)

28.6478897565412

numeric)

exp (dp or (same as input) [exponential exp(1.0) 2.71828182845905
numeric)
floor (dp or (same as input) [largestinteger not floor(-42.8) -43
numeric) greater than
argument
In (dp or (same as input) |natural logarithm |n(2.0) 0.693147180559945
numeric)
log (dp or (same as input) |base 10 logarithm Jog(100.0) 2
numeric)
log (b numeric , X [numeric logarithm to basé [log(2.0, 64.0) 6.0000000000

110

Chapter 9. Functions and Operators

Function Return Type Description Example Result
mody, X) (same as argumenfremainder of//x ~ mod(9,4) 1
types)
pi () dp “7” constant pi() 3.14159265358979
pow(a dp, b dp) |dp a raised to the pow(9.0, 3.0) 729
power ofb
pow(a numeric , b [numeric a raised to the pow(9.0, 3.0) 729
numeric) power ofb
radians (dp) dp degrees to radians [radians(45.0) 0.785398163397448
random () dp random value random()
between 0.0 and 1.0
round (dp or (same as input) round to nearest round(42.4) 42
numeric) integer
round (Vv numeric , [numeric round tos decimal [round(42.4382, 42 .44
s integer) places 2)
setseed (dp) int32 set seed for setseed(0.54823) [1177314959
subsequent
random() calls
sign (dp or (same as input) [sign of the argumerstign(-8.4) -1
numeric) (-1, 0, +1)
sqrt (dp or (same as input) |square root sqrt(2.0) 1.4142135623731
numeric)
trunc (dp or (same as input) truncate toward zenunc(42.8) 42
numeric)
trunc (Vv numeric , [numeric truncate tcs trunc(42.4382, 42.43

S integer)

decimal places

2)

Finally, Table 9-5shows the available trigopnometric functions. All trigonometric functions take arguments

and return values of typdouble precision

Table 9-5. Trigonometric Functions

Function Description

acos (X) inverse cosine

asin (X) inverse sine

atan (X) inverse tangent
atan2 (X, Yy) inverse tangent of/ y
cos (X) cosine

cot (X) cotangent

sin (X) sine

tan (X) tangent

111

Chapter 9. Functions and Operators

9.4. String Functions and Operators

This section describes functions and operators for examining and manipulating string values. Strings
in this context include values of all the typesaracter , character varying , andtext . Unless
otherwise noted, all of the functions listed below work on all of these types, but be wary of potential
effects of the automatic padding when using theracter type. Generally, the functions described

here also work on data of non-string types by converting that data to a string representation first. Some
functions also exist natively for the bit-string types.

SQL defines some string functions with a special syntax where certain key words rather than commas are
used to separate the arguments. Details afi@ble 9-6 These functions are also implemented using the
regular syntax for function invocation. (Séable 9-7)

Table 9-6. SQL String Functions and Operators

Function Return Type Description Example Result
string [text String 'Post’ || PostgreSQL
string concatenation 'greSQL’
bit_length (string |ipteger Number of bits in it_length(’jose’) 32

string
char_length (string injeger Number of char_length(’jose’) 4
or characters in string

character_length (string)

convert (string text Change encoding convert(PostgreSQL[PostgreSQL’ in
using using specified using Unicode (UTF-8)
conversion_name) conversion hame. jiso_8859 1 to_utf 8gncoding

Conversions can be
defined byCREATE
CONVERSIONAIso
there are some
pre-defined
conversion names.
SeeTable 9-8for
available conversion

names.

lower (string) text Convert stringto [lower(TOM’) tom
lower case

octet_length (' stringnteger Number of bytes injoctet_length(jose’) 14
string

overlay (' string text Replace substringjoverlay(Txxxxas’ [Thomas

placing string placing 'hom’

from integer from 2 for 4)

[for integer 1)

position (substring [integer Location of position('om’ 3

in string) specified substringjn 'Thomas’)

112

Chapter 9. Functions and Operators

Function Return Type Description Example Result
substring (string [text Extract substring |substring(Thomas’ jhom
[from integer] from 2 for 3)
[for integer])
substring (string [text Extract substring |substring(Thomas’' mas
from pattern) matching POSIX from '...$)

regular expression
substring (string [text Extract substring [substring(Thomas’ oma
from pattern matching SQL from
for escape) regular expression [%#"o_a#" ' for

)

trim ([leading | text Remove the longegtim(both ’x’ Tom
trailing | string containing from *xTomxx’)
both] only the
[characters] characters (a
from string) space by default)

from the

start/end/both ends

of thestring
upper (string) text Convert stringto [upper(‘tom’) TOM

upper case

Additional string manipulation functions are available and are listékhbile 9-7 Some of them are used
internally to implement the SQL-standard string functions listetable 9-6

Table 9-7. Other String Functions

Function Return Type Description Example Result
ascii (text) integer IASCII code of the fascii(’x") 120
first character of the
argument
btrim (string text Remove the longesttrim(’xyxtrimyyx’, ftrim
text string consisting xy’)
characters only of characters in
text) characters from
the start and end of
string
chr (integer) text Character with the |chr(65) A
given ASCII code

113

Chapter 9. Functions and Operators

Function Return Type Description Example Result

convert (string text Convert string to convert(text_in_unicode

text dest_encoding . [text_in_unicode’, [represented in ISO
[src_encoding The original "UNICODE, 8859-1 encoding
name,) encoding is specifigdATINL')

dest_encoding by

name) src_encoding

If src_encoding
is omitted, databasge
encoding is
assumed.
decode (string bytea Decode binary datgecode('MTIzAAE=", |123\000\001
text , type text) from string 'base64’)
previously encoded
with encode .
Parameter type is
same as irencode .

encode (data text Encode binary dat@ncode(MTIZAAE=
bytea , type to ASClI-only '123\\000\\001",
text) representation. 'base64’)
Supported types arge:
base64 , hex,
escape .
initcap (text) text Convert first letter ahitcap(hi Hi Thomas
each word thomas’)

(whitespace-
separated) to uppef
case

length (string) |integer Number of length(’jose’) 4
characters in string

Ipad (string text Fill up thestring |pad(hi’, 5, xyxhi
text , length to lengthlength 'xy’)

integer [, fill by prepending the

text]) characterdill (a

space by default). If
thestring is
already longer than
length thenitis
truncated (on the
right).

114

Chapter 9. Functions and Operators

Function Return Type Description Example Result

Itrim (string text Remove the longegtrim('zzzytrim’, trim

text string containing fxyz’)

characters only characters from

text) characters from
the start of the
string.

md5(string text) [text Calculates the MDmd5(’'abc’) 900150983cd24fb0
hash of given string, d6963f7d28e17{72

returning the result
in hexadecimal.

pg_client_encoding [n@me Current client pg_client_encoding()|SQL_ASCII
encoding name

quote_ident (string [text Return the given |quote_ident(Foo’) ['Foo"

text) string suitably

quoted to be used as
an identifier in an
SQL statement
string. Quotes are
added only if
necessary (i.e., if the
string contains
non-identifier
characters or would
be case-folded).

Embedded quotes

are properly

doubled.
quote_literal (stringxt Return the given |quote_literal('O"Reilly’
text) string suitably 'OVReilly’)

quoted to be used as
a string literal in an
SQL statement
string. Embedded
quotes and
backslashes are
properly doubled.
repeat (text |, text Repeat text a repeat(Pg’, 4) PgPgPgPg
integer) number of times

replace (string text Replace all replace(abXXefabXXef
text , from text , occurrences in 'abcdefabedef’,
to text) string of ‘cd’, 'XX)
substringirom with
substringto .

115

Chapter 9. Functions and Operators

Function Return Type Description Example Result
rpad (string text Fill up thestring rpad(hi’, 5, hixyx
text , length to lengthlength 'xy")

integer [, fill by appending the

text]) characterdill (a

space by default). If
thestring is
already longer than
length thenitis

truncated.
rtrim (string text Remove the longestrim(‘trimxxxx’, trim
text, string containing [x")
characters only characters from
text) characters from

the end of the string.

split_part (string [text Splitstring on [split_part(def
text , delimiter delimiter and [abc~@-~def~@~ghi’
text , field return the given field-@~, 2)
integer) (counting from one
strpos (string , [text Location of strpos(high’, 2
substring) specified substringig’)

(same as

position(substring
in string), but
note the reversed
argument order)

substr (string , [text Extract substring [substr(alphabet’, |ph
from [, count]) (same as 3, 2)
substring(string
from from for

count))
to_ascii (text [, fext Convert text to to_ascii(’Karel’) Karel
encoding) IASCII from other

encoding
to_hex (number text Convertnumber to [to_hex(2147483647)|7fffffff
integer or its equivalent
bigint) hexadecimal

representation

116

Chapter 9. Functions and Operators

to text)

in thefrom setis
replaced by the
corresponding
character in théo
set.

matches a characte

Function Return Type Description Example Result
translate ('string [text Any character in franslate('12345’, [a23x5
text , from text , string that '14', 'ax’)

n}

—

Notes: a. Theto_ascii

function supports conversion frobATIN1 , LATIN2 , andWIN1250 only.

Table 9-8. Built-in Conversions

Conversion Name a Source Encoding Destination Encoding
ascii_to_mic SQL_ASCII MULE_INTERNAL
ascii_to_utf 8 SQL_ASCII UNICODE
big5_to_euc_tw BIG5 EUC_TW
big5_to_mic BIG5 MULE_INTERNAL
big5_to_utf_8 BIG5 UNICODE
euc_cn_to_mic EUC_CN MULE_INTERNAL
euc_cn_to_utf 8 EUC_CN UNICODE
euc_jp_to_mic EUC_JP MULE_INTERNAL
euc_jp_to_sjis EUC_JP SJIS
euc_jp_to_utf 8 EUC_JP UNICODE
euc_kr_to_mic EUC_KR MULE_INTERNAL
euc_kr_to_utf 8 EUC KR UNICODE
euc_tw_to_big5 EUC_TW BIG5
euc_tw_to_mic EUC TW MULE_INTERNAL
euc_tw_to_utf 8 EUC_TW UNICODE
gb18030_to_utf 8 GB18030 UNICODE
gbk_to_utf 8 GBK UNICODE
iso_8859 10 to_utf 8 LATING UNICODE
iso_8859 13 to_utf 8 LATIN7 UNICODE
iso_8859 14 to_utf 8 LATINS UNICODE
iso_8859 15 to_utf 8 LATIN9 UNICODE
iso_8859 16 to_utf 8 LATIN10 UNICODE
iso_8859 1 to_mic LATINL MULE_INTERNAL
iso_8859 1 to_utf 8 LATINL UNICODE
iso_8859 2 to_mic LATIN2 MULE_INTERNAL
iso_8859 2 to_utf 8 LATIN2 UNICODE

117

Chapter 9. Functions and Operators

Conversion Name a Source Encoding Destination Encoding
iso_8859 2 to_windows_1250 LATIN2 WIN1250
iso_8859 3 to_mic LATIN3 MULE_INTERNAL
iso_8859 3 to_utf 8 LATIN3 UNICODE
iso_8859 4 to_mic LATIN4 MULE_INTERNAL
iso_8859 4 to_utf 8 LATIN4 UNICODE
iso_8859 5 to_koi8 r ISO_8859 5 KOI8

iso_8859 5 to_mic ISO_8859 5 MULE_INTERNAL
iso_8859_5_to_utf 8 ISO_8859_5 UNICODE
iso_8859 5 to windows_ 1251 ISO 8859 5 WIN

iso_8859 5 to windows_866 ISO_8859 5 ALT
iso_8859_6_to_utf 8 ISO_8859_6 UNICODE
iso_8859_7_to_utf 8 ISO_8859_7 UNICODE
iso_8859_8 to_utf 8 ISO_8859_8 UNICODE
iso_8859 9 to_utf 8 LATINS UNICODE
johab_to_utf 8 JOHAB UNICODE

koi8 r to_iso 8859 5 KOI8 ISO_8859 5

koi8 r_to_mic KOI8 MULE_INTERNAL
koi8 r_to_utf 8 KOI8 UNICODE
koi8_r_to_windows_1251 KOI8 WIN
koi8_r_to_windows_866 KOI8 ALT

mic_to_ascii MULE_INTERNAL SQL_ASCII
mic_to_big5 MULE_INTERNAL BIG5
mic_to_euc_cn MULE_INTERNAL EUC_CN
mic_to_euc_jp MULE_INTERNAL EUC_JP
mic_to_euc_kr MULE_INTERNAL EUC_KR
mic_to_euc_tw MULE_INTERNAL EUC_TW
mic_to_iso_8859 1 MULE_INTERNAL LATINL
mic_to_iso_8859 2 MULE_INTERNAL LATIN2
mic_to_iso_8859 3 MULE_INTERNAL LATIN3
mic_to_iso_8859 4 MULE_INTERNAL LATIN4
mic_to_iso_8859 5 MULE_INTERNAL ISO_8859 5
mic_to_koi8_r MULE_INTERNAL KOI8

mic_to_sjis MULE_INTERNAL SJIS
mic_to_windows_1250 MULE_INTERNAL \WIN1250
mic_to_windows_1251 MULE_INTERNAL WIN
mic_to_windows_866 MULE_INTERNAL ALT
sjis_to_euc_jp SJIS EUC_JP

118

Chapter 9. Functions and Operators

Conversion Name a Source Encoding Destination Encoding
sjis_to_mic SJIS MULE_INTERNAL
sjis_to_utf 8 SJIS UNICODE
tcvn_to_utf 8 TCVN UNICODE
uhc_to_utf 8 UHC UNICODE
utf 8 to_ascii UNICODE SQL_ASCII
utf_8_to_big5 UNICODE BIG5

utf_8 to_euc_cn UNICODE EUC_CN
utf_8 to_euc_jp UNICODE EUC_JP
utf_8 to_euc_kr UNICODE EUC_KR

utf 8 to_euc_tw UNICODE EUC_TW
utf_8 to_gh18030 UNICODE GB18030
utf_8_to_gbk UNICODE GBK

utf 8 to_iso_8859 1 UNICODE LATIN
utf_8 to_iso_8859 10 UNICODE LATING
utf_8 to_iso_8859 13 UNICODE LATIN7

utf 8 to_iso_8859 14 UNICODE LATINS

utf 8 to_iso_8859 15 UNICODE LATING
utf_8_to_iso_8859 16 UNICODE LATIN10

utf 8 to_iso_8859 2 UNICODE LATIN2
utf_8 to_iso_8859 3 UNICODE LATIN3
utf_8_to_iso_8859 4 UNICODE LATINA

utf 8 to_iso_8859 5 UNICODE ISO_8859 5
utf 8 to_iso_8859 6 UNICODE ISO_8859 6
utf_8_to_iso_8859_7 UNICODE ISO_8859_7
utf_8_to_iso_8859 8 UNICODE ISO_8859_8
utf_8 to_iso_8859 9 UNICODE LATINS
utf_8_to_johab UNICODE JOHAB

utf 8 to_koi8_r UNICODE KOI8

utf_8 to_sjis UNICODE SJIS

utf 8 _to_tcvn UNICODE TCVN
utf_8_to_uhc UNICODE UHC
utf_8_to_windows_1250 UNICODE WIN1250
utf_8 to_windows_1251 UNICODE WIN

utf_8 to_windows_1256 UNICODE WIN1256
utf 8 to_windows_866 UNICODE ALT

utf 8 to_windows_874 UNICODE WIN874
windows_1250 to_iso_8859 2 WIN1250 LATIN2
windows_1250_to_mic WIN1250 MULE_INTERNAL

119

Chapter 9. Functions and Operators

Conversion Name a Source Encoding Destination Encoding
windows_1250_to_utf 8 WIN1250 UNICODE
windows_1251_to_iso_8859_5 |WIN ISO_8859_5
windows_1251 to koi8 r 'WIN KOI8

windows_1251 to_mic 'WIN MULE_INTERNAL
windows_1251 to_utf 8 WIN UNICODE
windows_1251 to_windows_866 |WIN ALT
windows_1256_to_utf 8 WIN1256 UNICODE
windows_866_to_iso_8859_5 ALT ISO_8859_5
windows_866_to koi8 r ALT KOI8
windows_866_to_mic ALT MULE_INTERNAL
windows_866_to_utf 8 ALT UNICODE
windows_866_to_windows_1251 |ALT WIN
windows_874_to_utf_8 \WIN874 UNICODE

Notes:a. The conversion names follow a standard naming scheme: The official name of the source encoding wi

9.5. Binary String Functions and Operators

This section describes functions and operators for examining and manipulating valuestgfégpe

SQL defines some string functions with a special syntax where certain key words rather than commas are
used to separate the arguments. Details aflable 9-9 Some functions are also implemented using the
regular syntax for function invocation. (S&able 9-10)

Table 9-9. SQL Binary String Functions and Operators

Function Return Type Description Example Result
string I bytea String "WPost'::bytea \Post'gres\000
string concatenation I

"\\047gres\\000"::bytep

octet_length (stringntéger Number of bytes injoctet_length(5

binary string 'jo\\000se’"::bytea)
position (substring [integer Location of position("\000om’::bygea
in string) specified substring jin

'Th\\000omas’::bytea,

120

Chapter 9. Functions and Operators

Function Return Type Description Example Result
substring (string |bytea Extract substring [substring('Th\\000oma¥0bwtea
[from integer] from 2 for 3)

[for integer 1)

trim ([both] bytea Remove the longestim("\\000"::bytea [Tom
bytes from string containing ffrom

string) only the bytesin ~ \\000Tom\\000'::byte@)

bytes from the
start and end of

string
get_byte (string jnteger Extract byte from |get_byte(' Th\\000om#d€©9bytea,
offset) string. 4)
set_byte (string |ytea Set byte in string. [set_byte('Th\\000oma&\\0YCzsD as
offset 4, 64)
newvalue)
get_bit (string , [integer Extract bit from |get_bit('Th\\000omast:bytea,
offset) string. 45)
set_bit (string , bytea Set bitin string. set_bit(Th\\000omasThyeapmAs
offset 45, 0)
newvalue)

Additional binary string manipulation functions are available and are listdalite 9-10 Some of them
are used internally to implement the SQL-standard string functions listéabie 9-9

Table 9-10. Other Binary String Functions

Function Return Type Description Example Result
btrim (string bytea Remove the longeitrim("\\000trim\\000" thiytea,
bytea bytes string consisting [\\000"::bytea)

bytea) only of bytes in

bytes from the
start and end of
string

length (string) |integer Length of binary |length(’jo\\000se’::bytga)
string
decode (string bytea Decode binary |decode('123\\0004561,23\000456
text , type text) string fromstring [escape’)
previously encoded
with encode .

Parameter type is
same as irncode .

121

Chapter 9. Functions and Operators

Function Return Type Description Example Result
encode (string text Encode binary |encode('123\\000456t 2812@0456
bytea , type string to ASCII-onlyescape’)
text) representation.

Supported types are:

base64 , hex,

escape .

9.6. Pattern Matching

There are three separate approaches to pattern matching provided by PostgreSQL: the traditional SQL
LIKE operator, the more recent SQLSMMILAR TO operator, and POSIX-style regular expressions. Ad-
ditionally, a pattern matching functiosybstring , is available, using either SQL99-style or POSIX-style
regular expressions.

Tip: If you have pattern matching needs that go beyond this, consider writing a user-defined function
in Perl or Tcl.

9.6.1. LIKE

string LIKE pattern [ESCAPE escape-character]
string NOT LIKE pattern [ESCAPE escape-character]

Everypattern defines a set of strings. ThéKE expression returns true if tlstring is contained in
the set of strings representedbgttern . (As expected, th8OT LIKE expression returns falselifKE
returns true, and vice versa. An equivalent expressiolOis (string LIKE pattern).)

If pattern does not contain percent signs or underscore, then the pattern only represents the string itself;
in that caseLIKE acts like the equals operator. An underscorneilf pattern stands for (matches) any
single character; a percent sigg (atches any string of zero or more characters.

Some examples:

‘abc’ LIKE ’'abc’ true
‘abc’ LIKE 'a%’ true
‘abc’ LIKE '_ b’ true
'abc’ LIKE 'c¢’ false

LIKE pattern matches always cover the entire string. To match a pattern anywhere within a string, the
pattern must therefore start and end with a percent sign.

To match a literal underscore or percent sign without matching other characters, the respective character
in pattern must be preceded by the escape character. The default escape character is the backslash but
a different one may be selected by using H®CAPEclause. To match the escape character itself, write

two escape characters.

122

Chapter 9. Functions and Operators

Note that the backslash already has a special meaning in string literals, so to write a pattern constant that
contains a backslash you must write two backslashes in an SQL statement. Thus, writing a pattern that
actually matches a literal backslash means writing four backslashes in the statement. You can avoid this
by selecting a different escape character WSCAPE then a backslash is not speciallitE anymore.

(But it is still special to the string literal parser, so you still need two of them.)

It's also possible to select no escape character by wriB#BQAPE " This effectively disables the escape
mechanism, which makes it impossible to turn off the special meaning of underscore and percent signs in
the pattern.

The key wordILIKE can be used instead ofKE to make the match case insensitive according to the
active locale. This is not in the SQL standard but is a PostgreSQL extension.

The operator~ is equivalent toLIKE , and~~* corresponds toLIKE . There are alsé~~ and!~~*
operators that represeROT LIKE andNOT ILIKE , respectively. All of these operators are PostgreSQL-
specific.

9.6.2. SIMILAR TO and SQL99 Regular Expressions

string SIMILAR TO pattern [ESCAPE escape-character]
string NOT SIMILAR TO pattern [ESCAPE escape-character]

TheSIMILAR TO operator returns true or false depending on whether its pattern matches the given string.
It is much likeLIKE , except that it interprets the pattern using SQL99’s definition of a regular expression.
SQL99’s regular expressions are a curious cross betwi@n notation and common regular expression
notation.

Like LIKE , theSIMILAR TO operator succeeds only if its pattern matches the entire string; this is unlike
common regular expression practice, wherein the pattern may match any part of the string. Also like
LIKE, SIMILAR TO uses_ and%as wildcard characters denoting any single character and any string,
respectively (these are comparable tand.* in POSIX regular expressions).

In addition to these facilities borrowed fromiKE, SIMILAR TO supports these pattern-matching
metacharacters borrowed from POSIX regular expressions:

+ | denotes alternation (either of two alternatives).

« * denotes repetition of the previous item zero or more times.

- + denotes repetition of the previous item one or more times.

- Parenthese§ may be used to group items into a single logical item.

« Abracket expressiop..] specifies a character class, just as in POSIX regular expressions.

Notice that bounded repetition @nd{...}) are not provided, though they exist in POSIX. Also, the dot
(.) is not a metacharacter.

As with LIKE , a backslash disables the special meaning of any of these metacharacters; or a different
escape character can be specified \EETAPE

Some examples:

‘abc’ SIMILAR TO ’abc’ true
‘abc’ SIMILAR TO 'a’ false

123

Chapter 9. Functions and Operators

‘abc’ SIMILAR TO '%(b|d)%’ true
‘abc’ SIMILAR TO ’(b|c)%’ false
The substring function with three parameterssubstring(string from pattern for

escape-character), provides extraction of a substring that matches a SQL99 regular expression
pattern. As withSIMILAR TO, the specified pattern must match to the entire data string, else the function
fails and returns null. To indicate the part of the pattern that should be returned on success, the pattern
must contain two occurrences of the escape character followed by a double"gudtes text matching

the portion of the pattern between these markers is returned.

Some examples:

substring('foobar’ from '%#"0_b#"%’ for '#) oob
substring('foobar’ from '#'0_b#"'%’ for '#) NULL

9.6.3. POSIX Regular Expressions

Table 9-11lists the available operators for pattern matching using POSIX regular expressions.

Table 9-11. Regular Expression Match Operators

Operator Description Example

~ Matches regular expression, casthomas’ ~ '.*thomas.*
sensitive

~* Matches regular expression, casthomas’ ~* '.*Thomas.*'
insensitive

I~ Does not match regular 'thomas’ !~ '.*Thomas.*
expression, case sensitive

1~* Does not match regular 'thomas’ !~* '*vadim.*
expression, case insensitive

POSIX regular expressions provide a more powerful means for pattern matching thatkghend
SIMILAR TO operators. Many Unix tools such agrep , sed, or awk use a pattern matching language
that is similar to the one described here.

A regular expression is a character sequence that is an abbreviated definition of a set of stemgiala

se). A string is said to match a regular expression if it is a member of the regular set described by the
regular expression. As WillIKE , pattern characters match string characters exactly unless they are special
characters in the regular expression language --- but regular expressions use different special characters
thanLIKE does. UnlikeLIKE patterns, a regular expression is allowed to match anywhere within a string,
unless the regular expression is explicitly anchored to the beginning or end of the string.

Some examples:

‘abc’ ~ 'abc’ true
‘abc’ ~ Na’ true

124

Chapter 9. Functions and Operators

‘abc’ ~ '(b|d) true
‘abc’ ~ "(b|c) false

Thesubstring function with two parametersubstring(string from pattern), provides extrac-

tion of a substring that matches a POSIX regular expression pattern. It returns null if there is no match,
otherwise the portion of the text that matched the pattern. But if the pattern contains any parentheses,
the portion of the text that matched the first parenthesized subexpression (the one whose left parenthesis
comes first) is returned. You can always put parentheses around the whole expression if you want to use
parentheses within it without triggering this exception. Also see the non-capturing parentheses described
below.

Some examples:

substring('foobar’ from ’0.b’) oob
substring('foobar’ from 'o(.)b’) o]

PostgreSQL'’s regular expressions are implemented using a package written by Henry Spencer. Much of
the description of regular expressions below is copied verbatim from his manual entry.

9.6.3.1. Regular Expression Details

Regular expressions (REs), as defined in POSIX 1003.2, come in two fextesidedREs or EREs
(roughly those ofegrep), and basic REs or BREs (roughly those @fd). PostgreSQL supports both
forms, and also implements some extensions that are not in the POSIX standard, but have become widely
used anyway due to their availability in programming languages such as Perl and Tcl. REs using these
non-POSIX extensions are calledivancedREs or AREs in this documentation. AREs are almost an
exact superset of EREs, but BREs have several notational incompatibilities (as well as being much more
limited). We first describe the ARE and ERE forms, noting features that apply only to AREs, and then
describe how BREs differ.

Note: The form of regular expressions accepted by PostgreSQL can be chosen by setting the
regex_flavor run-time parameter (described in Section 16.4). The usual setting is advanced ,
but one might choose extended for maximum backwards compatibility with pre-7.4 releases of
PostgreSQL.

A regular expression is defined as one or muanchesseparated by. It matches anything that matches
one of the branches.

A branch is zero or morquantified atom®r constraints concatenated. It matches a match for the first,
followed by a match for the second, etc; an empty branch matches the empty string.

A quantified atom is aatompossibly followed by a singlguantifier Without a quantifier, it matches a
match for the atom. With a quantifier, it can match some number of matches of the atcatorAnan

be any of the possibilities shown Trable 9-12 The possible quantifiers and their meanings are shown in
Table 9-13

125

Chapter 9. Functions and Operators

A constraintmatches an empty string, but matches only when specific conditions are met. A constraint
can be used where an atom could be used, except it may not be followed by a quantifier. The simple
constraints are shown ifable 9-14 some more constraints are described later.

Table 9-12. Regular Expression Atoms

Atom Description

(re) (wherere is any regular expression) matches a
match forre , with the match noted for possible
reporting

(?: re)

as above, but the match is not noted for reporting (a
“non-capturing” set of parentheses) (AREs only

matches any single character

chars abracket expressigmmatching any one of the
p g any
chars (seeSection 9.6.3.2or more detail)
\ k wherek is a non-alphanumeric character) matches
p
that character taken as an ordinary character)\e.g.
matches a backslash character
\c

wherec is alphanumeric (possibly followed by
other characters) is ascapeseeSection 9.6.3.3
(AREs only; in EREs and BRES, this matcheEs

{ when followed by a character other than a digit,
matches the left-brace charactemwhen followed
by a digit, it is the beginning of hound (see
below)

wherex is a single character with no other
significance, matches that character

An RE may not end with .

Note: Remember that the backslash (\) already has a special meaning in PostgreSQL string literals.
To write a pattern constant that contains a backslash, you must write two backslashes in the statement.

Table 9-13. Regular Expression Quantifiers

Quantifier Matches

*

a sequence of 0 or more matches of the atom
a sequence of 1 or more matches of the atom

+

? a sequence of 0 or 1 matches of the atom

{m a sequence of exactipmatches of the atom
{m} a sequence ahor more matches of the atom
{mn} a sequence ahthroughn (inclusive) matches of

the atommmay not exceed

126

Chapter 9. Functions and Operators

Quantifier Matches

*? non-greedy version of

+? non-greedy version of

?2? non-greedy version of
{m? non-greedy version gfm
{m}? non-greedy version dfm}
{m n}? non-greedy version dfm n}

The forms using ... } are known a®ounds. The numbersiandn within a bound are unsigned decimal
integers with permissible values from 0 to 255 inclusive.

Non-greedyquantifiers (available in AREs only) match the same possibilities as their corresponding nor-

mal (greedy counterparts, but prefer the smallest number rather than the largest number of matches. See
Section 9.6.3.%or more detail.

Note: A quantifier cannot immediately follow another quantifier. A quantifier cannot begin an expres-
sion or subexpression or follow » or | .

Table 9-14. Regular Expression Constraints

Constraint Description

N matches at the beginning of the string
$ matches at the end of the string
(?=re)

positive lookaheadhatches at any point where a
substring matchinge begins (AREs only)
negative lookahearthatches at any point where no
substring matchinge begins (AREs only)

! re)

Lookahead constraints may not contaick referencegseeSection 9.6.3.8 and all parentheses within
them are considered non-capturing.

9.6.3.2. Bracket Expressions

A bracket expressiois a list of characters enclosed[in. It normally matches any single character from
the list (but see below). If the list begins with it matches any single characteot from the rest of
the list. If two characters in the list are separated bthis is shorthand for the full range of characters
between those two (inclusive) in the collating sequence[®3). in ASCIl matches any decimal digit. It

is illegal for two ranges to share an endpoint, @-g-e . Ranges are very collating-sequence-dependent,
so portable programs should avoid relying on them.

To include a litera] in the list, make it the first character (following a possib)eTo include a literal ,

make it the first or last character, or the second endpoint of a range. To use a lasrtile first endpoint

of arange, encloseitin and.] to make it a collating element (see below). With the exception of these
characters, some combinations usinfsee next paragraphs), and escapes (AREs only), all other special
characters lose their special significance within a bracket expression. In particislaot special when

127

Chapter 9. Functions and Operators

following ERE or BRE rules, though it is special (as introducing an escape) in AREs.

Within a bracket expression, a collating element (a character, a multiple-character sequence that collates as
if it were a single character, or a collating-sequence name for either) encloseéim.] stands for the
sequence of characters of that collating element. The sequence is a single element of the bracket expres-
sion’s list. A bracket expression containing a multiple-character collating element can thus match more
than one character, e.qg. if the collating sequence includeallating element, then the REch.]J*c

matches the first five charactersobthcc .

Note: PostgreSQL currently has no multi-character collating elements. This information describes
possible future behavior.

Within a bracket expression, a collating element enclosdgd iand=] is an equivalence class, standing

for the sequences of characters of all collating elements equivalent to that one, including itself. (If there
are no other equivalent collating elements, the treatment is as if the enclosing delimitefs \aeck] .)

For example, ib and~ are the members of an equivalence class, flFer]] ,[[="=]] ,and[o"] are

all synonymous. An equivalence class may not be an endpoint of a range.

Within a bracket expression, the name of a character class enclogedaimd:] stands for the list of

all characters belonging to that class. Standard character class hamesuate:alpha , blank , cntrl

digit , graph , lower , print , punct , space , upper , xdigit . These stand for the character classes
defined in ctype. A locale may provide others. A character class may not be used as an endpoint of a
range.

There are two special cases of bracket expressions: the bracket exprfssiarig and[[: >:]] are
constraints, matching empty strings at the beginning and end of a word respectively. A word is defined as

a sequence of word characters that is neither preceded nor followed by word characters. A word character
is analnum character (as defined by ctype) or an underscore. This is an extension, compatible with but
not specified by POSIX 1003.2, and should be used with caution in software intended to be portable to
other systems. The constraint escapes described below are usually preferable (they are no more standard,
but are certainly easier to type).

9.6.3.3. Regular Expression Escapes

Escapesre special sequences beginning wittollowed by an alphanumeric character. Escapes come in
several varieties: character entry, class shorthands, constraint escapes, and back refereioties:etl

by an alphanumeric character but not constituting a valid escape is illegal in AREs. In ERES, there are no
escapes: outside a bracket expressionfalowed by an alphanumeric character merely stands for that
character as an ordinary character, and inside a bracket exprasgam ordinary character. (The latter

is the one actual incompatibility between EREs and ARES.)

Character-entry escapesist to make it easier to specify non-printing and otherwise inconvenient char-
acters in REs. They are shownTable 9-15

Class-shorthand escapgsovide shorthands for certain commonly-used character classes. They are
shown inTable 9-16

A constraint escap&s a constraint, matching the empty string if specific conditions are met, written as an
escape. They are shownTable 9-17

128

Chapter 9. Functions and Operators

A back referencd\ n) matches the same string matched by the previous parenthesized subexpression
specified by the number (seeTable 9-18. For example(bc])\1 matchesb or cc but notbc or cb
The subexpression must entirely precede the back reference in the RE. Subexpressions are numbered in
the order of their leading parentheses. Non-capturing parentheses do not define subexpressions.

Note: Keep in mind that an escape’s leading \ will need to be doubled when entering the pattern as

an SQL string constant.

Table 9-15. Regular Expression Character-Entry Escapes

is

its)

Escape Description

\a alert (bell) character, as in C

\b backspace, asin C

\B synonym fon to help reduce the need for
backslash doubling

\c X (whereX is any character) the character whose
low-order 5 bits are the same as thos&opand
whose other bits are all zero

\e the character whose collating-sequence name
ESG or failing that, the character with octal value
033

\f form feed, asin C

\n newline, as in C

\r carriage return, as in C

\t horizontal tab, asin C

\u Wxyz (wherewxyz is exactly four hexadecimal digits)
the Unicode charactér+wxyz in the local byte
ordering

\U stuvwxyz (wherestuvwxyz is exactly eight hexadecimal
digits) reserved for a somewhat-hypothetical
Unicode extension to 32 bits

\v vertical tab, asin C

\x hhh (wherehhh is any sequence of hexadecimal dig
the character whose hexadecimal valuexishh (a
single character no matter how many hexadecimal
digits are used)

\0 the character whose valueds

\ Xy (wherexy is exactly two octal digits, and is not a

back referencethe character whose octal value is

D

0Xy

129

Chapter 9. Functions and Operators

Escape Description

\ xyz (wherexyz is exactly three octal digits, and is not
aback referencethe character whose octal valuelis
0xyz

Hexadecimal digits are-9, a-f , andA-F. Octal digits are®-7.

The character-entry escapes are always taken as ordinary characters. For exasmpig] in ASCII,
but\135 does not terminate a bracket expression.

Table 9-16. Regular Expression Class-Shorthand Escapes

Escape Description

\d [:digit:]]

\s [[:space:]]

\w [[:alnum:]_] (note underscore is included)

\D [M[:digit:]]

\S ["[:space:]]

\W [M:alnum:]_] (note underscore is included)
Within bracket expressionsd , \s , and\w lose their outer brackets, and, \S, and\w are illegal.
(So, for examplefa-c\d] is equivalent tda-c[:digit:]] . Also, [a-c\D] , which is equivalent to
[a-c/\[:digit:]] ,isillegal.)

Table 9-17. Regular Expression Constraint Escapes

Escape Description
\A

matches only at the beginning of the string (see
Section 9.6.3.%or how this differs from)

\m matches only at the beginning of a word

\M matches only at the end of a word

\y matches only at the beginning or end of a word

\Y matches only at a point that is not the beginning or
end of a word

\Z

matches only at the end of the string (&stion
9.6.3.5for how this differs fron)

A word is defined as in the specification[pf <:]] and[: >:]] above. Constraint escapes are illegal
within bracket expressions.

Table 9-18. Regular Expression Back References

Escape Description
\'m

(wheremis a nonzero digit) a back reference to the
mith subexpression

130

Chapter 9. Functions and Operators

Escape Description

\ mnn (wheremis a nonzero digit, andn is some more
digits, and the decimal valuannis not greater than
the number of closing capturing parentheses seen so
far) a back reference to thenn'th subexpression

Note: There is an inherent historical ambiguity between octal character-entry escapes and back ref-
erences, which is resolved by heuristics, as hinted at above. A leading zero always indicates an octal
escape. A single non-zero digit, not followed by another digit, is always taken as a back reference. A
multi-digit sequence not starting with a zero is taken as a back reference if it comes after a suitable
subexpression (i.e. the number is in the legal range for a back reference), and otherwise is taken as
octal.

9.6.3.4. Regular Expression Metasyntax

In addition to the main syntax described above, there are some special forms and miscellaneous syntactic
facilities available.

Normally the flavor of RE being used is determined&yex_flavor . However, this can be overridden
by adirector prefix. If an RE of any flavor begins witit*: |, the rest of the RE is taken as an ARE. If
an RE of any flavor begins witti*= | the rest of the RE is taken to be a literal string, with all characters
considered ordinary characters.

An ARE may begin withembedded options sequencé? xyz) (wherexyz is one or more alphabetic
characters) specifies options affecting the rest of the RE. These options override any previously determined
options (including both the RE flavor and case sensitivity). The available option letters are shiakiein

9-19

Table 9-19. ARE Embedded-Option Letters

Option Description

b rest of RE is a BRE

c case-sensitive matching (overrides operator type)
e rest of RE is an ERE

i case-insensitive matching (sBection 9.6.3.p
(overrides operator type)

m historical synonym fon

n newline-sensitive matching (s&ection 9.6.3.p

p partial newline-sensitive matching (s8ection
9.6.3.5

q rest of RE is a literal (“quoted”) string, all ordinary
characters

s non-newline-sensitive matching (default)

t tight syntax (default; see below)

131

Chapter 9. Functions and Operators

Option Description

w inverse partial newline-sensitive (“weird”)
matching (se&ection 9.6.3.b

X expanded syntax (see below)

Embedded options take effect at théerminating the sequence. They are available only at the start of an
ARE, and may not be used later within it.

In addition to the usualtight) RE syntax, in which all characters are significant, there igxgranded
syntax, available by specifying the embeddeaption. In the expanded syntax, white-space characters in
the RE are ignored, as are all characters betwegard the following newline (or the end of the RE).
This permits paragraphing and commenting a complex RE. There are three exceptions to that basic rule:

- awhite-space character pipreceded by is retained
- white space oft within a bracket expression is retained
- white space and comments are illegal within multi-character symbols, like the(ZREr the BRE\(

Expanded-syntax white-space characters are blank, tab, newline, and any character that belongs to the
space character class.

Finally, in an ARE, outside bracket expressions, the sequénctt) (wherettt is any text not
containing a)) is a comment, completely ignored. Again, this is not allowed between the characters
of multi-character symbols, like?: . Such comments are more a historical artifact than a useful facility,
and their use is deprecated; use the expanded syntax instead.

Noneof these metasyntax extensions is available if an inftial director has specified that the user’s
input be treated as a literal string rather than as an RE.

9.6.3.5. Regular Expression Matching Rules

In the event that an RE could match more than one substring of a given string, the RE matches the one
starting earliest in the string. If the RE could match more than one substring starting at that point, its
choice is determined by ifgreferenceeither the longest substring, or the shortest.

Most atoms, and all constraints, have no preference. A parenthesized RE has the same preference (possibly
none) as the RE. A quantified atom with quantified or{n}? has the same preference (possibly none)

as the atom itself. A quantified atom with other normal quantifiers (inclufimgh} with mequal ton)

prefers longest match. A quantified atom with other non-greedy quantifiers (inclgding}? with m

equal ton) prefers shortest match. A branch has the same preference as the first quantified atom in it
which has a preference. An RE consisting of two or more branches connected|bppleator prefers

longest match.

Subject to the constraints imposed by the rules for matching the whole RE, subexpressions also match the
longest or shortest possible substrings, based on their preferences, with subexpressions starting earlier in
the RE taking priority over ones starting later. Note that outer subexpressions thus take priority over their
component subexpressions.

The quantifierg1,1} and{1,1}? can be used to force longest and shortest preference, respectively, on
a subexpression or a whole RE.

132

Chapter 9. Functions and Operators

Match lengths are measured in characters, not collating elements. An empty string is considered
longer than no match at all. For exampleb* matches the three middle characters abbbc ;
(week|wee)(night|knights) matches all ten characterswéeknights ; when(.*).* is matched
againstabc the parenthesized subexpression matches all three characters; anthtyheris matched
againstc both the whole RE and the parenthesized subexpression match an empty string.

If case-independent matching is specified, the effect is much as if all case distinctions had vanished from
the alphabet. When an alphabetic that exists in multiple cases appears as an ordinary character outside
a bracket expression, it is effectively transformed into a bracket expression containing both cases, e.g.
becomegxX] . When it appears inside a bracket expression, all case counterparts of it are added to the
bracket expression, e.x] becomegxX] and[*x] becomeg$ xX]

If newline-sensitive matching is specifiedand bracket expressions usimgvill never match the newline
character (so that matches will never cross newlines unless the RE explicitly arranges éndsdwill

match the empty string after and before a newline respectively, in addition to matching at beginning and
end of string respectively. But the ARE escapesand\Z continue to match beginning or end of string
only.

If partial newline-sensitive matching is specified, this affecend bracket expressions as with newline-
sensitive matching, but notands.

If inverse partial newline-sensitive matching is specified, this affec@sd$ as with newline-sensitive
matching, but not and bracket expressions. This isn’t very useful but is provided for symmetry.

9.6.3.6. Limits and Compatibility

No particular limitis imposed on the length of REs in this implementation. However, programs intended to
be highly portable should not employ REs longer than 256 bytes, as a POSIX-compliant implementation
can refuse to accept such REs.

The only feature of AREs that is actually incompatible with POSIX EREs is \thdbes not lose its
special significance inside bracket expressions. All other ARE features use syntax which is illegal or
has undefined or unspecified effects in POSIX EREs*thesyntax of directors likewise is outside the
POSIX syntax for both BREs and EREs.

Many of the ARE extensions are borrowed from Perl, but some have been changed to clean them up, and a
few Perl extensions are not present. Incompatibilities of note indtude , the lack of special treatment

for a trailing newline, the addition of complemented bracket expressions to the things affected by newline-
sensitive matching, the restrictions on parentheses and back references in lookahead constraints, and the
longest/shortest-match (rather than first-match) matching semantics.

Two significant incompatibilities exist between AREs and the ERE syntax recognized by pre-7.4 releases
of PostgreSQL:

- In AREs,\ followed by an alphanumeric character is either an escape or an error, while in previous
releases, it was just another way of writing the alphanumeric. This should not be much of a problem
because there was no reason to write such a sequence in earlier releases.

- In AREs,\ remains a special character within, so a literal\ within a bracket expression must be
written\\ .

While these differences are unlikely to create a problem for most applications, you can avoid them if
necessary by settinggex_flavor ~ to extended .

133

Chapter 9. Functions and Operators

9.6.3.7. Basic Regular Expressions

BREs differ from EREs in several respedts+, and? are ordinary characters and there is no equivalent
for their functionality. The delimiters for bounds afe and\} , with { and} by themselves ordinary
characters. The parentheses for nested subexpressiagsard\) , with (and) by themselves ordinary
characters? is an ordinary character except at the beginning of the RE or the beginning of a parenthe-
sized subexpressiof,is an ordinary character except at the end of the RE or the end of a parenthesized
subexpression, and is an ordinary character if it appears at the beginning of the RE or the beginning
of a parenthesized subexpression (after a possible leadiriginally, single-digit back references are
available, and < and\ > are synonyms fofl: <:]] and[: >:] respectively; no other escapes are
available.

9.7. Data Type Formatting Functions

The PostgreSQL formatting functions provide a powerful set of tools for converting various data types
(date/time, integer, floating point, numeric) to formatted strings and for converting from formatted strings
to specific data type§able 9-20ists them. These functions all follow a common calling convention: the

first argument is the value to be formatted and the second argument is a template that defines the output
or input format.

Table 9-20. Formatting Functions

Function Return Type Description Example

to_char (timestamp |, text convert time stamp to [to_char(current_timestamp,

text) string 'HH12:MI:SS)

to_char (interval text convert interval to stringto_char(interval

text) '15h 2m 12s’,
'HH24:MI:SS")

to_char (int , text) [text convert integer to string fto_char(125, '999’)

to_char (double text convert real/double to_char(125.8::real,

precision , text) precision to string '999D9')

to_char (numeric , text convert numeric to stringo_char(-125.8,

text) '999D99S")

to_date (text , text) |date convert string to date |to_date('05 Dec 2000’
'DD Mon YYYY’)

to_timestamp (text , timestamp convert string to time to_timestamp('05 Dec 2000’,

text) stamp ‘DD Mon YYYY’)

to_number (text , text) jnumeric convert string to numeri¢o_number(’12,454.8-",
'99G999D9S’)

Warning:to_char (interval , text) is deprecated and should not be used in newly-written code. It will

be removed in the next version.

In an output template string (fao_char), there are certain patterns that are recognized and replaced
with appropriately-formatted data from the value to be formatted. Any text that is not a template pattern

134

Chapter 9. Functions and Operators

is simply copied verbatim. Similarly, in an input template string (for anythingtbuthar), template
patterns identify the parts of the input data string to be looked at and the values to be found there.

Table 9-21shows the template patterns available for formatting date and time values.

Table 9-21. Template Patterns for Date/Time Formatting

Pattern Description

HH hour of day (01-12)

HH12 hour of day (01-12)

HH24 hour of day (00-23)

MI minute (00-59)

SS second (00-59)

MS millisecond (000-999)

us microsecond (000000-999999)
SSSS seconds past midnight (0-86399)

IAMor A.M. or PMor P.M.

meridian indicator (upper case)

amora.m. Or pmor p.m.

meridian indicator (lower case)

Y,YYY year (4 and more digits) with comma
YYYY year (4 and more digits)

YYY last 3 digits of year

YY last 2 digits of year

Y last digit of year

BCorB.C. orADorA.D.

era indicator (upper case)

bc orb.c. orad ora.d.

era indicator (lower case)

MONTH

full upper-case month name (blank-padded to 9
chars)

ars)

Month full mixed-case month name (blank-padded to 9
chars)

month full lower-case month name (blank-padded to 9
chars)

MON abbreviated upper-case month name (3 chars)

Mon abbreviated mixed-case month name (3 chars)

mon abbreviated lower-case month name (3 chars)

MM month number (01-12)

DAY full upper-case day name (blank-padded to 9 chars)

Day full mixed-case day name (blank-padded to 9 ch

day full lower-case day name (blank-padded to 9 chars)

DY abbreviated upper-case day name (3 chars)

Dy abbreviated mixed-case day name (3 chars)

dy abbreviated lower-case day name (3 chars)

DDD day of year (001-366)

135

Chapter 9. Functions and Operators

Pattern Description

DD day of month (01-31)

D day of week (1-7; Sunday is 1)

W week of month (1-5) (The first week starts on the
first day of the month.)

Ww week number of year (1-53) (The first week starts
on the first day of the year.)

W ISO week number of year (The first Thursday of|the
new year is in week 1.)

CC century (2 digits)

J Julian Day (days since January 1, 4712 BC)

Q quarter

RM month in Roman numerals (I-XII; I=January) (upper
case)

rm month in Roman numerals (i-xii; i=January) (lower
case)

TZ time-zone name (upper case)

tz time-zone name (lower case)

Certain modifiers may be applied to any template pattern to alter its behavior. For examidienth is
theMonth pattern with theeMmodifier. Table 9-22shows the modifier patterns for date/time formatting.

Table 9-22. Template Pattern Modifiers for Date/Time Formatting

Modifier Description Example

FMprefix fill mode (suppress padding blarigMonth
and zeroes)

TH suffix upper-case ordinal number suffioDTH

th suffix lower-case ordinal number suffiYDDth

FX prefix fixed format global option (see |FX Month DD Day
usage notes)

SP suffix spell mode (not yet implemente@)DSP

Usage notes for the date/time formatting:

« FMsuppresses leading zeroes and trailing blanks that would otherwise be added to make the output of a
pattern be fixed-width.

- to_timestamp andto_date skip multiple blank spaces in the input string if ¢ option is not used.
FX must be specified as the first item in the template. For exatopienestamp('2000 JUN’,
'YYYY MON?) is correct, buto_timestamp('2000 JUN’, 'FXYYYY MON) returns an error,
becauseo_timestamp expects one space only.

« Ordinary text is allowed iro_char templates and will be output literally. You can put a substring

136

Chapter 9. Functions and Operators

in double quotes to force it to be interpreted as literal text even if it contains pattern key words. For
example, in"Hello Year "YYYY’ , theYYYYwill be replaced by the year data, but the singla
Year will not be.

If you want to have a double quote in the output you must precede it with a backslash, for example
WYYYY Month\" . (Two backslashes are necessary because the backslash already has a special
meaning in a string constant.)

The YYYY conversion from string taimestamp or date has a restriction if you use a year with
more than 4 digits. You must use some non-digit character or templateYafter;, otherwise the

year is always interpreted as 4 digits. For example (with the year 20@0@}xte('200001131’,
'YYYYMMDD') will be interpreted as a 4-digit year; instead use a non-digit separator after the year, like
to_date('20000-1131", 'YYYY-MMDD’) or to_date('’20000Nov31’, 'YYYYMonDD’)

Millisecond (M9 and microsecondJs) values in a conversion from string tsmestamp are used as

part of the seconds after the decimal point. For exangplémestamp('12:3’, 'SS:MS’) is not 3
milliseconds, but 300, because the conversion counts it as 12 + 0.3 seconds. This means for the format
SS:MS, the input valued42:3 , 12:30 , and12:300 specify the same number of milliseconds. To get
three milliseconds, one must us2003 , which the conversion counts as 12 + 0.003 = 12.003 seconds.

Here is a more complex example: to_timestamp('15:12:02.020.001230’,
'HH:MI:SS.MS.US") is 15 hours, 12 minutes, and 2 seconds + 20 milliseconds + 1230 microseconds
=2.021230 seconds.

Table 9-23shows the template patterns available for formatting numeric values.

Table 9-23. Template Patterns for Numeric Formatting

Pattern Description

9 \value with the specified number of digits

0 \value with leading zeros

. (period) decimal point

, (comma) group (thousand) separator

PR negative value in angle brackets

S sign anchored to number (uses locale)

L currency symbol (uses locale)

D decimal point (uses locale)

G group separator (uses locale)

MI minus sign in specified position (if number0)
PL plus sign in specified position (if number0)
SG plus/minus sign in specified position

RN roman numeral (input between 1 and 3999)
THor th ordinal number suffix

\Y shift specified number of digits (see notes)
EEEE scientific notation (not implemented yet)

137

Chapter 9. Functions and Operators

Usage notes for the numeric formatting:

- A sign formatted usingsG PL, or MI is not anchored to the number; for exampte,char(-12,
'S9999') produces -12' , butto_char(-12, 'MI9999") produces- 12 . The Oracle im-
plementation does not allow the useMif ahead oB, but rather requires thatprecedemi.

« 9 results in a value with the same number of digits as ther@ar a digit is not available it outputs a
space.

« THdoes not convert values less than zero and does not convert fractional numbers.
« PL, SG andTHare PostgreSQL extensions.

- Veffectively multiplies the input values kp” n, wheren is the number of digits following. to_char
does not support the use wtombined with a decimal point. (E.®9.9v99 is not allowed.)

Table 9-24shows some examples of the use oftihehar function.

Table 9-24.to_char Examples

Expression Result
to_char(current_timestamp, 'Tuesday , 06 05:39:18
'Day, DD HH12:MI:SS’)

to_char(current_timestamp, 'Tuesday, 6 05:39:18’
'FMDay, FMDD HH12:MI:SS’)

to_char(-0.1, '99.99") 10
to_char(-0.1, 'FM9.99") -1
to_char(0.1, '0.9) " 0.1
to_char(12, '9990999.9") ' 0012.0’
to_char(12, 'FM9990999.9’) ‘0012
to_char(485, '999’) ' 485’
to_char(-485, '999’) '-485’
to_char(485, '9 9 9) ' 4 85
to_char(1485, '9,999) ' 1,485’
to_char(1485, '9G999) ' 1 485’
to_char(148.5, '999.999’) ' 148.500°
to_char(148.5, 'FM999.999’) '148.5’
to_char(148.5, 'FM999.990") '148.500’
to_char(148.5, '999D999’) ' 148,500’
to_char(3148.5, '9G999D999’) ' 3 148,500’
to_char(-485, '999S’) '485-'
to_char(-485, '999MI’) '485-'
to_char(485, '999MI’) '485
to_char(485, 'FM999MI’) '485'

138

Chapter 9. Functions and Operators

Expression Result
to_char(485, 'PL999) '+485’
to_char(485, 'SG999’) '+485’
to_char(-485, 'SG999’) '-485’
to_char(-485, '9SG99’) '4-85’
to_char(-485, '999PR’) ' <485>'
to_char(485, 'L999) 'DM 485
to_char(485, 'RN’) CDLXXXV’
to_char(485, 'FMRN’) 'CDLXXXV’
to_char(5.2, 'FMRN’) A%
to_char(482, '999th’) ' 482nd’

to_char(485, "Good number:"999’)

'Good number: 485’

to_char(485.8, 'Pre: 485 Post: .800’
"'Pre:"999" Post:" .999’)

to_char(12, '99V999’) ' 12000
to_char(12.4, '99Vv999) " 12400’
to_char(12.45, '99V9’) ' 125’

9.8. Date/Time Functions and Operators

Table 9-26shows the available functions for date/time value processing, with details appearing in the
following subsectionsTable 9-25illustrates the behaviors of the basic arithmetic operaters (etc.).

For formatting functions, refer t8ection 9.7 You should be familiar with the background information on
date/time data types fro®ection 8.5

All the functions and operators described below that tmke ortimestamp inputs actually come in two

variants: one that takesne with time zone or timestamp with time zone , and one that takes
time without time zone or timestamp without time zone . For brevity, these variants are not
shown separately.

Table 9-25. Date/Time Operators

Operator Example Result

+ date '2001-09-28" + date '2001-10-05’
integer '7’

+ date '2001-09-28" + timestamp '2001-09-28
interval '1 hour’ 01:00’

+ date '2001-09-28" + time timestamp '2001-09-28
'03:00’ 03:00’

+ time '03:00' + date timestamp '2001-09-28
'2001-09-28' 03:00°

139

Chapter 9. Functions and Operators

Operator Example Result

+ interval '1 day’ + interval '1 day 01:00’
interval '1 hour’

+ timestamp '2001-09-28 timestamp '2001-09-29
01:00" + interval '23 00:00°
hours’

+ time '01:00" + interval time '04:00’
'3 hours’

+ interval '3 hours’ + time time '04:00°
'01:00’

- - interval '23 hours’ interval '-23:00’

- date '2001-10-01' - date integer '3’
'2001-09-28’

- date '2001-10-01" - date '2001-09-24
integer 7’

- date '2001-09-28 - timestamp '2001-09-27
interval '1 hour’ 23:00’

- time '05:00’ - time interval '02:00’
'03:00’

- time '05:00" - interval time '03:00’
'2 hours’

- timestamp '2001-09-28 timestamp '2001-09-28
23:00' - interval '23 00:00’
hours’

- interval '1 day’ - interval '23:00’
interval '1 hour’

- interval '2 hours’ - time time '03:00’
'05:00’

- timestamp '2001-09-29 interval '1 day 15:00’
03:00' - timestamp
'2001-09-27 12:00°

* double precision '3.5" * interval '03:30’
interval '1 hour’

* interval '1 hour’ * interval '03:30’
double precision '3.5’

/ interval '1 hour’ / interval '00:40’
double precision '1.5’

Table 9-26. Date/Time Functions

Function Return Type Description Example Result

age (timestamp) interval Subtract from todayage(timestamp 43 years 8 mons

'1957-06-13") 3 days

140

Chapter 9. Functions and Operators

Function Return Type Description Example Result
age (timestamp interval Subtract argumentsage('2001-04-10°, 43 years 9 mons
timestamp) timestamp 27 days
'1957-06-13")
current_date date Today’s date; see
Section 9.8.4
current_time time with time Time of day; see
zone Section 9.8.4
current_timestamp ftimestamp with Date and time; see
time zone Section 9.8.4
date part (text , |double Get subfield date_part('hour’, 20
timestamp) precision (equivalent to timestamp
extract); see '2001-02-16
Section 9.8.1 20:38:40")
date_part (text , |double Get subfield date_part(month’, [3
interval) precision (equivalent to interval '2
extract); see years 3
Section 9.8.1 months’)
date_trunc (text , [timestamp Truncate to specifiethte_trunc(hour’, [2001-02-16
timestamp) precision; see also ftimestamp 20:00:00
Section 9.8.2 '2001-02-16
20:38:407)
extract (field double Get subfield; see |extract(hour 20
from timestamp) |precision Section 9.8.1 from timestamp
'2001-02-16
20:38:40)
extract (field double Get subfield; see |extract(month 3
from interval) |precision Section 9.8.1 from interval
'2 years 3
months’)
isfinite (timestamp [Dpolean Test for finite time isfinite(timestamp true
stamp (not equal t0'2001-02-16
infinity) 21:28:30")
isfinite (interval Jooolean Test for finite isfinite(interval true
interval '4 hours’)
localtime time Time of day; see
Section 9.8.4
localtimestamp timestamp Date and time; see
Section 9.8.4

now()

timestamp with
time zone

Current date and
time (equivalent to
current_timestamp

seeSection 9.8.4

141

Chapter 9. Functions and Operators

Function Return Type Description Example Result
timeofday() text Current date and

time; seeSection

9.8.4

In addition to these functions, the S@QIVERLAPSperator is supported:

(startl , endl) OVERLAPS (start2 , end2)
(startl , lengthl) OVERLAPS (start2 , length2)

This expression yields true when two time periods (defined by their endpoints) overlap, false when they
do not overlap. The endpoints can be specified as pairs of dates, times, or time stamps; or as a date, time,
or time stamp followed by an interval.

SELECT (DATE ’'2001-02-16', DATE '2001-12-21') OVERLAPS
(DATE '2001-10-30', DATE '2002-10-30");

Result: true

SELECT (DATE ’'2001-02-16', INTERVAL '100 days’) OVERLAPS
(DATE ’'2001-10-30’, DATE '2002-10-30%);

Result: false

9.8.1. EXTRACT date_part
EXTRACT field FROMsource)

Theextract function retrieves subfields from date/time values, such as year ordoauce is a value
expression that evaluates to tyfreestamp orinterval . (Expressions of typdate ortime will be
cast totimestamp and can therefore be used as wdlEjJd is an identifier or string that selects what
field to extract from the source value. Téaract function returns values of typiouble precision

The following are valid field names:

century
The year field divided by 100

SELECT EXTRACT(CENTURY FROM TIMESTAMP '2001-02-16 20:38:40");
Result: 20

Note that the result for the century field is simply the year field divided by 100, and not the conven-
tional definition which puts most years in the 1900’s in the twentieth century.

day
The day (of the month) field (1 - 31)
SELECT EXTRACT(DAY FROM TIMESTAMP '2001-02-16 20:38:40’);
Result: 16
decade

The year field divided by 10

SELECT EXTRACT(DECADE FROM TIMESTAMP '2001-02-16 20:38:40");
Result: 200

142

Chapter 9. Functions and Operators

dow

The day of the week (0 - 6; Sunday is 0) (fonestamp values only)

SELECT EXTRACT(DOW FROM TIMESTAMP '2001-02-16 20:38:40');
Result: 5

doy
The day of the year (1 - 365/366) (fomestamp values only)

SELECT EXTRACT(DOY FROM TIMESTAMP '2001-02-16 20:38:40");
Result: 47

epoch

For date andtimestamp values, the number of seconds since 1970-01-01 00:00:00-00 (can be
negative); folinterval values, the total number of seconds in the interval

SELECT EXTRACT(EPOCH FROM TIMESTAMP WITH TIME ZONE '2001-02-16 20:38:40-08);
Result: 982384720
SELECT EXTRACT(EPOCH FROM INTERVAL '5 days 3 hours’);
Result: 442800
hour
The hour field (0 - 23)

SELECT EXTRACT(HOUR FROM TIMESTAMP '2001-02-16 20:38:40’);
Result: 20

microseconds

The seconds field, including fractional parts, multiplied by 1 000 000. Note that this includes full
seconds.

SELECT EXTRACT(MICROSECONDS FROM TIME '17:12:28.5");
Result: 28500000

millennium
The year field divided by 1000

SELECT EXTRACT(MILLENNIUM FROM TIMESTAMP '2001-02-16 20:38:40");
Result: 2

Note that the result for the millennium field is simply the year field divided by 1000, and not the
conventional definition which puts years in the 1900’s in the second millennium.

milliseconds
The seconds field, including fractional parts, multiplied by 1000. Note that this includes full seconds.

SELECT EXTRACT(MILLISECONDS FROM TIME '17:12:28.5);
Result: 28500

minute

The minutes field (0 - 59)

SELECT EXTRACT(MINUTE FROM TIMESTAMP ’'2001-02-16 20:38:40’);
Result: 38

143

Chapter 9. Functions and Operators

month

Fortimestamp values, the number of the month within the year (1 - 12) jd@rval values the
number of months, modulo 12 (0 - 11)

SELECT EXTRACT(MONTH FROM TIMESTAMP '2001-02-16 20:38:40’);

Result: 2

SELECT EXTRACT(MONTH FROM INTERVAL '2 years 3 months’);
Result: 3

SELECT EXTRACT(MONTH FROM INTERVAL °'2 years 13 months’);
Result: 1
quarter
The quarter of the year (1 - 4) that the day is in ({forestamp values only)

SELECT EXTRACT(QUARTER FROM TIMESTAMP ’'2001-02-16 20:38:40%;
Result: 1

second
The seconds field, including fractional parts (0)59
SELECT EXTRACT(SECOND FROM TIMESTAMP '2001-02-16 20:38:40");
Result: 40
SELECT EXTRACT(SECOND FROM TIME '17:12:28.5’);
Result: 285
timezone

The time zone offset from UTC, measured in seconds. Positive values correspond to time zones east
of UTC, negative values to zones west of UTC.

timezone_hour

The hour component of the time zone offset
timezone_minute

The minute component of the time zone offset
week

The number of the week of the year that the day is in. By definition (ISO 8601), the first week of a
year contains January 4 of that year. (The ISO-8601 week starts on Monday.) In other words, the first
Thursday of a year is in week 1 of that year. (fiaxestamp values only)

SELECT EXTRACT(WEEK FROM TIMESTAMP '2001-02-16 20:38:40’);
Result: 7

year

The year field

SELECT EXTRACT(YEAR FROM TIMESTAMP '2001-02-16 20:38:40");
Result: 2001

60 if leap seconds are implemented by the operating system

144

Chapter 9. Functions and Operators

Theextract function is primarily intended for computational processing. For formatting date/time val-
ues for display, seSection 9.7

Thedate_part function is modeled on the traditional Ingres equivalent to the SQL-standard function
extract

date_part(’ field ', source)

Note that here théeld parameter needs to be a string value, not a name. The valid field names for
date_part are the same as fextract

SELECT date_part('day’, TIMESTAMP '2001-02-16 20:38:40);
Result: 16

SELECT date_part(hour’, INTERVAL ’4 hours 3 minutes’);
Result: 4

9.8.2. date_trunc

The functiondate_trunc is conceptually similar to theunc function for numbers.

date_trunc(’ field ', source)

source is a value expression of typinestamp orinterval . (Values of typedate andtime are cast
automatically, taimestamp orinterval ~ respectively.field selects to which precision to truncate
the input value. The return value is of tyfheestamp orinterval with all fields that are less significant
than the selected one set to zero (or one, for day and month).

Valid values forfield are:

microseconds
milliseconds
second
minute

hour

day

month

year
decade
century
millennium

Examples:

SELECT date_trunc(hour’, TIMESTAMP °'2001-02-16 20:38:40’);
Result: 2001-02-16 20:00:00

SELECT date_trunc(year’, TIMESTAMP '2001-02-16 20:38:40’);

145

Chapter 9. Functions and Operators

Result: 2001-01-01 00:00:00

9.8.3. AT TIME ZONE

The AT TIME ZONEconstruct allows conversions of time stamps to different time zofedsle 9-27
shows its variants.

Table 9-27.AT TIME ZONEVariants

Expression Return Type Description

timestamp without time zone timestamp with time zone Convert local time in given time
AT TIME ZONE zone zone to UTC

timestamp with time zone AT [timestamp without time Convert UTC to local time in
TIME ZONE zone zone given time zone

time with time zone AT TIMEfime with time zone Convert local time across time
ZONE zone zones

In these expressions, the desired time zomee can be specified either as a text string (ERS,T”) or
as an interval (e.gINTERVAL '-08:00°).

Examples (supposing that the local time zone$38PDT):

SELECT TIMESTAMP °2001-02-16 20:38:40° AT TIME ZONE 'MST’;
Result: 2001-02-16 19:38:40-08

SELECT TIMESTAMP WITH TIME ZONE '2001-02-16 20:38:40-05" AT TIME ZONE 'MST’;
Result: 2001-02-16 18:38:40

The first example takes a zone-less time stamp and interprets it as MST time (UTC-7) to produce a UTC
time stamp, which is then rotated to PST (UTC-8) for display. The second example takes a time stamp
specified in EST (UTC-5) and converts it to local time in MST (UTC-7).

The functionimezone (zone, timestamp) is equivalentto the SQL-conforming constrtiotestamp
AT TIME ZONEzone.

9.8.4. Current Date/Time

The following functions are available to obtain the current date and/or time:

CURRENT_DATE

CURRENT_TIME
CURRENT_TIMESTAMP
CURRENT_TIME (precision)
CURRENT_TIMESTAMP frecision)
LOCALTIME

LOCALTIMESTAMP

LOCALTIME (precision)
LOCALTIMESTAMP (precision)

146

Chapter 9. Functions and Operators

CURRENT_TIME and CURRENT_TIMESTAMPdeliver values with time zone,LOCALTIME and
LOCALTIMESTAMERIeliver values without time zone.

CURRENT_TIMECURRENT_TIMESTAMROCALTIME andLOCALTIMESTAMRan optionally be given a
precision parameter, which causes the result to be rounded to that many fractional digits in the seconds
field. Without a precision parameter, the result is given to the full available precision.

Note: Prior to PostgreSQL 7.2, the precision parameters were unimplemented, and the result was
always given in integer seconds.

Some examples:

SELECT CURRENT_TIME;
Result: 14:39:53.662522-05

SELECT CURRENT_DATE;
Result: 2001-12-23

SELECT CURRENT_TIMESTAMP;
Result: 2001-12-23 14:39:53.662522-05

SELECT CURRENT_TIMESTAMP(2);
Result: 2001-12-23 14:39:53.66-05

SELECT LOCALTIMESTAMP;
Result: 2001-12-23 14:39:53.662522

The functionnow() is the traditional PostgreSQL equivalent@®ORRENT_TIMESTAMP

There is also the functioimeofday() , which for historical reasons returnsext string rather than a
timestamp value:

SELECT timeofday();
Result: Sat Feb 17 19:07:32.000126 2001 EST

Itis important to know thaCURRENT_TIMESTAMEN related functions return the start time of the current
transaction; their values do not change during the transaction. This is considered a feature: the intent is to
allow a single transaction to have a consistent notion of the “current” time, so that multiple modifications
within the same transaction bear the same time stdmgofday() returns the wall-clock time and does
advance during transactions.

Note: Other database systems may advance these values more frequently.

All the date/time data types also accept the special literal vadueto specify the current date and time.
Thus, the following three all return the same result:

147

Chapter 9. Functions and Operators

SELECT CURRENT_TIMESTAMP;

SELECT now();

SELECT TIMESTAMP ’'now’;

Note: You do not want to use the third form when specifying a DEFAULTclause while creating a table.
The system will convert now to a timestamp as soon as the constant is parsed, so that when the
default value is needed, the time of the table creation would be used! The first two forms will not
be evaluated until the default value is used, because they are function calls. Thus they will give the
desired behavior of defaulting to the time of row insertion.

9.9. Geometric Functions and Operators

The geometric typepoint , box, Iseg , line , path , polygon , andcircle

support functions and operators, showTable 9-28 Table 9-29 andTable 9-30

Table 9-28. Geometric Operators

have a large set of native

Operator Description Example

+ Translation box ’((0,0),(1,1)) +
point '(2.0,0)’

- Translation box '((0,0),(1,1)) -
point '(2.0,0)’

* Scaling/rotation box ’((0,0),(1,1)) *
point '(2.0,0)’

/ Scaling/rotation box ’((0,0),(2,2))" /
point '(2.0,0)’

Point or box of intersection '((1,-1),(-1,1))
((1,1).¢1-1))

Number of points in path or # ’((1,0),(0,1),(-1,0))

polygon

@-@ Length or circumference @-@ path '((0,0),(1,0))

@@ Center @@ circle '((0,0),10)

#H Closest point to first operand onjpoint ’(0,0)" ## Iseg

second operand '((2,0),(0,2)y

<-> Distance between circle '((0,0),1) <>
circle ’((5,0),1)

&& Overlaps? box ’((0,0),(1,1)) &&
box ’((0,0),(2,2))

&< Overlaps or is left of? box ’((0,0),(1,1))" & <
box '((0,0),(2,2))’

148

Chapter 9. Functions and Operators
Operator Description Example
&> Overlaps or is right of? box ’((0,0),(3,3)) & >
box '((0,0),(2,2))’
<< Is left of? circle ’((0,0),1) <<
circle '((5,0),1)
>> Is right of? circle '((5,0),1) >>
circle ’((0,0),1)
< Is below? circle ’((0,0),1) <
circle ’((0,5),1)
>N Is above? circle ’((0,5),1) >
circle '((0,0),1)’
%3 Intersects? Iseg '((-1,0),(1,0))" ?#
box '((-2,-2),(2,2))’
?- Is horizontal? ?- Iseg '((-1,0),(1,0))
?- Are horizontally aligned? point '(1,0) ?- point
(0,0
?| Is vertical? ?| Iseg '((-1,0),(1,0))
?| Are vertically aligned? point ’(0,1)’ ?| point
(0,0)
?-| Is perpendicular? Iseg ’((0,0),(0,1))' ?-|
Iseg '((0,0),(1,0))’
?l| Are parallel? Iseg ’'((-1,0),(1,0))" ?||
Iseg '((-1,2),(1,2))
~ Contains? circle ’((0,0),2) ~
point ’(1,1)’
@ Contained in or on? point '(1,1)’ @ circle
'((0,0).2)
~= Same as”? polygon ’((0,0),(1,1))’
~= polygon
'((1,1),(0,0))
Table 9-29. Geometric Functions
Function Return Type Description Example
area (object) double precision area area(box
'((0,0),(1,1)))
box_intersect (box, box intersection box box_intersect(box
box) '((0,0),(1,1))',box
'((0.5,0.5),(2,2)))
center (object) point center center(box
'((0,0),(1,2)))

149

Chapter 9. Functions and Operators

Function Return Type Description Example
diameter (circle) double precision diameter of circle diameter(circle
'((0,0),2.0)")
height (box) double precision \vertical size of box height(box
'((0,0),(1,2)))
isclosed (path) boolean a closed path? isclosed(path
'((0,0),(1,1),(2,0)))
isopen (path) boolean an open path? isopen(path
'((0,0),(1,1),(2,0)]")
length (object) double precision length length(path
'((-1,0),(1,0)))
npoints (path) integer number of points npoints(path
1(0,0),(1,1),(2,0)])
npoints (polygon) integer number of points npoints(polygon
'((1,1),(0,0)))
pclose (path) path convert path to closed [popen(path
1(0,0),(1,1),(2,0)])
popen (path) path convert path to open |popen(path
'((0,0),(1,1),(2,0)))
radius (circle) double precision radius of circle radius(circle
'((0,0),2.0)")
width (box) double precision horizontal size of box width(box
'((0,0),(1,1)))
Table 9-30. Geometric Type Conversion Functions
Function Return Type Description Example
box (circle) box circle to box box(circle
'((0,0),2.0)")
box (point , point) box points to box box(point '(0,0)’,
point '(1,1))
box (polygon) box polygon to box box(polygon
'((0,0),(1,1),(2,0)))
circle (box) circle box to circle circle(box
'((0,0),(1,1)))
circle (point , double [ircle point and radius to circlecircle(point
precision) '(0,0)", 2.0)

150

Chapter 9. Functions and Operators

Function Return Type Description Example
Iseg (box) Iseg box diagonal to line Iseg(box
segment '((-1,0),(1,0)))

Iseg (point , point) Iseg points to line segment |iseg(point
'(-1,0)", point
'(1,0))

path (polygon) point polygon to path path(polygon
'((0,0),(1,1),(2,0)))

point (circle) point center of circle point(circle
'((0,0),2.0)")

point (Iseg , Iseg) point intersection point(Iseg
'((-1,0),(1,0))",
Iseg
((-2,-2),(2,2)))

point (polygon) point center of polygon point(polygon
'((0,0),(1,1),(2,0)))

polygon (box) polygon box to 4-point polygon |polygon(box
'((0,0),(1,2)))

polygon (circle) polygon circle to 12-point polygopolygon(circle
'((0,0),2.0)")

polygon (npts , polygon circle tonpts -point polygon(12, circle

circle) polygon '((0,0),2.0)")

polygon (path) polygon path to polygon polygon(path
'((0,0),(1,1),(2,0)))

It is possible to access the two component numberspafia as though it were an array with indices
0 and 1. For example, ifp is apoint column therSELECT p[0] FROM t retrieves the X coordinate
andUPDATE t SET p[1] = ... changes the Y coordinate. In the same way, a value of ihggeor
Iseg may be treated as an array of tpint values.

9.10. Network Address Type Functions

Table 9-31shows the operators available for itier andinet types. The operators<, <<=, >>, and
>>= test for subnet inclusion. They consider only the network parts of the two addresses, ignoring any
host part, and determine whether one network part is identical to or a subnet of the other.

Table 9-31.cidr andinet Operators

Operator Description Example
< is less than inet '192.168.1.5’ < inet
'192.168.1.6’

151

Chapter 9. Functions and Operators

Operator Description Example

<= is less than or equal inet '192.168.1.5’ <=
inet '192.168.1.5’

= equals inet '192.168.1.5’ = inet
'192.168.1.5’

>= is greater or equal inet '192.168.1.5’ >=
inet '192.168.1.5’

> is greater than inet ’192.168.1.5' > inet
'192.168.1.4°

<> is not equal inet '192.168.1.5’ <>
inet '192.168.1.4'

<< is contained within inet ’192.168.1.5° <<
inet '192.168.1/24’

<<= is contained within or equals finet '192.168.1/24’ <<=
inet '192.168.1/24’

>> contains inet'192.168.1/24' >>
inet '192.168.1.5’

>>= contains or equals inet ’192.168.1/24’ >>=
inet '192.168.1/24’

Table 9-32shows the functions available for use with tié¢r andinet types. Thehost , text , and
abbrev functions are primarily intended to offer alternative display formats. You can cast a text value to
inet using normal casting syntaiet(expression) oOrcolname :inet

Table 9-32.cidr andinet Functions

Function Return Type Description Example Result

broadcast (inet) |inet broadcast address [proadcast('192.168.1192458.1.255/24
for network

host (inet) text extract IP address @®st('192.168.1.5/24'192.168.1.5
text

masklen (inet) integer extract netmask |masklen('192.168.1.5224")
length

set_masklen (iinet , |inet set netmask lengthiset_masklen('192.168951%8,1.5/16

integer) for inet value 16)

netmask (inet) inet construct netmask jnetmask('192.168.1.5/85'255.255.0
for network

hostmask (inet) inet construct host maskostmask(’192.168.28.2003®")
for network

network (inet) cidr extract network partetwork(’192.168.1.5/299)168.1.0/24
of address

text (inet) text extract IP address [text(inet 192.168.1.5/32
and netmask lengtfi192.168.1.5")
as text

152

Chapter 9. Functions and Operators

Function Return Type Description Example Result
abbrev (inet) text abbreviated displayabbrev(cidr 10.1/16
format as text '10.1.0.0/16")

Table 9-33shows the functions available for use with thecaddr type. The functionrunc (macaddr)

returns a MAC address with the last 3 bytes set to zero. This can be used to associate the remaining prefix
with a manufacturer. The directopntrib/mac in the source distribution contains some utilities to
create and maintain such an association table.

Table 9-33.macaddr Functions

Function Return Type Description Example Result
trunc (macaddr) macaddr set last 3 bytes to ftrunc(macaddr 12:34:56:00:00:00
zero '12:34:56:78:90:ab’)

Themacaddr type also supports the standard relational operators:€, etc.) for lexicographical order-
ing.

9.11. Sequence-Manipulation Functions

This section describes PostgreSQL's functions for operatingamuence objectsSequence objects
(also called sequence generators or just sequences) are special single-row tables cre&tRe&ATIEN
SEQUENCEA sequence object is usually used to generate unique identifiers for rows of a table. The
sequence functions, listed Trable 9-34 provide simple, multiuser-safe methods for obtaining successive
sequence values from sequence objects.

Table 9-34. Sequence Functions

Function Return Type Description

nextval (text) bigint)Advance sequence and return new
value

currval (text) bigint Return value most recently
obtained withextval

setval (text , bigint) bigint Set sequence’s current value

setval (text , bigint bigint Set sequence’s current value and

boolean) is_called flag

For largely historical reasons, the sequence to be operated on by a sequence-function call is specified
by a text-string argument. To achieve some compatibility with the handling of ordinary SQL names, the
sequence functions convert their argument to lower case unless the string is double-quoted. Thus

nextval('foo’) operates on sequence foo
nextval('FOQ’) operates on sequence foo
nextval("Foo™) operates on sequence Foo

The sequence name can be schema-qualified if necessary:

153

Chapter 9. Functions and Operators

nextval(’'myschema.foo’) operates on myschema.foo
nextval("*myschema".foo’) same as above
nextval('foo’) searches search path for foo

Of course, the text argument can be the result of an expression, not only a simple literal, which is occa-
sionally useful.

The available sequence functions are:

nextval

Advance the sequence obiject to its next value and return that value. This is done atomically: even if
multiple sessions executextval concurrently, each will safely receive a distinct sequence value.

currval

Return the value most recently obtainedrdextval for this sequence in the current session. (An

error is reported ifextval has never been called for this sequence in this session.) Notice that
because this is returning a session-local value, it gives a predictable answer even if other sessions are
executingnextval meanwhile.

setval

Reset the sequence object’s counter value. The two-parameter form sets the setpsencise

field to the specified value and setsidscalled field to true , meaning that the nextextval
will advance the sequence before returning a value. In the three-parametersfatatied may
be set eithetrue orfalse . Ifit's settofalse ,the nextextval will return exactly the specified
value, and sequence advancement commences with the folloesngl . For example,

SELECT setval('foo’, 42); Next nextval will return 43
SELECT setval('foo’, 42, true); Same as above
SELECT setval('foo’, 42, false); Next nextval will return 42

The result returned bgetval s just the value of its second argument.

Important: To avoid blocking of concurrent transactions that obtain numbers from the same sequence,
anextval operation is never rolled back; that is, once a value has been fetched it is considered used,
even if the transaction that did the nextval later aborts. This means that aborted transactions may
leave unused “holes” in the sequence of assigned values. setval operations are never rolled back,
either.

If a sequence object has been created with default parametergl calls on it will return successive
values beginning with 1. Other behaviors can be obtained by using special parameter€ REAEE
SEQUENCEcommand; see its command reference page for more information.

9.12. Conditional Expressions

This section describes the SQL-compliant conditional expressions available in PostgreSQL.

154

Chapter 9. Functions and Operators

Tip: If your needs go beyond the capabilities of these conditional expressions you might want to
consider writing a stored procedure in a more expressive programming language.

9.12.1. CASE

The SQLCASEexpression is a generic conditional expression, similar to if/else statements in other lan-
guages:

CASE WHENondition THEN result
[WHEN ..]
[ELSE result]

END

CASEclauses can be used wherever an expression is walidlition is an expression that returns a
boolean result. If the result is true then the value of thaSEexpression is theesult that follows the
condition. If the result is false any subsequemENIauses are searched in the same manner. \fHEN
condition s true then the value of the case expression igékalt in theELSE clause. If theELSE
clause is omitted and no condition matches, the result is null.

An example:

SELECT * FROM test;

a
1
2
3
SELECT a,
CASE WHEN a=1 THEN ’one’
WHEN a=2 THEN ’'two’
ELSE ’other’
END
FROM test;
a | case
PR
1| one
2 | two
3 | other

The data types of all theesult expressions must be convertible to a single output type.S&etdon
10.5for more detail.

The following “simple” CASEexpression is a specialized variant of the general form above:

CASE expression
WHENvalue THEN result

155

Chapter 9. Functions and Operators

[WHEN ..]
[ELSE result]
END

Theexpression is computed and compared to all th@lue specifications in thevHENlauses until
one is found that is equal. If no match is found, tlesult in the ELSE clause (or a null value) is
returned. This is similar to thewitch statement in C.

The example above can be written using the singA€Esyntax:

SELECT a,
CASE a WHEN 1 THEN ’one’
WHEN 2 THEN ’two’

ELSE ’other’
END
FROM test;

a | case
JE B —

1| one
2 | two

3 | other

A CASEexpression does not evaluate any subexpressions that are not needed to determine the result. For
example, this is a possible way of avoiding a division-by-zero failure:

SELECT ... WHERE CASE WHEN x> 0 THEN y/x > 1.5 ELSE false END;

9.12.2. COALESCE

COALESCEvalue [, ...])
The COALESCHunction returns the first of its arguments that is not null. Null is returned only if all

arguments are null. This is often useful to substitute a default value for null values when data is retrieved
for display, for example:

SELECT COALESCE(description, short_description, ’(none)’) ...

Like a CASEexpressionCOALESCEwill not evaluate arguments that are not needed to determine the
result; that is, arguments to the right of the first non-null argument are not evaluated.

9.12.3. NULLIF

NULLIF(valuel , value2)

156

Chapter 9. Functions and Operators

The NULLIF function returns a null value if and only ¥faluel andvalue2 are equal. Otherwise it
returnsvaluel . This can be used to perform the inverse operation ofdb@LESCExample given
above:

SELECT NULLIF(value, '(none)) ...

9.13. Miscellaneous Functions

Table 9-35shows several functions that extract session and system information.

Table 9-35. Session Information Functions

Name Return Type Description

current_database() name name of current database

current_schemay() name name of current schema

current_schemas(boolean) name(] names of schemas in search path
optionally including implicit
schemas

current_user name user name of current execution
context

session_user name session user name

user name equivalent tacurrent_user

version() text PostgreSQL version information

Thesession_user is the user that initiated a database connection; it is fixed for the duration of that con-
nection. Thecurrent_user is the user identifier that is applicable for permission checking. Normally, it
is equal to the session user, but it changes during the execution of functions with the afEOURITY
DEFINER In Unix parlance, the session user is the “real user” and the current user is the “effective user”.

Note: current_user , session_user , and user have special syntactic status in SQL: they must be
called without trailing parentheses.

current_schema returns the name of the schema that is at the front of the search path (or a null value

if the search path is empty). This is the schema that will be used for any tables or other named objects
that are created without specifying a target schernaent_schemas(boolean) returns an array of

the names of all schemas presently in the search path. The Boolean option determines whether or not
implicitly included system schemas suchpgscatalog are included in the search path returned.

Note: The search path may be altered at run time. The command is:

SET search_path TO schema [, schema, ..]

157

Chapter 9. Functions and Operators

version() returns a string describing the PostgreSQL server’s version.

Table 9-36shows the functions available to query and alter run-time configuration parameters.

Table 9-36. Configuration Settings Functions

Name Return Type Description

text current value of setting
current_setting ('setting_name |)
set_config(setting_name text set parameter and return new value
new_value , is_local)

The functioncurrent_setting yields the current value of the settisgtting_name . It corresponds
to the SQL comman8HOWAnN example:

SELECT current_setting('datestyle’);

current_setting

set_config setsthe parameteetting_ name tonew_value .Ifis local istrue ,the new value
will only apply to the current transaction. If you want the new value to apply for the current session, use
false instead. The function corresponds to the SQL comn&&id An example:

SELECT set_config('log_statement_stats’, 'off’, false);

set_config

Table 9-37lists functions that allow the user to query object access privileges programmatically. See
Section 5.7or more information about privileges.

Table 9-37. Access Privilege Inquiry Functions

Name Return Type Description

has_table_privilege (user , boolean does user have privilege for table
table , privilege)

has_table_privilege (table , |poolean does current user have privilege
privilege) for table

158

Chapter 9. Functions and Operators

Name Return Type Description

has_database_privilege (user , [poolean does user have privilege for
database , privilege) database

has_database_privilege (databakeolean does current user have privilege
privilege) for database

has_function_privilege (user , [poolean does user have privilege for
function , privilege) function

has_function_privilege (functiofboolean does current user have privilege
privilege) for function

has_language_privilege (user , [poolean does user have privilege for
language , privilege) language

has_language_privilege (languappeolean does current user have privilege
privilege) for language

has_schema_privilege ~ (user , [boolean does user have privilege for
schema, privilege) schema

has_schema_privilege (schema, [pboolean does current user have privilege
privilege) for schema

has_table_privilege checks whether a user can access a table in a particular way. The user can

be specified by name or by IDpq user.usesysid), or if the argument is omittedurrent_user

is assumed. The table can be specified by name or by OID. (Thus, there are actually six variants of
has_table_privilege , which can be distinguished by the number and types of their arguments.) When
specifying by name, the name can be schema-qualified if necessary. The desired access privilege type is
specified by a text string, which must evaluate to one of the va8&e&CT, INSERT, UPDATE DELETE

RULE REFERENCES0r TRIGGER (Case of the string is not significant, however.) An example is:

SELECT has_table_privilege('myschema.mytable’, ’'select’);

has_database_privilege checks whether a user can access a database in a particular way. The pos-
sibilities for its arguments are analogoushtss_table_privilege . The desired access privilege type
must evaluate t€REATE TEMPORARNor TEMP(which is equivalent tdEMPORARY

has_function_privilege checks whether a user can access a function in a particular way. The possi-
bilities for its arguments are analogoushts_table_privilege . When specifying a function by a text
string rather than by OID, the allowed input is the same as fordiy@ocedure data type. The desired
access privilege type must currently evaluatex@&CUTE

has_language_privilege checks whether a user can access a procedural language in a particular way.
The possibilities for its arguments are analogousato table_privilege . The desired access privilege
type must currently evaluate WSAGE

has_schema_privilege checks whether a user can access a schema in a particular way. The possibili-
ties for its arguments are analogoushts_table_privilege . The desired access privilege type must
evaluate ta€CREATEOr USAGE

To evaluate whether a user holds a grant option on the privilege, app@iti GRANT OPTIOKD the
privilege key word; for exampl&JPDATE WITH GRANT OPTION’

159

Chapter 9. Functions and Operators

Table 9-38shows functions that determine whether a certain objegsislein the current schema search

path. A table is said to be visible if its containing schema is in the search path and no table of the same
name appears earlier in the search path. This is equivalent to the statement that the table can be referenced
by name without explicit schema qualification. For example, to list the names of all visible tables:

SELECT relname FROM pg_class WHERE pg_table_is_visible(oid);

Table 9-38. Schema Visibility Inquiry Functions

Name Return Type Description

pg_table_is_visible (table_oid [pdolean is table visible in search path

pg_type_is_visible (type_oid)boolean is type (or domain) visible in
search path

pg_function_is_visible (functiofbomittan) is function visible in search path

pg_operator_is_visible (operatdyooidan) is operator visible in search path

pg_opclass_is_visible (opclass mdleap is operator class visible in search
path

pg_conversion_is_visible (conveesimaoid) is conversion visible in search path

pg_table_is_visible performs the check for tables (or views, or any other kindpgfclass

entry). pg_type_is_visible , pg_function_is_visible . pg_operator_is_visible ,

pg_opclass_is_visible , and pg_conversion_is_visible perform the same sort of visibility

check for types (and domains), functions, operators, operator classes and conversions, respectively. For
functions and operators, an object in the search path is visible if there is no object of the sanadame
argument data type(sarlier in the path. For operator classes, both name and associated index access
method are considered.

All these functions require object OIDs to identify the object to be checked. If you want to test an
object by name, it is convenient to use the OID alias typegclass |, regtype , regprocedure , Or
regoperator), for example

SELECT pg_type_is_visible(myschema.widget’::regtype);

Note that it would not make much sense to test an unqualified name in this way --- if the name can be
recognized at all, it must be visible.

Table 9-39lists functions that extract information from the system catalqgs.get viewdef
pg_get_ruledef , pg_get indexdef , pg_get triggerdef , and pg_get constraintdef

respectively reconstruct the creating command for a view, rule, index, trigger, or constraint. (Note that
this is a decompiled reconstruction, not the original text of the command.) Most of these come in two
variants, one of which can optionally “pretty-print” the result. The pretty-printed format is more
readable, but the default format is more likely to be interpreted the same way by future versions of
PostgreSQL,; avoid using pretty-printed output for dump purposes. Pdasiag for the pretty-print

160

Chapter 9. Functions and Operators

parameter yields the same result as the variant that does not have the parameteigagellexpr
decompiles the internal form of an individual expression, such as the default value for a column. It may
be useful when examining the contents of system catal@g®et_userbyid extracts a user’'s name
given a user ID number.

Table 9-39. System Catalog Information Functions

Name Return Type Description

pg_get viewdef (view_name) ftext getCREATE VIEWcommand for
\view (deprecatedl

pg_get viewdef (view_name, fext getCREATE VIEWcommand for

pretty_bool) \view (deprecatedl

pg_get_viewdef (view_oid) text getCREATE VIEWCommand for
view

pg_get_viewdef (view_oid text getCREATE VIEWCommand for

pretty bool) view

pg_get_ruledef (rule_oid) text getCREATE RULEommand for
rule

pg_get_ruledef (rule_oid text getCREATE RULEommand for

pretty bool) rule

pg_get_indexdef (index_oid) fext getCREATE INDExcommand for|
index

pg_get_indexdef (index_oid , fext getCREATE INDExcommand for|

column_no , pretty bool) index, or definition of just one
index column whertolumn_no
is not zero

pg_get_triggerdef (trigger_oidext) getCREATE [CONSTRAINT]
TRIGGERcommand for trigger

pg_get_constraintdef (constrainttenid) get definition of a constraint

pg_get_constraintdef (constrainftesid , get definition of a constraint

pretty bool)

pg_get expr (expr_text text decompile internal form of an

relation_oid) expression, assuming that any Vars
in it refer to the relation indicated
by the second parameter

pg_get_expr (expr_text text decompile internal form of an

relation_oid : expression, assuming that any Vars

pretty bool) in it refer to the relation indicated
by the second parameter

pg_get_userbyid (userid) name get user name with given ID

The function shown ifable 9-40extract comments previously stored with tt®@MMENTommand. A
null value is returned if no comment could be found matching the specified parameters.

161

Chapter 9. Functions and Operators

Table 9-40. Comment Information Functions

Name Return Type Description

obj_description (object_oid , ftext get comment for a database object

catalog_name)

obj_description (object_oid) ftext get comment for a database object
(deprecatell

col_description (table_oid , fext get comment for a table column

column_number)

The two-parameter form of obj_description returns the comment for a database
object specified by its OID and the name of the containing system catalog. For example,
obj_description(123456,’pg_class’) would retrieve the comment for a table with OID 123456.

The one-parameter form afbj_description requires only the object OID. It is now deprecated
since there is no guarantee that OIDs are unique across different system catalogs; therefore, the wrong
comment could be returned.

col_description returns the comment for a table column, which is specified by the OID of its table
and its column numbeaobj_description cannot be used for table columns since columns do not have
OIDs of their own.

9.14. Array Functions and Operators

Table 9-41shows the operators available foray types.

Table 9-41.array Operators

Operator Description Example Result
= equal IARRAY[1.1,2.1,3.1]::int]] t
= ARRAYI[1,2,3]
<> not equal ARRAY[1,2,3] <> t
IARRAY[1,2,4]
< less than ARRAY[1,2,3] < t
IARRAY[1,2,4]
> greater than ARRAY[1,4,3] > t
IARRAYI[1,2,4]
<= less than or equal ARRAY[1,2,3] <= t
IARRAY(1,2,3]
>= greater than or equal |ARRAY[1,4,3] >= t
IARRAY([1,4,3]
Il array-to-array IARRAY[1,2,3] || {1,2,3,4,5,6}
concatenation IARRAY[4,5,6]
Il array-to-array IARRAY[1,2,3] || {{1,2,3},{4,5,6},{7,8,9}}
concatenation IARRAY([4,5,6],[7,8,9]]

162

Chapter 9. Functions and Operators

Operator Description Example Result

Il element-to-array 3 || ARRAY[4,5,6] {3,4,5,6}
concatenation

Il array-to-element IARRAY[4,5,6] || 7 {4,5,6,7}
concatenation

SeeSection 8.1Gor more details about array operator behavior.

Table 9-42shows the functions available for use with array types. S&ation 8.1Gor more discussion
and examples for the use of these functions.

Table 9-42.array Functions

(anyarray ,
integer)

of the requested
array dimension,
returningNULL for

1)

NULL inputs

Function Return Type Description Example Result
array_cat anyarray concatenate two farray_cat(ARRAY[1,XBR,3,4,5}
(anyarray arrays, returning |ARRAY[4,5])
anyarray) NULL for NULL
inputs
array_append anyarray append an elemengarray_append(ARRA¥I1223}
(anyarray totheendofan [3)
anyelement) array, returning
NULL for NULL
inputs
array_prepend anyarray append an elemengrray_prepend(1, {1,2,3}
(anyelement to the beginning of ARRAY[2,3])
anyarray) an array, returning
NULL for NULL
inputs
array_dims text returns a text array_dims(array[[1,2[BR][1:3]
(anyarray) representation of [4,5,6]])
array dimension
lower and upper
bounds, generating
an ERROR foiNULL|
inputs
array_lower integer returns lower boundrray_lower(array_pr@pend(0,
(anyarray of the requested |ARRAY[1,2,3)),
integer) array dimension, [1)
returningNULL for
NULL inputs
array_upper integer returns upper bourgiray_upper(ARRAY[4,2,3,4],

163

Chapter 9. Functions and Operators

Function Return Type Description Example Result
array_to_string text concatenates arrayarray_to_string(arrayfll;*~2~"~3
(anyarray , text) elements using 2, 3], '~"~)

provided delimiter,
returningNULL for

NULL inputs
string_to_array text[] splits string into |string_to_array({xx,yy,zz}
(text , text) array elements usifigk~"~yy~"~zz’,

provided delimiter, [~"~")
returningNULL for
NULL inputs

9.15. Aggregate Functions

Aggregate functionsompute a single result value from a set of input valiable 9-43hows the built-in
aggregate functions. The special syntax considerations for aggregate functions are expl8eetbm
4.2.7. ConsultSection 2.#or additional introductory information.

Table 9-43. Aggregate Functions

Function Argument Type Return Type Description

avg(expression) smallint ,integer , |numeric for any integerthe average (arithmetic
bigint ,real ,double [type argumentiouble |mean) of all input values
precision , numeric , Olprecision fora

interval floating-point argument,
otherwise the same as the
argument data type

count(*) bigint number of input values

count(expression) [any bigint number of input values
for which the value of
expression is not null

max(expression) any numeric, string, or [same as argument type| maximum value of
date/time type expression across all
input values
min(expression) any numeric, string, or [same as argument type| minimum value of
date/time type expression across all
input values
stddev(expression) |smallint ,integer , |double precision forisample standard deviation

bigint ,real ,double floating-point argumentsof the input values
precision , ornumeric [otherwisenumeric

164

Chapter 9. Functions and Operators

Function Argument Type Return Type Description

sum(expression) smallint ,integer , |bigint for smallint sum ofexpression

bigint ,real ,double [orinteger arguments, [across all input values
precision , numeric , ofnumeric for bigint
interval argumentsgdouble
precision for

floating-point arguments,
otherwise the same as the
argument data type

smallint , integer , double precision forisample variance of the
variance (expression igint ,real ,double floating-point argumentsinput values (square of
precision , ornumeric [otherwisenumeric the sample standard
deviation)

It should be noted that except fosunt , these functions return a null value when no rows are selected.
In particular,sum of no rows returns null, not zero as one might expect. The functalesce may be
used to substitute zero for null when necessary.

Note: Users accustomed to working with other SQL database management systems may be surprised
by the performance characteristics of certain aggregate functions in PostgreSQL when the aggregate
is applied to the entire table (in other words, no WHEREIlause is specified). In particular, a query like

SELECT min(col) FROM sometable;

will be executed by PostgreSQL using a sequential scan of the entire table. Other database systems
may optimize queries of this form to use an index on the column, if one is available. Similarly, the
aggregate functions max() and count() always require a sequential scan if applied to the entire table
in PostgreSQL.

PostgreSQL cannot easily implement this optimization because it also allows for user-defined ag-
gregate queries. Since min() , max() , and count() are defined using a generic API for aggregate
functions, there is no provision for special-casing the execution of these functions under certain cir-
cumstances.

Fortunately, there is a simple workaround for min() and max() . The query shown below is equivalent
to the query above, except that it can take advantage of a B-tree index if there is one present on the
column in question.

SELECT col FROM sometable ORDER BY col ASC LIMIT 1;

A similar query (obtained by substituting DESCfor ASCin the query above) can be used in the place of
max()).

Unfortunately, there is no similarly trivial query that can be used to improve the performance of
count() when applied to the entire table.

165

Chapter 9. Functions and Operators

9.16. Subquery Expressions

This section describes the SQL-compliant subquery expressions available in PostgreSQL. All of the ex-
pression forms documented in this section return Boolean (true/false) results.

9.16.1. EXISTS
EXISTS (subquery)

The argument oEXISTS is an arbitrarySELECT statement, osubquery The subquery is evaluated to
determine whether it returns any rows. If it returns at least one row, the reEXI8TS is “true”; if the
subquery returns no rows, the resulteXISTS is “false”.

The subquery can refer to variables from the surrounding query, which will act as constants during any
one evaluation of the subquery.

The subquery will generally only be executed far enough to determine whether at least one row is returned,
not all the way to completion. It is unwise to write a subquery that has any side effects (such as calling
sequence functions); whether the side effects occur or not may be difficult to predict.

Since the result depends only on whether any rows are returned, and not on the contents of those rows, the
output list of the subquery is normally uninteresting. A common coding convention is to witgI&ITS

tests in the formEXISTS(SELECT 1 WHERE ...) . There are exceptions to this rule however, such as
subqueries that USBTERSECT.

This simple example is like an inner join @nl2 , but it produces at most one output row for egal
row, even if there are multiple matchimap2 rows:

SELECT coll FROM tabl
WHERE EXISTS(SELECT 1 FROM tab2 WHERE col2 = tabl.col2);

9.16.2. IN
expression IN (subquery)

The right-hand side is a parenthesized subquery, which must return exactly one column. The left-hand
expression is evaluated and compared to each row of the subquery result. The résust tfue” if any

equal subquery row is found. The result is “false” if no equal row is found (including the special case
where the subquery returns no rows).

Note that if the left-hand expression yields null, or if there are no equal right-hand values and at least one
right-hand row yields null, the result of thig construct will be null, not false. This is in accordance with
SQLs normal rules for Boolean combinations of null values.

As with EXISTS, it's unwise to assume that the subquery will be evaluated completely.
(‘expression [, expression) IN(subquery)

The right-hand side of this form ol is a parenthesized subquery, which must return exactly as many
columns as there are expressions in the left-hand list. The left-hand expressions are evaluated and com-

166

Chapter 9. Functions and Operators

pared row-wise to each row of the subquery result. The resuit i “true” if any equal subquery row is
found. The result is “false” if no equal row is found (including the special case where the subquery returns
Nno rows).

As usual, null values in the rows are combined per the normal rules of SQL Boolean expressions. Two
rows are considered equal if all their corresponding members are non-null and equal; the rows are unequal
if any corresponding members are non-null and unequal; otherwise the result of that row comparison is
unknown (null). If all the row results are either unequal or null, with at least one null, then the result of

is null.

9.16.3. NOT IN
expression NOT IN (subquery)

The right-hand side is a parenthesized subquery, which must return exactly one column. The left-hand
expression is evaluated and compared to each row of the subquery result. The regatt i is “true”

if only unequal subquery rows are found (including the special case where the subquery returns no rows).
The result is “false” if any equal row is found.

Note that if the left-hand expression yields null, or if there are no equal right-hand values and at least one
right-hand row yields null, the result of tOT IN construct will be null, not true. This is in accordance
with SQL's normal rules for Boolean combinations of null values.

As with EXISTS, it's unwise to assume that the subquery will be evaluated completely.
(expression [, expression ...]) NOT IN (subquery)

The right-hand side of this form afOT INis a parenthesized subquery, which must return exactly as
many columns as there are expressions in the left-hand list. The left-hand expressions are evaluated and
compared row-wise to each row of the subquery result. The resslOaf IN is “true” if only unequal
subquery rows are found (including the special case where the subquery returns no rows). The result is
“false” if any equal row is found.

As usual, null values in the rows are combined per the normal rules of SQL Boolean expressions. Two
rows are considered equal if all their corresponding members are non-null and equal; the rows are unequal
if any corresponding members are non-null and unequal; otherwise the result of that row comparison is
unknown (null). If all the row results are either unequal or null, with at least one null, then the result of
NOT INis null.

9.16.4. ANYSOME

expression operator ANY (subquery)
expression operator SOME 6éubquery)

The right-hand side is a parenthesized subquery, which must return exactly one column. The left-hand
expression is evaluated and compared to each row of the subquery result using thepgrstor

which must yield a Boolean result. The resulttaddYis “true” if any true result is obtained. The result is
“false” if no true result is found (including the special case where the subquery returns no rows).

SOMESs a synonym foANY. IN is equivalent to= ANY.

167

Chapter 9. Functions and Operators

Note that if there are no successes and at least one right-hand row yields null for the operator’s result,
the result of theANY construct will be null, not false. This is in accordance with SQL's normal rules for
Boolean combinations of null values.

As with EXISTS, it's unwise to assume that the subquery will be evaluated completely.

(expression [, expression)| operator ANY (subquery)
(expression [, expression) operator SOME 6ubquery)

The right-hand side of this form @&NYis a parenthesized subquery, which must return exactly as many
columns as there are expressions in the left-hand list. The left-hand expressions are evaluated and com-
pared row-wise to each row of the subquery result, using the gigerator . Presently, only and<>
operators are allowed in row-wige\Yconstructs. The result @iNYis “true” if any equal or unequal row

is found, respectively. The result is “false” if no such row is found (including the special case where the
subquery returns no rows).

As usual, null values in the rows are combined per the normal rules of SQL Boolean expressions. Two

rows are considered equal if all their corresponding members are non-null and equal; the rows are unequal
if any corresponding members are non-null and unequal; otherwise the result of that row comparison is

unknown (null). If there is at least one null row result, then the resulNof cannot be false; it will be

true or null.

9.16.5. ALL
expression operator ALL (subquery)

The right-hand side is a parenthesized subquery, which must return exactly one column. The left-hand
expression is evaluated and compared to each row of the subquery result using thepgiraor

which must yield a Boolean result. The resultaf_ is “true” if all rows yield true (including the special

case where the subquery returns no rows). The result is “false” if any false result is found.

NOT INis equivalent to<> ALL.

Note that if there are no failures but at least one right-hand row yields null for the operator’s result, the
result of theALL construct will be null, not true. This is in accordance with SQL's normal rules for Boolean
combinations of null values.

As with EXISTS, it's unwise to assume that the subquery will be evaluated completely.
(‘expression [, expression) operator ALL (subquery)

The right-hand side of this form &LL is a parenthesized subquery, which must return exactly as many
columns as there are expressions in the left-hand list. The left-hand expressions are evaluated and com-
pared row-wise to each row of the subquery result, using the gigerator . Presently, only and<>
operators are allowed in row-wige L queries. The result ofLL is “true” if all subquery rows are equal

or unequal, respectively (including the special case where the subquery returns no rows). The result is
“false” if any row is found to be unequal or equal, respectively.

As usual, null values in the rows are combined per the normal rules of SQL Boolean expressions. Two
rows are considered equal if all their corresponding members are non-null and equal; the rows are unequal
if any corresponding members are non-null and unequal; otherwise the result of that row comparison is

168

Chapter 9. Functions and Operators

unknown (null). If there is at least one null row result, then the reswuiLafcannot be true; it will be false
or null.

9.16.6. Row-wise Comparison
(‘expression [, expression) operator (subquery)

The left-hand side is a list of scalar expressions. The right-hand side is a parenthesized subquery, which
must return exactly as many columns as there are expressions on the left-hand side. Furthermore, the
subquery cannot return more than one row. (If it returns zero rows, the result is taken to be null.) The
left-hand side is evaluated and compared row-wise to the single subquery result row. Presently, only
and <> operators are allowed in row-wise comparisons. The result is “true” if the two rows are equal or
unequal, respectively.

As usual, null values in the rows are combined per the normal rules of SQL Boolean expressions. Two
rows are considered equal if all their corresponding members are non-null and equal; the rows are unequal
if any corresponding members are non-null and unequal; otherwise the result of the row comparison is
unknown (null).

9.17. Row and Array Comparisons

This section describes several specialized constructs for making multiple comparisons between groups
of values. These forms are syntactically related to the subquery forms of the previous section, but do
not involve subqueries. The forms involving array subexpressions are PostgreSQL extensions; the rest are
SQL-compliant. All of the expression forms documented in this section return Boolean (true/false) results.

9.17.1. IN

expression IN (value [, ...])

The right-hand side is a parenthesized list of scalar expressions. The result is “true” if the left-hand ex-
pression’s result is equal to any of the right-hand expressions. This is a shorthand notation for

expression = valuel
OR
expression = value2
OR

Note that if the left-hand expression yields null, or if there are no equal right-hand values and at least one
right-hand expression yields null, the result of tReconstruct will be null, not false. This is in accordance
with SQL's normal rules for Boolean combinations of null values.

169

Chapter 9. Functions and Operators

9.17.2. NOT IN
expression NOT IN (value [, ...])

The right-hand side is a parenthesized list of scalar expressions. The result is “true” if the left-hand ex-
pression’s result is unequal to all of the right-hand expressions. This is a shorthand notation for

expression <> valuel
AND
expression <> value2
AND

Note that if the left-hand expression yields null, or if there are no equal right-hand values and at least one
right-hand expression yields null, the result of th@T IN construct will be null, not true as one might
naively expect. This is in accordance with SQL's normal rules for Boolean combinations of null values.

Tip: x NOT IN y is equivalent to NOT (x IN y) in all cases. However, null values are much more
likely to trip up the novice when working with NOT IN than when working with IN . It's best to express
your condition positively if possible.

9.17.3. ANYSOMHarray)

expression operator ANY (array expression)
expression operator SOME f@rray expression)

The right-hand side is a parenthesized expression, which must yield an array value. The left-hand expres-
sion is evaluated and compared to each element of the array using theogeeator , which must

yield a Boolean result. The result aNYis “true” if any true result is obtained. The result is “false” if no

true result is found (including the special case where the array has zero elements).

SOMEHS a synonym foANY.

9.17.4. ALL (array)

expression operator ALL (array expression)

The right-hand side is a parenthesized expression, which must yield an array value. The left-hand expres-
sion is evaluated and compared to each element of the array using theogseator , which must

yield a Boolean result. The result afL is “true” if all comparisons yield true (including the special case
where the array has zero elements). The result is “false” if any false result is found.

170

Chapter 9. Functions and Operators

9.17.5. Row-wise Comparison
(expression [, expression) operator (expression [[expression)

Each side is a list of scalar expressions; the two lists must be of the same length. Each side is evaluated and
they are compared row-wise. Presently, onlgnd <> operators are allowed in row-wise comparisons.
The result is “true” if the two rows are equal or unequal, respectively.

As usual, null values in the rows are combined per the normal rules of SQL Boolean expressions. Two
rows are considered equal if all their corresponding members are non-null and equal; the rows are unequal
if any corresponding members are non-null and unequal; otherwise the result of the row comparison is
unknown (null).

171

Chapter 10. Type Conversion

SQL statements can, intentionally or not, require mixing of different data types in the same expression.
PostgreSQL has extensive facilities for evaluating mixed-type expressions.

In many cases a user will not need to understand the details of the type conversion mechanism. However,
the implicit conversions done by PostgreSQL can affect the results of a query. When necessary, these
results can be tailored by a user or programmer uskpicit type conversion.

This chapter introduces the PostgreSQL type conversion mechanisms and conventions. Refer to the rele-
vant sections ilChapter 8&ndChapter $or more information on specific data types and allowed functions
and operators.

10.1. Overview

SQL is a strongly typed language. That is, every data item has an associated data type which determines
its behavior and allowed usage. PostgreSQL has an extensible type system that is much more general and
flexible than other SQL implementations. Hence, most type conversion behavior in PostgreSQL should
be governed by general rules rather thanaolyhocheuristics, to allow mixed-type expressions to be
meaningful even with user-defined types.

The PostgreSQL scanner/parser decodes lexical elements into only five fundamental categories: integers,
floating-point numbers, strings, names, and key words. Constants of most non-numeric types are first
classified as strings. The SQL language definition allows specifying type names with strings, and this
mechanism can be used in PostgreSQL to start the parser down the correct path. For example, the query

SELECT text 'Origin’ AS "label", point '(0,0)" AS "value";

label | value
________ .

Origin | (0,0)
(1 row)

has two literal constants, of typext andpoint . If a type is not specified for a string literal, then the
placeholder typ@&nknown is assigned initially, to be resolved in later stages as described below.

There are four fundamental SQL constructs requiring distinct type conversion rules in the PostgreSQL
parser:

Operators

PostgreSQL allows expressions with prefix and postfix unary (one-argument) operators, as well as
binary (two-argument) operators.

Function calls

Much of the PostgreSQL type system is built around a rich set of functions. Function calls can have
one or more arguments. Since PostgreSQL permits function overloading, the function name alone
does not uniquely identify the function to be called; the parser must select the right function based
on the data types of the supplied arguments.

172

Chapter 10. Type Conversion

Value Storage

SQL INSERT andUPDATEStatements place the results of expressions into a table. The expressions
in the statement must be matched up with, and perhaps converted to, the types of the target columns.

UNION CASE andARRAYconstructs

Since all query results from a unioniz&&LECTstatement must appear in a single set of columns,

the types of the results of eadELECTclause must be matched up and converted to a uniform set.
Similarly, the branch expressions offaSEconstruct must be converted to a common type so that
the CASEexpression as a whole has a known output type. The same holdRfaryconstructs.

The system catalogs store information about which conversions, caktsibetween data types are valid,

and how to perform those conversions. Additional casts can be added by the user WIREKEE CAST
command. (This is usually done in conjunction with defining new data types. The set of casts between the
built-in types has been carefully crafted and is best not altered.)

An additional heuristic is provided in the parser to allow better guesses at proper behavior for SQL stan-
dard types. There are several basipe categorieslefined:boolean , numeric , string , bitstring

datetime , timespan , geometric , network , and user-defined. Each category, with the exception of
user-defined, has one or mgueeferred typesvhich are preferentially selected when there is ambiguity.

In the user-defined category, each type is its own preferred type. Ambiguous expressions (those with mul-
tiple candidate parsing solutions) can therefore often be resolved when there are multiple possible built-in
types, but they will raise an error when there are multiple choices for user-defined types.

All type conversion rules are designed with several principles in mind:

- Implicit conversions should never have surprising or unpredictable outcomes.

- User-defined types, of which the parser hasanpriori knowledge, should be “higher” in the type
hierarchy. In mixed-type expressions, native types shall always be converted to a user-defined type (of
course, only if conversion is necessary).

« User-defined types are not related. Currently, PostgreSQL does not have information available to it on
relationships between types, other than hardcoded heuristics for built-in types and implicit relationships
based on available functions and casts.

- There should be no extra overhead from the parser or executor if a query does not need implicit type
conversion. That s, if a query is well formulated and the types already match up, then the query should
proceed without spending extra time in the parser and without introducing unnecessary implicit con-
version calls into the query.

Additionally, if a query usually requires an implicit conversion for a function, and if then the user
defines a new function with the correct argument types, the parser should use this new function and will
no longer do the implicit conversion using the old function.

173

Chapter 10. Type Conversion

10.2. Operators

The specific operator to be used in an operator invocation is determined by following the procedure below.
Note that this procedure is indirectly affected by the precedence of the involved operatoBectiea
4.1.6for more information.

Operator Type Resolution

1.

Select the operators to be considered fronptneperator system catalog. If an unqualified opera-

tor name was used (the usual case), the operators considered are those of the right name and argument
count that are visible in the current search path Geetion 5.8.R If a qualified operator name was

given, only operators in the specified schema are considered.

a. If the search path finds multiple operators of identical argument types, only the one ap-
pearing earliest in the path is considered. But operators of different argument types are
considered on an equal footing regardless of search path position.

Check for an operator accepting exactly the input argument types. If one exists (there can be only one
exact match in the set of operators considered), use it.

a. Ifone argument of a binary operator invocation is ofthenown type, then assume it is the
same type as the other argument for this check. Other cases invahkingwn will never
find a match at this step.

Look for the best match.

a. Discard candidate operators for which the input types do not match and cannot be converted
(using an implicit conversion) to matchnknown literals are assumed to be convertible to
anything for this purpose. If only one candidate remains, use it; else continue to the next
step.

b. Run through all candidates and keep those with the most exact matches on input types.
(Domains are considered the same as their base type for this purpose.) Keep all candidates
if none have any exact matches. If only one candidate remains, use it; else continue to the
next step.

c. Run through all candidates and keep those that accept preferred types (of the input data
type’s type category) at the most positions where type conversion will be required. Keep
all candidates if none accept preferred types. If only one candidate remains, use it; else
continue to the next step.

d. If any input arguments anenknown , check the type categories accepted at those argument
positions by the remaining candidates. At each position, selestriihg category if any
candidate accepts that category. (This bias towards string is appropriate since an unknown-
type literal does look like a string.) Otherwise, if all the remaining candidates accept the
same type category, select that category; otherwise fail because the correct choice cannot
be deduced without more clues. Now discard candidates that do not accept the selected
type category. Furthermore, if any candidate accepts a preferred type at a given argument
position, discard candidates that accept non-preferred types for that argument.

e. If only one candidate remains, use it. If no candidate or more than one candidate remains,
then fail.

174

Chapter 10. Type Conversion

Some examples follow.

Example 10-1. Exponentiation Operator Type Resolution

There is only one exponentiation operator defined in the catalog, and it takes argumentsdofitype
precision . The scanner assigns an initial typeragger to both arguments of this query expression:

SELECT 2 ~ 3 AS "exp";

(1 row)
So the parser does a type conversion on both operands and the query is equivalent to
SELECT CAST(2 AS double precision) » CAST(3 AS double precision) AS "exp";

Example 10-2. String Concatenation Operator Type Resolution

A string-like syntax is used for working with string types as well as for working with complex extension
types. Strings with unspecified type are matched with likely operator candidates.

An example with one unspecified argument:
SELECT text 'abc’ || 'def AS "text and unknown";

text and unknown

In this case the parser looks to see if there is an operator tedsing for both arguments. Since there is,
it assumes that the second argument should be interpreted as aitype

Here is a concatenation on unspecified types:
SELECT 'abc’ || 'def’ AS "unspecified";

unspecified

In this case there is no initial hint for which type to use, since no types are specified in the query. So, the
parser looks for all candidate operators and finds that there are candidates accepting both string-category
and bit-string-category inputs. Since string category is preferred when available, that category is selected,
and then the preferred type for stringsxt , is used as the specific type to resolve the unknown literals

to.

175

Chapter 10. Type Conversion

Example 10-3. Absolute-Value and Factorial Operator Type Resolution

The PostgreSQL operator catalog has several entries for the prefix op@ratbof which implement
absolute-value operations for various numeric data types. One of these entries is faratgpe, which

is the preferred type in the numeric category. Therefore, PostgreSQL will use that entry when faced with
a non-numeric input:

SELECT @ ’-4.5° AS "abs";
abs

4.5
1 row)
Here the system has performed an implicit conversion frexn to float8 before applying the chosen

operator. We can verify théibat8 and not some other type was used:
SELECT @ ’-4.5e500" AS "abs";

ERROR: "-4.5e500" is out of range for type double precision

On the other hand, the postfix operatdfactorial) is defined only for integer data types, notffoats
So, if we try a similar case with, we get:

SELECT '20’ ! AS "factorial";

ERROR: operator is not unique: "unknown" !

HINT: Could not choose a best candidate operator. You may need to add explicit

type casts.
This happens because the system can't decide which of the several possji#eators should be pre-
ferred. We can help it out with an explicit cast:

SELECT CAST('20' AS int8) ! AS "factorial;

factorial

2432902008176640000
(1 row)

10.3. Functions

The specific function to be used in a function invocation is determined according to the following steps.

Function Type Resolution

1. Select the functions to be considered from plaeproc system catalog. If an unqualified function
name was used, the functions considered are those of the right name and argument count that are
visible in the current search path (section 5.8.3 If a qualified function hame was given, only
functions in the specified schema are considered.

a. If the search path finds multiple functions of identical argument types, only the one ap-
pearing earliest in the path is considered. But functions of different argument types are
considered on an equal footing regardless of search path position.

176

Chapter 10. Type Conversion

2. Check for a function accepting exactly the input argument types. If one exists (there can be only one
exact match in the set of functions considered), use it. (Cases invalakmgpwn will never find a
match at this step.)

3. Ifnoexact match is found, see whether the function call appears to be a trivial type conversion request.
This happens if the function call has just one argument and the function name is the same as the
(internal) name of some data type. Furthermore, the function argument must be either an unknown-
type literal or a type that is binary-compatible with the named data type. When these conditions are
met, the function argument is converted to the named data type without any actual function call.

4. Look for the best match.

a. Discard candidate functions for which the input types do not match and cannot be converted
(using an implicit conversion) to matchnknown literals are assumed to be convertible to
anything for this purpose. If only one candidate remains, use it; else continue to the next
step.

b. Run through all candidates and keep those with the most exact matches on input types.
(Domains are considered the same as their base type for this purpose.) Keep all candidates
if none have any exact matches. If only one candidate remains, use it; else continue to the
next step.

c. Run through all candidates and keep those that accept preferred types (of the input data
type’s type category) at the most positions where type conversion will be required. Keep
all candidates if none accept preferred types. If only one candidate remains, use it; else
continue to the next step.

d. If any input arguments anenknown , check the type categories accepted at those argument
positions by the remaining candidates. At each position, selestrihg category if any
candidate accepts that category. (This bias towards string is appropriate since an unknown-
type literal does look like a string.) Otherwise, if all the remaining candidates accept the
same type category, select that category; otherwise fail because the correct choice cannot
be deduced without more clues. Now discard candidates that do not accept the selected
type category. Furthermore, if any candidate accepts a preferred type at a given argument
position, discard candidates that accept non-preferred types for that argument.

e. If only one candidate remains, use it. If no candidate or more than one candidate remains,
then fail.

Note that the “best match” rules are identical for operator and function type resolution. Some examples
follow.

Example 10-4. Rounding Function Argument Type Resolution

There is only oneound function with two arguments. (The first immeric , the second iinteger .)
So the following query automatically converts the first argument of tyeger to numeric :

SELECT round(4, 4);

177

Chapter 10. Type Conversion

That query is actually transformed by the parser to
SELECT round(CAST (4 AS numeric), 4);

Since numeric constants with decimal points are initially assigned thentyperic , the following query
will require no type conversion and may therefore be slightly more efficient:

SELECT round(4.0, 4);

Example 10-5. Substring Function Type Resolution

There are severalibstr functions, one of which takes typest andinteger . If called with a string
constant of unspecified type, the system chooses the candidate function that accepts an argument of the
preferred categorytring (namely of typeext).

SELECT substr('1234’, 3);

substr

34
(1 row)

If the string is declared to be of typarchar , as might be the case if it comes from a table, then the
parser will try to convert it to becomext :

SELECT substr(varchar '1234’, 3);

substr

34
(1 row)
This is transformed by the parser to effectively become
SELECT substr(CAST (varchar '1234" AS text), 3);

Note: The parser learns from the pg_cast catalog that text and varchar are binary-compatible,
meaning that one can be passed to a function that accepts the other without doing any physical
conversion. Therefore, no explicit type conversion call is really inserted in this case.

And, if the function is called with an argument of typeeger , the parser will try to convert that to
text :

SELECT substr(1234, 3);

substr

34
1 row)

This actually executes as
SELECT substr(CAST (1234 AS text), 3);

178

Chapter 10. Type Conversion

This automatic transformation can succeed because there is an implicitly invocable cadstdfgem to
text .

10.4. Value Storage

Values to be inserted into a table are converted to the destination column’s data type according to the
following steps.

Value Storage Type Conversion

1. Check for an exact match with the target.

2. Otherwise, try to convert the expression to the target type. This will succeed if there is a registered
cast between the two types. If the expression is an unknown-type literal, the contents of the literal
string will be fed to the input conversion routine for the target type.

3. If the target is a fixed-length type (e.ghar orvarchar declared with a length) then try to find a
sizing function for the target type. A sizing function is a function of the same name as the type, taking
two arguments of which the first is that type and the second is ofitypger , and returning the
same type. If one is found, it is applied, passing the column’s declared length as the second parameter.

Example 10-6.character ~ Storage Type Conversion

For a target column declared asaracter(20) the following statement ensures that the stored value is
sized correctly:

CREATE TABLE wv (v character(20));
INSERT INTO vv SELECT ’abc’ || 'def;
SELECT v, length(v) FROM wv;

\Y | length

abcdef | 20
(1 row)

What has really happened here is that the two unknown literals are resohesd tdy default, allowing

the|| operator to be resolved &xt concatenation. Then thext result of the operator is converted to
bpchar (“blank-padded char”, the internal name of tharacter data type) to match the target column
type. (Since the typeext andbpchar are binary-compatible, this conversion does not insert any real
function call.) Finally, the sizing functiohpchar(bpchar, integer) is found in the system catalog

and applied to the operator’s result and the stored column length. This type-specific function performs the
required length check and addition of padding spaces.

179

Chapter 10. Type Conversion

10.5. UNION CASE and ARRAYConstructs

SQL UNIONconstructs must match up possibly dissimilar types to become a single result set. The resolu-
tion algorithm is applied separately to each output column of a union queryNTERSECTandEXCEPT
constructs resolve dissimilar types in the same way®ON The CASEand ARRAYconstructs use the
identical algorithm to match up their component expressions and select a result data type.

UNION CASE and ARRAYType Resolution

1. If all inputs are of typeunknown, resolve as typeext (the preferred type of the string category).
Otherwise, ignore thenknown inputs while choosing the result type.

2. Ifthe non-unknown inputs are not all of the same type category, fail.

3. Choose the first non-unknown input type which is a preferred type in that category or allows all the
non-unknown inputs to be implicitly converted to it.

4. Convert all inputs to the selected type.
Some examples follow.
Example 10-7. Type Resolution with Underspecified Types in a Union

SELECT text 'a’ AS "text" UNION SELECT 'b’;

(2 rows)
Here, the unknown-type literdd” will be resolved as typext .

Example 10-8. Type Resolution in a Simple Union

SELECT 1.2 AS "numeric" UNION SELECT 1;

numeric

1.2
(2 rows)
The literal1.2 is of typenumeric , and theinteger valuel can be cast implicitly tmumeric , so that
type is used.

180

Chapter 10. Type Conversion

Example 10-9. Type Resolution in a Transposed Union

SELECT 1 AS 'real" UNION SELECT CAST(2.2" AS REAL);

2.2
(2 rows)
Here, since typeeal cannot be implicitly cast tinteger , butinteger can be implicitly cast toeal |,
the union result type is resolved &zl .

181

Chapter 11. Indexes

Indexes are a common way to enhance database performance. An index allows the database server to find
and retrieve specific rows much faster than it could do without an index. But indexes also add overhead to
the database system as a whole, so they should be used sensibly.

11.1. Introduction

Suppose we have a table similar to this:

CREATE TABLE testl (
id integer,
content varchar

)i
and the application requires a lot of queries of the form

SELECT content FROM testl WHERE id = constant

With no advance preparation, the system would have to scan thetestire table, row by row, to find all
matching entries. If there are a lot of rowstéstl and only a few rows (perhaps only zero or one) that
would be returned by such a query, then this is clearly an inefficient method. But if the system has been
instructed to maintain an index on tite column, then it can use a more efficient method for locating
matching rows. For instance, it might only have to walk a few levels deep into a search tree.

A similar approach is used in most books of non-fiction: terms and concepts that are frequently looked
up by readers are collected in an alphabetic index at the end of the book. The interested reader can scan
the index relatively quickly and flip to the appropriate page(s), rather than having to read the entire book
to find the material of interest. Just as it is the task of the author to anticipate the items that the readers
are most likely to look up, it is the task of the database programmer to foresee which indexes would be of
advantage.

The following command would be used to create the index omdtheolumn, as discussed:

CREATE INDEX testl_id_index ON testl (id);

The nametestl_id_index can be chosen freely, but you should pick something that enables you to
remember later what the index was for.

To remove an index, use tIROP INDEXcommand. Indexes can be added to and removed from tables at
any time.

Once the index is created, no further intervention is required: the system will update the index when the
table is modified, and it will use the index in queries when it thinks this would be more efficient than a
sequential table scan. But you may have to runARALYZEcommand regularly to update statistics to
allow the query planner to make educated decisionsC®epter 13or information about how to find out
whether an index is used and when and why the planner may chooseuse an index.

Indexes can also benefiPDATEand DELETEcommands with search conditions. Indexes can moreover
be used in join queries. Thus, an index defined on a column that is part of a join condition can significantly
speed up queries with joins.

182

Chapter 11. Indexes

When an index is created, the system has to keep it synchronized with the table. This adds overhead to
data manipulation operations. Therefore indexes that are non-essential or do not get used at all should be
removed. Note that a query or data manipulation command can use at most one index per table.

11.2. Index Types

PostgreSQL provides several index types: B-tree, R-tree, GiST, and Hash. Each index type uses a different
algorithm that is best suited to different types of queries. By defaullCREBATE INDEXcommand will

create a B-tree index, which fits the most common situations. B-trees can handle equality and range

queries on data that can be sorted into some ordering. In particular, the PostgreSQL query planner will

consider using a B-tree index whenever an indexed column is involved in a comparison using one of these

operatorsx, <=, =, >=, >

The optimizer can also use a B-tree index for queries involving the pattern matching operagrs
ILIKE , ~, and~*, if the pattern is anchored to the beginning of the string, eofj.LIKE ‘foo%’ or

col ~ oo’ , butnotcol LIKE "%bar . However, if your server does not use the C locale you will
need to create the index with a special operator classS8etion 11.6elow.

R-tree indexes are suited for queries on spatial data. To create an R-tree index, use a command of the form

CREATE INDEXname ON table USING RTREE ¢olumn);

The PostgreSQL query planner will consider using an R-tree index whenever an indexed column is in-
volved in a comparison using one of these operatars; &<, &>, >>, @ ~=, && (Refer toSection 9.9
about the meaning of these operators.)

Hash indexes can only handle simple equality comparisons. The query planner will consider using a
hash index whenever an indexed column is involved in a comparison usiagijerator. The following
command is used to create a hash index:

CREATE INDEXname ON table USING HASH ¢olumn);

Note: Testing has shown PostgreSQL'’s hash indexes to perform no better than B-tree indexes, and
the index size and build time for hash indexes is much worse. For these reasons, hash index use is
presently discouraged.

The B-tree index method is an implementation of Lehman-Yao high-concurrency B-trees. The R-tree
index method implements standard R-trees using Guttman’s quadratic split algorithm. The hash index
method is an implementation of Litwin’s linear hashing. We mention the algorithms used solely to indicate

that all of these index methods are fully dynamic and do not have to be optimized periodically (as is the
case with, for example, static hash methods).

183

Chapter 11. Indexes

11.3. Multicolumn Indexes
An index can be defined on more than one column. For example, if you have a table of this form:

CREATE TABLE test2 (
major int,
minor int,
name varchar

);
(say, you keep youtdev directory in a database...) and you frequently make queries like

SELECT name FROM test2 WHERE major =constant AND minor = constant

then it may be appropriate to define an index on the columajsr andminor together, e.g.,

CREATE INDEX test2_mm_idx ON test2 (major, minor);

Currently, only the B-tree and GiST implementations support multicolumn indexes. Up to 32 columns may
be specified. (This limit can be altered when building PostgreSQL,; see tlpg fitenfig_manual.h)

The query planner can use a multicolumn index for queries that involve the leftmost column in the index
definition plus any number of columns listed to the right of it, without a gap. For example, an index on
(a, b, ¢) can be used in queries involving all af b, andc, or in queries involving botta andb,

or in queries involving onla, but not in other combinations. (In a query involviagandc the planner

could choose to use the index fprwhile treatinge like an ordinary unindexed column.) Of course, each
column must be used with operators appropriate to the index type; clauses that involve other operators
will not be considered.

Multicolumn indexes can only be used if the clauses involving the indexed columns are joineeNRith
For instance,
SELECT name FROM test2 WHERE major =constant OR minor = constant

cannot make use of the indest2_mm_idx defined above to look up both columns. (It can be used to
look up only themajor column, however.)

Multicolumn indexes should be used sparingly. Most of the time, an index on a single column is sufficient
and saves space and time. Indexes with more than three columns are unlikely to be helpful unless the
usage of the table is extremely stylized.

11.4. Unique Indexes

Indexes may also be used to enforce uniqueness of a column’s value, or the unigqueness of the combined
values of more than one column.

CREATE UNIQUE INDEXhame ON table (column [, ...]);

Currently, only B-tree indexes can be declared unique.

184

Chapter 11. Indexes

When an index is declared unique, multiple table rows with equal indexed values will not be allowed.
Null values are not considered equal. A multicolumn unique index will only reject cases where all of the
indexed columns are equal in two rows.

PostgreSQL automatically creates a unique index when a unique constraint or a primary key is defined for
a table. The index covers the columns that make up the primary key or unique columns (a multicolumn
index, if appropriate), and is the mechanism that enforces the constraint.

Note: The preferred way to add a unique constraint to a table is ALTER TABLE ... ADD CONSTRAINT.
The use of indexes to enforce unique constraints could be considered an implementation detail that
should not be accessed directly. One should, however, be aware that there’s no need to manually
create indexes on unique columns; doing so would just duplicate the automatically-created index.

11.5. Indexes on Expressions

An index column need not be just a column of the underlying table, but can be a function or scalar
expression computed from one or more columns of the table. This feature is useful to obtain fast access
to tables based on the results of computations.

For example, a common way to do case-insensitive comparisons is to usedhefunction:
SELECT * FROM testl WHERE lower(coll) = 'value’;
This query can use an index, if one has been defined on the resultioftiréoll) operation:

CREATE INDEX testl_lower_coll_idx ON testl (lower(coll));

If we were to declare this indeXNIQUE it would prevent creation of rows whosell values differ only
in case, as well as rows whosell values are actually identical. Thus, indexes on expressions can be
used to enforce constraints that are not definable as simple unique constraints.

As another example, if one often does queries like this:

SELECT * FROM people WHERE (first_name || ' ' || last_name) = 'John Smith’;
then it might be worth creating an index like this:

CREATE INDEX people_names ON people ((first_name || ' ' || last_name));

The syntax of the€REATE INDEXcommand normally requires writing parentheses around index expres-
sions, as shown in the second example. The parentheses may be omitted when the expression is just a
function call, as in the first example.

Index expressions are relatively expensive to maintain, since the derived expression(s) must be computed
for each row upon insertion or whenever it is updated. Therefore they should be used only when queries
that can use the index are very frequent.

185

Chapter 11. Indexes

11.6. Operator Classes

An index definition may specify aoperator clasgor each column of an index.

CREATE INDEXname ON table (column opclass [, ...]);

The operator class identifies the operators to be used by the index for that column. For example, a B-
tree index on the typit4 would use thent4_ops class; this operator class includes comparison
functions for values of typint4 . In practice the default operator class for the column’s data type is
usually sufficient. The main point of having operator classes is that for some data types, there could be
more than one meaningful index behavior. For example, we might want to sort a complex-number data
type either by absolute value or by real part. We could do this by defining two operator classes for the data
type and then selecting the proper class when making an index.

There are also some built-in operator classes besides the default ones:

« The operator classasxt_pattern_ops , varchar_pattern_ops , bpchar_pattern_ops , and
name_pattern_ops support B-tree indexes on the typest , varchar , char , andname, respec-
tively. The difference from the ordinary operator classes is that the values are compared strictly charac-
ter by character rather than according to the locale-specific collation rules. This makes these operator
classes suitable for use by queries involving pattern matching expressigis ¢r POSIX regular
expressions) if the server does not use the standard “C” locale. As an example, you might index a
varchar column like this:

CREATE INDEX test_index ON test_table (col varchar_pattern_ops);

If you do use the C locale, you may instead create an index with the default operator class, and it
will still be useful for pattern-matching queries. Also note that you should create an index with the
default operator class if you want queries involving ordinary comparisons to use an index. Such queries
cannot use thexx _pattern_ops operator classes. It is allowed to create multiple indexes on the
same column with different operator classes.

The following query shows all defined operator classes:

SELECT am.amname AS index_method,
opc.opcname AS opclass_name
FROM pg_am am, pg_opclass opc
WHERE opc.opcamid = am.oid
ORDER BY index_method, opclass_name;

It can be extended to show all the operators included in each class:

SELECT am.amname AS index_method,
opc.opcname AS opclass_name,
opr.oprname AS opclass_operator
FROM pg_am am, pg_opclass opc, pg_amop amop, pg_operator opr
WHERE opc.opcamid = am.oid AND
amop.amopclaid = opc.oid AND
amop.amopopr = opr.oid
ORDER BY index_method, opclass_name, opclass_operator;

186

Chapter 11. Indexes

11.7. Partial Indexes

A partial indexis an index built over a subset of a table; the subset is defined by a conditional expression
(called thepredicateof the partial index). The index contains entries for only those table rows that satisfy
the predicate.

A major motivation for partial indexes is to avoid indexing common values. Since a query searching for a
common value (one that accounts for more than a few percent of all the table rows) will not use the index
anyway, there is no point in keeping those rows in the index at all. This reduces the size of the index,
which will speed up queries that do use the index. It will also speed up many table update operations
because the index does not need to be updated in all gasa®ple 11-shows a possible application of

this idea.

Example 11-1. Setting up a Partial Index to Exclude Common Values

Suppose you are storing web server access logs in a database. Most accesses originate from the IP address
range of your organization but some are from elsewhere (say, employees on dial-up connections). If your
searches by IP are primarily for outside accesses, you probably do not need to index the IP range that
corresponds to your organization’s subnet.

Assume a table like this:

CREATE TABLE access_log (
url varchar,
client_ip inet,

);
To create a partial index that suits our example, use a command such as this:

CREATE INDEX access_log_client_ip_ix ON access_log (client_ip)
WHERE NOT (client_ip > inet '192.168.100.0' AND client_ip < inet '192.168.100.255);

A typical query that can use this index would be:

SELECT * FROM access_log WHERE url = ’/index.html’ AND client_ip = inet '212.78.10.32’;
A query that cannot use this index is:
SELECT * FROM access_log WHERE client_ip = inet '192.168.100.23’;

Observe that this kind of partial index requires that the common values be predetermined. If the distribu-
tion of values is inherent (due to the nature of the application) and static (not changing over time), this is
not difficult, but if the common values are merely due to the coincidental data load this can require a lot
of maintenance work.

Another possibility is to exclude values from the index that the typical query workload is not interested

in; this is shown inExample 11-2This results in the same advantages as listed above, but it prevents the

“uninteresting” values from being accessed via that index at all, even if an index scan might be profitable
in that case. Obviously, setting up partial indexes for this kind of scenario will require a lot of care and

experimentation.

187

Chapter 11. Indexes

Example 11-2. Setting up a Partial Index to Exclude Uninteresting Values

If you have a table that contains both billed and unbilled orders, where the unbilled orders take up a small
fraction of the total table and yet those are the most-accessed rows, you can improve performance by
creating an index on just the unbilled rows. The command to create the index would look like this:

CREATE INDEX orders_unbilled_index ON orders (order_nr)
WHERE billed is not true;

A possible query to use this index would be

SELECT * FROM orders WHERE billed is not true AND order_nr < 10000;

However, the index can also be used in queries that do not incedee nr at all, e.g.,
SELECT * FROM orders WHERE billed is not true AND amount > 5000.00;

This is not as efficient as a partial index on timeount column would be, since the system has to scan the
entire index. Yet, if there are relatively few unbilled orders, using this partial index just to find the unbilled
orders could be a win.

Note that this query cannot use this index:

SELECT * FROM orders WHERE order_nr = 3501;
The order 3501 may be among the billed or among the unbilled orders.

Example 11-2lso illustrates that the indexed column and the column used in the predicate do not need
to match. PostgreSQL supports partial indexes with arbitrary predicates, so long as only columns of the
table being indexed are involved. However, keep in mind that the predicate must match the conditions
used in the queries that are supposed to benefit from the index. To be precise, a partial index can be used
in a query only if the system can recognize thatwi¢EREondition of the query mathematically implies

the predicate of the index. PostgreSQL does not have a sophisticated theorem prover that can recognize
mathematically equivalent expressions that are written in different forms. (Not only is such a general
theorem prover extremely difficult to create, it would probably be too slow to be of any real use.) The
system can recognize simple inequality implications, for example: "k’ implies “x < 2”; otherwise

the predicate condition must exactly match part of the quety e REEondition or the index will not be
recognized to be usable.

A third possible use for partial indexes does not require the index to be used in queries at all. The idea
here is to create a unique index over a subset of a table, Bgample 11-3This enforces uniqueness
among the rows that satisfy the index predicate, without constraining those that do not.

Example 11-3. Setting up a Partial Unique Index

Suppose that we have a table describing test outcomes. We wish to ensure that there is only one “success-
ful” entry for a given subject and target combination, but there might be any number of “unsuccessful”
entries. Here is one way to do it:
CREATE TABLE tests (
subject text,

target text,
success boolean,

188

Chapter 11. Indexes

CREATE UNIQUE INDEX tests_success_constraint ON tests (subject, target)
WHERE success;

This is a particularly efficient way of doing it when there are few successful tests and many unsuccessful
ones.

Finally, a partial index can also be used to override the system’s query plan choices. It may occur that data
sets with peculiar distributions will cause the system to use an index when it really should not. In that case
the index can be set up so that it is not available for the offending query. Normally, PostgreSQL makes
reasonable choices about index usage (e.g., it avoids them when retrieving common values, so the earlier
example really only saves index size, it is not required to avoid index usage), and grossly incorrect plan
choices are cause for a bug report.

Keep in mind that setting up a partial index indicates that you know at least as much as the query planner
knows, in particular you know when an index might be profitable. Forming this knowledge requires ex-
perience and understanding of how indexes in PostgreSQL work. In most cases, the advantage of a partial
index over a regular index will not be much.

More information about partial indexes can be foundire case for partial indexe®artial indexing in
POSTGRES: research projeeindGeneralized Partial Indexes

11.8. Examining Index Usage

Although indexes in PostgreSQL do not need maintenance and tuning, it is still important to check which
indexes are actually used by the real-life query workload. Examining index usage for an individual query
is done with theEXPLAIN command; its application for this purpose is illustratediction 13.11t is

also possible to gather overall statistics about index usage in a running server, as desclibetibm

23.2

Itis difficult to formulate a general procedure for determining which indexes to set up. There are a number
of typical cases that have been shown in the examples throughout the previous sections. A good deal of
experimentation will be necessary in most cases. The rest of this section gives some tips for that.

- Always runANALYZEfirst. This command collects statistics about the distribution of the values in the
table. This information is required to guess the number of rows returned by a query, which is needed by
the planner to assign realistic costs to each possible query plan. In absence of any real statistics, some
default values are assumed, which are almost certain to be inaccurate. Examining an application’s index
usage without having ruANALYZEis therefore a lost cause.

« Use real data for experimentation. Using test data for setting up indexes will tell you what indexes you
need for the test data, but that is all.

It is especially fatal to use proportionally reduced data sets. While selecting 1000 out of 200000 rows
could be a candidate for an index, selecting 1 out of 100 rows will hardly be, because the 100 rows will
probably fit within a single disk page, and there is no plan that can beat sequentially fetching 1 disk
page.

Also be careful when making up test data, which is often unavoidable when the application is not in
production use yet. Values that are very similar, completely random, or inserted in sorted order will
skew the statistics away from the distribution that real data would have.

189

Chapter 11. Indexes

« When indexes are not used, it can be useful for testing to force their use. There are run-time parameters
that can turn off various plan types (describe@action 16.% For instance, turning off sequential scans
(enable_segscan) and nested-loop joingable_nestloop), which are the most basic plans, will
force the system to use a different plan. If the system still chooses a sequential scan or nested-loop join
then there is probably a more fundamental problem for why the index is not used, for example, the
query condition does not match the index. (What kind of query can use what kind of index is explained
in the previous sections.)

- If forcing index usage does use the index, then there are two possibilities: Either the system is right
and using the index is indeed not appropriate, or the cost estimates of the query plans are not reflecting
reality. So you should time your query with and without indexes. ERELAIN ANALYZEcommand
can be useful here.

« If it turns out that the cost estimates are wrong, there are, again, two possibilities. The total cost is
computed from the per-row costs of each plan node times the selectivity estimate of the plan node.
The costs of the plan nodes can be tuned with run-time parameters (descriBedtion 16.% An
inaccurate selectivity estimate is due to insufficient statistics. It may be possible to help this by tuning
the statistics-gathering parameters (88 ER TABLE

If you do not succeed in adjusting the costs to be more appropriate, then you may have to resort to
forcing index usage explicitly. You may also want to contact the PostgreSQL developers to examine the
issue.

190

Chapter 12. Concurrency Control

This chapter describes the behavior of the PostgreSQL database system when two or more sessions try
to access the same data at the same time. The goals in that situation are to allow efficient access for
all sessions while maintaining strict data integrity. Every developer of database applications should be
familiar with the topics covered in this chapter.

12.1. Introduction

Unlike traditional database systems which use locks for concurrency control, PostgreSQL maintains data
consistency by using a multiversion model (Multiversion Concurrency Control, MVCC). This means that
while querying a database each transaction sees a snapshot of datalase versignas it was some

time ago, regardless of the current state of the underlying data. This protects the transaction from viewing
inconsistent data that could be caused by (other) concurrent transaction updates on the same data rows,
providingtransaction isolatiorfor each database session.

The main advantage to using the MVCC model of concurrency control rather than locking is that in
MVCC locks acquired for querying (reading) data do not conflict with locks acquired for writing data,
and so reading never blocks writing and writing never blocks reading.

Table- and row-level locking facilities are also available in PostgreSQL for applications that cannot adapt
easily to MVCC behavior. However, proper use of MVCC will generally provide better performance than
locks.

12.2. Transaction Isolation

The SQL standard defines four levels of transaction isolation in terms of three phenomena that must be
prevented between concurrent transactions. These undesirable phenomena are:

dirty read
A transaction reads data written by a concurrent uncommitted transaction.
nonrepeatable read

A transaction re-reads data it has previously read and finds that data has been modified by another
transaction (that committed since the initial read).

phantom read

A transaction re-executes a query returning a set of rows that satisfy a search condition and finds that
the set of rows satisfying the condition has changed due to another recently-committed transaction.

The four transaction isolation levels and the corresponding behaviors are descrlladteii2-1

Table 12-1. SQL Transaction Isolation Levels

191

Chapter 12. Concurrency Control

Isolation Level Dirty Read Nonrepeatable Read |Phantom Read
Read uncommitted Possible Possible Possible

Read committed Not possible Possible Possible
Repeatable read Not possible Not possible Possible
Serializable Not possible Not possible Not possible

PostgreSQL offers the Read Committed and Serializable isolation levels.

12.2.1. Read Committed Isolation Level

Read Committeds the default isolation level in PostgreSQL. When a transaction runs on this isolation
level, aSELECTquery sees only data committed before the query began; it never sees either uncommitted
data or changes committed during query execution by concurrent transactions. (Howe®st, HeT

does see the effects of previous updates executed within its own transaction, even though they are not yet
committed.) In effect, SELECT query sees a snapshot of the database as of the instant that that query
begins to run. Notice that two success8f#l ECTcommands can see different data, even though they are
within a single transaction, if other transactions commit changes during execution of tiSEfiEsT T

UPDATEDELETE andSELECT FOR UPDAT&mMmands behave the samesg& ECTin terms of search-

ing for target rows: they will only find target rows that were committed as of the command start time.
However, such a target row may have already been updated (or deleted or marked for update) by another
concurrent transaction by the time it is found. In this case, the would-be updater will wait for the first
updating transaction to commit or roll back (if it is still in progress). If the first updater rolls back, then its
effects are negated and the second updater can proceed with updating the originally found row. If the first
updater commits, the second updater will ignore the row if the first updater deleted it, otherwise it will
attempt to apply its operation to the updated version of the row. The search condition of the command (the
WHERElause) is re-evaluated to see if the updated version of the row still matches the search condition.
If so, the second updater proceeds with its operation, starting from the updated version of the row.

Because of the above rule, it is possible for an updating command to see an inconsistent snapshot: it
can see the effects of concurrent updating commands that affected the same rows it is trying to update,
but it does not see effects of those commands on other rows in the database. This behavior makes Read
Committed mode unsuitable for commands that involve complex search conditions. However, it is just
right for simpler cases. For example, consider updating bank balances with transactions like

BEGIN;

UPDATE accounts SET balance balance + 100.00 WHERE accthnum = 12345;
UPDATE accounts SET balance = balance - 100.00 WHERE acctnum = 7534;
COMMIT;

If two such transactions concurrently try to change the balance of account 12345, we clearly want the
second transaction to start from the updated version of the account’s row. Because each command is
affecting only a predetermined row, letting it see the updated version of the row does not create any
troublesome inconsistency.

Since in Read Committed mode each new command starts with a new snapshot that includes all transac-
tions committed up to that instant, subsequent commands in the same transaction will see the effects of
the committed concurrent transaction in any case. The point at issue here is whether or not siithie a
command we see an absolutely consistent view of the database.

192

Chapter 12. Concurrency Control

The partial transaction isolation provided by Read Committed mode is adequate for many applications,
and this mode is fast and simple to use. However, for applications that do complex queries and updates, it
may be necessary to guarantee a more rigorously consistent view of the database than the Read Committed
mode provides.

12.2.2. Serializable Isolation Level

The levelSerializableprovides the strictest transaction isolation. This level emulates serial transaction ex-
ecution, as if transactions had been executed one after another, serially, rather than concurrently. However,
applications using this level must be prepared to retry transactions due to serialization failures.

When a transaction is on the serializable levelFAECTquery sees only data committed before the trans-
action began; it never sees either uncommitted data or changes committed during transaction execution by
concurrent transactions. (However, thELECTdoes see the effects of previous updates executed within

its own transaction, even though they are not yet committed.) This is different from Read Committed in
that theSELECTsees a snapshot as of the start of the transaction, not as of the start of the current query
within the transaction. Thus, success&€LECT commands within a single transaction always see the
same data.

UPDATEDELETE andSELECT FOR UPDATE&bmmands behave the sames& ECTin terms of search-

ing for target rows: they will only find target rows that were committed as of the transaction start time.
However, such a target row may have already been updated (or deleted or marked for update) by another
concurrent transaction by the time it is found. In this case, the serializable transaction will wait for the first
updating transaction to commit or roll back (if it is still in progress). If the first updater rolls back, then

its effects are negated and the serializable transaction can proceed with updating the originally found row.
But if the first updater commits (and actually updated or deleted the row, not just selected it for update)
then the serializable transaction will be rolled back with the message

ERROR: could not serialize access due to concurrent update

because a serializable transaction cannot modify rows changed by other transactions after the serializable
transaction began.

When the application receives this error message, it should abort the current transaction and then retry
the whole transaction from the beginning. The second time through, the transaction sees the previously-
committed change as part of its initial view of the database, so there is no logical conflict in using the new
version of the row as the starting point for the new transaction’s update.

Note that only updating transactions may need to be retried; read-only transactions will never have serial-
ization conflicts.

The Serializable mode provides a rigorous guarantee that each transaction sees a wholly consistent view
of the database. However, the application has to be prepared to retry transactions when concurrent up-
dates make it impossible to sustain the illusion of serial execution. Since the cost of redoing complex
transactions may be significant, this mode is recommended only when updating transactions contain logic
sufficiently complex that they may give wrong answers in Read Committed mode. Most commonly, Se-
rializable mode is necessary when a transaction executes several successive commands that must see
identical views of the database.

193

Chapter 12. Concurrency Control

12.3. Explicit Locking

PostgreSQL provides various lock modes to control concurrent access to data in tables. These modes can
be used for application-controlled locking in situations where MVCC does not give the desired behav-
ior. Also, most PostgreSQL commands automatically acquire locks of appropriate modes to ensure that
referenced tables are not dropped or modified in incompatible ways while the command executes. (For
example ALTER TABLEcannot be executed concurrently with other operations on the same table.)

To examine a list of the currently outstanding locks in a database server, ysg lheks system view
(Section 43.32 For more information on monitoring the status of the lock manager subsystem, refer to
Chapter 23

12.3.1. Table-Level Locks

The list below shows the available lock modes and the contexts in which they are used automatically by
PostgreSQL. Remember that all of these lock modes are table-level locks, even if the name contains the
word “row”; the names of the lock modes are historical. To some extent the names reflect the typical
usage of each lock mode --- but the semantics are all the same. The only real difference between one lock
mode and another is the set of lock modes with which each conflicts. Two transactions cannot hold locks
of conflicting modes on the same table at the same time. (However, a transaction never conflicts with
itself. For example, it may acquiteCCESS EXCLUSIVBock and later acquiraCCESS SHARIBck on

the same table.) Non-conflicting lock modes may be held concurrently by many transactions. Notice in
particular that some lock modes are self-conflicting (for examplaGITESS EXCLUSIVHEock cannot be

held by more than one transaction at a time) while others are not self-conflicting (for examppECB8S
SHARHock can be held by multiple transactions). Once acquired, a lock is held till end of transaction.

Table-level lock modes
ACCESS SHARE
Conflicts with theACCESS EXCLUSIVEock mode only.

The commandSELECTandANALYZEacquire a lock of this mode on referenced tables. In general,
any query that only reads a table and does not modify it will acquire this lock mode.

ROW SHARE
Conflicts with theEXCLUSIVEandACCESS EXCLUSIVBock modes.

TheSELECT FOR UPDAT&Gmmand acquires a lock of this mode on the target table(s) (in addition
to ACCESS SHARIBCcks on any other tables that are referenced but not selECtRAUPDATE

ROW EXCLUSIVE

Conflicts with theSHARE SHARE ROW EXCLUSIVEXCLUSIVE and ACCESS EXCLUSIVHock
modes.

The commandslPDATEDELETE andINSERT acquire this lock mode on the target table (in addition
to ACCESS SHARIBcks on any other referenced tables). In general, this lock mode will be acquired
by any command that modifies the data in a table.

SHARE UPDATE EXCLUSIVE

Conflicts with theSHARE UPDATE EXCLUSIVEBSHARE SHARE ROW EXCLUSIVEXCLUSIVE
and ACCESS EXCLUSIVHock modes. This mode protects a table against concurrent schema

194

Chapter 12. Concurrency Control

changes antACUUMunNS.
Acquired byVACUUMwithout FULL).
SHARE

Conflicts with the ROW EXCLUSIVE SHARE UPDATE EXCLUSIVESHARE ROW EXCLUSIVE
EXCLUSIVE, andACCESS EXCLUSIVBock modes. This mode protects a table against concurrent
data changes.

Acquired byCREATE INDEX
SHARE ROW EXCLUSIVE

Conflicts with the ROW EXCLUSIVE SHARE UPDATE EXCLUSIVE SHARE SHARE ROW
EXCLUSIVE EXCLUSIVE andACCESS EXCLUSIVEock modes.

This lock mode is not automatically acquired by any PostgreSQL command.
EXCLUSIVE

Conflicts with theROW SHAREROW EXCLUSIVESHARE UPDATE EXCLUSIVEBHARE SHARE
ROW EXCLUSIVEEXCLUSIVE, and ACCESS EXCLUSIVHock modes. This mode allows only
concurrentACCESS SHARIHocks, i.e., only reads from the table can proceed in parallel with a
transaction holding this lock mode.

This lock mode is not automatically acquired by any PostgreSQL command.
ACCESS EXCLUSIVE

Conflicts with locks of all modesCCESS SHARROW SHARROW EXCLUSIVESHARE UPDATE
EXCLUSIVE, SHARE SHARE ROW EXCLUSIVEXCLUSIVE, andACCESS EXCLUSIVE This mode
guarantees that the holder is the only transaction accessing the table in any way.

Acquired by theALTER TABLE DROP TABLEREINDEX CLUSTERandVACUUM FULcommands.
This is also the default lock mode foOCK TABLEStatements that do not specify a mode explicitly.

Tip: Only an ACCESS EXCLUSIVHock blocks a SELECT(without FOR UPDATEStatement.

12.3.2. Row-Level Locks

In addition to table-level locks, there are row-level locks. A row-level lock on a specific row is automat-
ically acquired when the row is updated (or deleted or marked for update). The lock is held until the
transaction commits or rolls back. Row-level locks do not affect data querying; they Wwhiteks to the

same rowonly. To acquire a row-level lock on a row without actually modifying the row, select the row
with SELECT FOR UPDATHote that once a particular row-level lock is acquired, the transaction may
update the row multiple times without fear of conflicts.

PostgreSQL doesn’'t remember any information about modified rows in memory, so it has no limit to the
number of rows locked at one time. However, locking a row may cause a disk write; thus, for example,
SELECT FOR UPDATW®Ill modify selected rows to mark them and so will result in disk writes.

195

Chapter 12. Concurrency Control

In addition to table and row locks, page-level share/exclusive locks are used to control read/write access
to table pages in the shared buffer pool. These locks are released immediately after a row is fetched or
updated. Application developers normally need not be concerned with page-level locks, but we mention
them for completeness.

12.3.3. Deadlocks

The use of explicit locking can increase the likelihooddefdlockswherein two (or more) transactions

each hold locks that the other wants. For example, if transaction 1 acquires an exclusive lock on table A
and then tries to acquire an exclusive lock on table B, while transaction 2 has already exclusive-locked
table B and now wants an exclusive lock on table A, then neither one can proceed. PostgreSQL automati-
cally detects deadlock situations and resolves them by aborting one of the transactions involved, allowing
the other(s) to complete. (Exactly which transaction will be aborted is difficult to predict and should not
be relied on.)

Note that deadlocks can also occur as the result of row-level locks (and thus, they can occur even if explicit
locking is not used). Consider the case in which there are two concurrent transactions modifying a table.
The first transaction executes:

UPDATE accounts SET balance = balance + 100.00 WHERE accthnum = 11111;

This acquires a row-level lock on the row with the specified account number. Then, the second transaction
executes:

UPDATE accounts SET balance balance + 100.00 WHERE accthum = 22222;
UPDATE accounts SET balance = balance - 100.00 WHERE acctnum = 11111;

The firstUPDATEstatement successfully acquires a row-level lock on the specified row, so it succeeds in
updating that row. However, the secanBDATEstatement finds that the row it is attempting to update has
already been locked, so it waits for the transaction that acquired the lock to complete. Transaction two is
now waiting on transaction one to complete before it continues execution. Now, transaction one executes:

UPDATE accounts SET balance = balance - 100.00 WHERE acctnum = 22222;

Transaction one attempts to acquire a row-level lock on the specified row, but it cannot: transaction two
already holds such a lock. So it waits for transaction two to complete. Thus, transaction one is blocked
on transaction two, and transaction two is blocked on transaction one: a deadlock condition. PostgreSQL
will detect this situation and abort one of the transactions.

The best defense against deadlocks is generally to avoid them by being certain that all applications using
a database acquire locks on multiple objects in a consistent order. That was the reason for the previous
deadlock example: if both transactions had updated the rows in the same order, no deadlock would have
occurred. One should also ensure that the first lock acquired on an object in a transaction is the highest
mode that will be needed for that object. If it is not feasible to verify this in advance, then deadlocks may
be handled on-the-fly by retrying transactions that are aborted due to deadlock.

So long as no deadlock situation is detected, a transaction seeking either a table-level or row-level lock
will wait indefinitely for conflicting locks to be released. This means it is a bad idea for applications to
hold transactions open for long periods of time (e.g., while waiting for user input).

196

Chapter 12. Concurrency Control

12.4. Data Consistency Checks at the Application Level

Because readers in PostgreSQL do not lock data, regardless of transaction isolation level, data read by
one transaction can be overwritten by another concurrent transaction. In other words, if a row is returned
by SELECTIt doesn’t mean that the row is still current at the instant it is returned (i.e., sometime after the
current query began). The row might have been modified or deleted by an already-committed transaction
that committed after this one started. Even if the row is still valid “now”, it could be changed or deleted
before the current transaction does a commit or rollback.

Another way to think about it is that each transaction sees a snapshot of the database contents, and con-
currently executing transactions may very well see different snapshots. So the whole concept of “now” is
somewhat suspect anyway. This is not normally a big problem if the client applications are isolated from
each other, but if the clients can communicate via channels outside the database then serious confusion
may ensue.

To ensure the current validity of a row and protect it against concurrent updates one n8EtESE FOR
UPDATEOr an appropriate OCK TABLEstatement.§ELECT FOR UPDATIBcks just the returned rows
against concurrent updates, whileCK TABLHocks the whole table.) This should be taken into account
when porting applications to PostgreSQL from other environments. (Before version 6.5 PostgreSQL used
read locks, and so this above consideration is also relevant when upgrading from PostgreSQL versions
prior to 6.5.)

Global validity checks require extra thought under MVCC. For example, a banking application might wish

to check that the sum of all credits in one table equals the sum of debits in another table, when both tables
are being actively updated. Comparing the results of two succeS8MeCT sum(...) commands will

not work reliably under Read Committed mode, since the second query will likely include the results of
transactions not counted by the first. Doing the two sums in a single serializable transaction will give an
accurate picture of the effects of transactions that committed before the serializable transaction started
--- but one might legitimately wonder whether the answer is still relevant by the time it is delivered.

If the serializable transaction itself applied some changes before trying to make the consistency check,
the usefulness of the check becomes even more debatable, since now it includes some but not all post-
transaction-start changes. In such cases a careful person might wish to lock all tables needed for the check,
in order to get an indisputable picture of current realitySWAREMode (or higher) lock guarantees that

there are no uncommitted changes in the locked table, other than those of the current transaction.

Note also that if one is relying on explicit locks to prevent concurrent changes, one should use Read
Committed mode, or in Serializable mode be careful to obtain the lock(s) before performing queries. An
explicit lock obtained in a serializable transaction guarantees that no other transactions modifying the
table are still running, but if the snapshot seen by the transaction predates obtaining the lock, it may
predate some now-committed changes in the table. A serializable transaction’s snapshot is actually frozen
at the start of its first query or data-modification comma®ELECT, INSERT, UPDATE or DELETH, SO

it's possible to obtain explicit locks before the snapshot is frozen.

12.5. Locking and Indexes

Though PostgreSQL provides nonblocking read/write access to table data, nonblocking read/write access
is not currently offered for every index access method implemented in PostgreSQL. The various index

197

Chapter 12. Concurrency Control

types are handled as follows:

B-tree indexes

Short-term share/exclusive page-level locks are used for read/write access. Locks are released imme-
diately after each index row is fetched or inserted. B-tree indexes provide the highest concurrency
without deadlock conditions.

GiST and R-tree indexes

Share/exclusive index-level locks are used for read/write access. Locks are released after the com-
mand is done.

Hash indexes

Share/exclusive page-level locks are used for read/write access. Locks are released after the page
is processed. Page-level locks provide better concurrency than index-level ones but are liable to
deadlocks.

In short, B-tree indexes offer the best performance for concurrent applications; since they also have more
features than hash indexes, they are the recommended index type for concurrent applications that need to
index scalar data. When dealing with non-scalar data, B-trees obviously cannot be used; in that situation,
application developers should be aware of the relatively poor concurrent performance of GiST and R-tree
indexes.

198

Chapter 13. Performance Tips

Query performance can be affected by many things. Some of these can be manipulated by the user, while
others are fundamental to the underlying design of the system. This chapter provides some hints about
understanding and tuning PostgreSQL performance.

13.1. Using EXPLAIN

PostgreSQL devisesquery planfor each query it is given. Choosing the right plan to match the query
structure and the properties of the data is absolutely critical for good performance. You can use the
EXPLAIN command to see what query plan the system creates for any query. Plan-reading is an art that
deserves an extensive tutorial, which this is not; but here is some basic information.

The numbers that are currently quotedEXPLAIN are:

- Estimated start-up cost (Time expended before output scan can start, e.g., time to do the sorting in a
sort node.)

- Estimated total cost (If all rows were to be retrieved, which they may not be: a query withia
clause will stop short of paying the total cost, for example.)

- Estimated number of rows output by this plan node (Again, only if executed to completion)

- Estimated average width (in bytes) of rows output by this plan node

The costs are measured in units of disk page fetches. (CPU effort estimates are converted into disk-page
units using some fairly arbitrary fudge factors. If you want to experiment with these factors, see the list of
run-time configuration parameters$ection 16.4.3

It's important to note that the cost of an upper-level node includes the cost of all its child nodes. It's also
important to realize that the cost only reflects things that the planner/optimizer cares about. In particular,
the cost does not consider the time spent transmitting result rows to the frontend, which could be a pretty
dominant factor in the true elapsed time; but the planner ignores it because it cannot change it by altering
the plan. (Every correct plan will output the same row set, we trust.)

Rows output is a little tricky because it ot the number of rows processed/scanned by the query, it is
usually less, reflecting the estimated selectivity of S8yERElause conditions that are being applied

at this node. Ideally the top-level rows estimate will approximate the number of rows actually returned,
updated, or deleted by the query.

Here are some examples (using the regression test database\afevdM ANALYZE&Nd 7.3 develop-
ment sources):

EXPLAIN SELECT * FROM tenkl,;

QUERY PLAN

Seq Scan on tenkl (cost=0.00..333.00 rows=10000 width=148)

199

Chapter 13. Performance Tips

This is about as straightforward as it gets. If you do

SELECT * FROM pg_class WHERE relname = 'tenkl’;

you will find out thattenkl has 233 disk pages and 10000 rows. So the cost is estimated at 233 page
reads, defined as costing 1.0 apiece, plus 1006@u*tuple_cost which is currently 0.01 (tnSHOW
cpu_tuple_cost).

Now let's modify the query to add WHEREoNdition:

EXPLAIN SELECT * FROM tenkl WHERE uniquel < 1000;

QUERY PLAN

Seq Scan on tenkl (cost=0.00..358.00 rows=1033 width=148)
Filter: (uniquel < 1000)

The estimate of output rows has gone down because ®YHERElause. However, the scan will still have
to visit all 20000 rows, so the cost hasn’t decreased; in fact it has gone up a bit to reflect the extra CPU
time spent checking th&yHEREonNdition.

The actual number of rows this query would select is 1000, but the estimate is only approximate. If you try
to duplicate this experiment, you will probably get a slightly different estimate; moreover, it will change
after eaclANALYZEcommand, because the statistics producedN&LYZEare taken from a randomized
sample of the table.

Modify the query to restrict the condition even more:

EXPLAIN SELECT * FROM tenkl WHERE uniquel < 50;

QUERY PLAN

Index Scan using tenkl_uniquel on tenkl (cost=0.00..179.33 rows=49 width=148)
Index Cond: (uniquel < 50)

and you will see that if we make thgHEREoNdition selective enough, the planner will eventually decide

that an index scan is cheaper than a sequential scan. This plan will only have to visit 50 rows because of
the index, so it wins despite the fact that each individual fetch is more expensive than reading a whole
disk page sequentially.

Add another condition to th&#yHERElause:

EXPLAIN SELECT * FROM tenkl WHERE uniquel < 50 AND stringul = 'xxX’;

QUERY PLAN

Index Scan using tenkl_uniquel on tenkl (cost=0.00..179.45 rows=1 width=148)
Index Cond: (uniquel < 50)
Filter: (stringul = 'xxx’::name)

The added conditiostringul = 'xxx’ reduces the output-rows estimate, but not the cost because we
still have to visit the same set of rows. Notice that $ithgul clause cannot be applied as an index
condition (since this index is only on thaiquel column). Instead it is applied as a filter on the rows
retrieved by the index. Thus the cost has actually gone up a little bit to reflect this extra checking.

200

Chapter 13. Performance Tips

Let’s try joining two tables, using the columns we have been discussing:

EXPLAIN SELECT * FROM tenkl t1, tenk2 t2 WHERE tl.uniquel < 50 AND tl.unique2 = t2.unique2;

QUERY PLAN

Nested Loop (cost=0.00..327.02 rows=49 width=296)
-> Index Scan using tenkl_uniquel on tenkl tl
(cost=0.00..179.33 rows=49 width=148)
Index Cond: (uniquel < 50)
-> Index Scan using tenk2_unique2 on tenk2 t2
(cost=0.00..3.01 rows=1 width=148)
Index Cond: ("outer".unique2 = t2.unique2)

In this nested-loop join, the outer scan is the same index scan we had in the example before last, and so
its cost and row count are the same because we are applyiMjHE®Elauseuniquel < 50 at that

node. Thel.unique2 = t2.unique2 clause is not relevant yet, so it doesn't affect row count of the
outer scan. For the inner scan, théque2 value of the current outer-scan row is plugged into the inner
index scan to produce an index condition liRainique2 = constant . So we get the same inner-scan

plan and costs that we'd get from, SBXPLAIN SELECT * FROM tenk2 WHERE unique2 = 42. The

costs of the loop node are then set on the basis of the cost of the outer scan, plus one repetition of the inner
scan for each outer row (49 * 3.01, here), plus a little CPU time for join processing.

In this example the join’s output row count is the same as the product of the two scans’ row counts, but
that’s not true in general, because in general you can WalERElauses that mention both tables and

so can only be applied at the join point, not to either input scan. For example, if we AddieRE ...

AND tl.hundred < t2.hundred , that would decrease the output row count of the join node, but not
change either input scan.

One way to look at variant plans is to force the planner to disregard whatever strategy it thought was the
winner, using the enable/disable flags for each plan type. (This is a crude tool, but useful. SExttso
13.3)

SET enable_nestloop = off;
EXPLAIN SELECT * FROM tenkl tl1, tenk2 t2 WHERE tl.uniquel < 50 AND tl.unique2 = t2.unique2;

QUERY PLAN

Hash Join (cost=179.45..563.06 rows=49 width=296)
Hash Cond: ("outer".unique2 = "inner".unigque2)
-> Seq Scan on tenk2 t2 (cost=0.00..333.00 rows=10000 width=148)
-> Hash (cost=179.33..179.33 rows=49 width=148)
-> Index Scan using tenkl_uniquel on tenkl tl1
(cost=0.00..179.33 rows=49 width=148)
Index Cond: (uniquel < 50)

This plan proposes to extract the 50 interesting roms@l using ye same olde index scan, stash them
into an in-memory hash table, and then do a sequential scamidf , probing into the hash table for
possible matches af.unique2 = t2.unique2 at eachtenk2 row. The cost to reatenkl and set

up the hash table is entirely start-up cost for the hash join, since we won't get any rows out until we can
start readingenk2 . The total time estimate for the join also includes a hefty charge for the CPU time to

201

Chapter 13. Performance Tips
probe the hash table 10000 times. Note, however, that weaicharging 10000 times 179.33; the hash
table setup is only done once in this plan type.

Itis possible to check on the accuracy of the planner’s estimated costs byEx$hgIN ANALYZE This
command actually executes the query, and then displays the true run time accumulated within each plan
node along with the same estimated costs that a gl&iL AIN shows. For example, we might get a result

like this:

EXPLAIN ANALYZE SELECT * FROM tenkl t1, tenk2 t2 WHERE tl.uniquel < 50 AND tl.unique2 = t

QUERY PLAN

Nested Loop (cost=0.00..327.02 rows=49 width=296)
(actual time=1.181..29.822 rows=50 loops=1)
-> Index Scan using tenkl_uniquel on tenkl tl1
(cost=0.00..179.33 rows=49 width=148)
(actual time=0.630..8.917 rows=50 loops=1)
Index Cond: (uniquel < 50)
-> Index Scan using tenk2_unique2 on tenk2 t2
(cost=0.00..3.01 rows=1 width=148)
(actual time=0.295..0.324 rows=1 loops=50)
Index Cond: ("outer".unique2 = t2.unique2)
Total runtime: 31.604 ms

Note that the “actual time” values are in milliseconds of real time, whereas the “cost” estimates are
expressed in arbitrary units of disk fetches; so they are unlikely to match up. The thing to pay attention to
is the ratios.

In some query plans, it is possible for a subplan node to be executed more than once. For example, the

inner index scan is executed once per outer row in the above nested-loop plan. In such cases, the “loops”

value reports the total number of executions of the node, and the actual time and rows values shown are

averages per-execution. This is done to make the numbers comparable with the way that the cost estimates
are shown. Multiply by the “loops” value to get the total time actually spent in the node.

TheTotal runtime shown byEXPLAIN ANALYZEincludes executor start-up and shut-down time, as

well as time spent processing the result rows. It does not include parsing, rewriting, or planning time. For
a SELECTquery, the total run time will normally be just a little larger than the total time reported for the
top-level plan node. FONSERT, UPDATE andDELETEcommands, the total run time may be considerably
larger, because it includes the time spent processing the result rows. In these commands, the time for the
top plan node essentially is the time spent computing the new rows and/or locating the old ones, but it
doesn't include the time spent making the changes.

It is worth noting thaEXPLAIN results should not be extrapolated to situations other than the one you are
actually testing; for example, results on a toy-sized table can't be assumed to apply to large tables. The
planner’s cost estimates are not linear and so it may well choose a different plan for a larger or smaller
table. An extreme example is that on a table that only occupies one disk page, you'll nearly always get a
sequential scan plan whether indexes are available or not. The planner realizes that it's going to take one
disk page read to process the table in any case, so there’s no value in expending additional page reads to
look at an index.

202

Chapter 13. Performance Tips

13.2. Statistics Used by the Planner

As we saw in the previous section, the query planner needs to estimate the number of rows retrieved by
a query in order to make good choices of query plans. This section provides a quick look at the statistics
that the system uses for these estimates.

One component of the statistics is the total number of entries in each table and index, as well as the number
of disk blocks occupied by each table and index. This information is kept in thegdgbdtass in the
columnsreltuples andrelpages . We can look at it with queries similar to this one:

SELECT relname, relkind, reltuples, relpages FROM pg_class WHERE relname LIKE ’'tenk1%;

relname | relkind | reltuples | relpages
tenkl | r | 10000 | 233
tenkl_hundred | i [10000 | 30
tenkl_uniquel | i | 10000 | 30
tenkl_unique2 | i | 10000 | 30
(4 rows)

Here we can see thainkl contains 10000 rows, as do its indexes, but the indexes are (unsurprisingly)
much smaller than the table.

For efficiency reasonsgltuples andrelpages are not updated on-the-fly, and so they usually contain

only approximate values (which is good enough for the planner’s purposes). They are initialized with
dummy values (presently 1000 and 10 respectively) when a table is created. They are updated by certain
commands, presentfyACUUMANALYZE andCREATE INDEXA stand-aloneANALYZE that is one not

part of VACUUMgenerates an approximatétuples value since it does not read every row of the table.

Most queries retrieve only a fraction of the rows in a table, due to haviHgRElauses that restrict the
rows to be examined. The planner thus needs to make an estimatesefeéhtvityof WHERElauses, that
is, the fraction of rows that match each condition in WeERElause. The information used for this task
is stored in thepg_statistic system catalog. Entries jyy_statistic are updated bpNALYZEand
VACUUM ANALYZ&ommands and are always approximate even when freshly updated.

Rather than look gig_statistic directly, it's better to look at its viewg_stats when examining the
statistics manuallypg_stats is designed to be more easily readable. Furthernporestats is readable

by all, whereagg_statistic is only readable by a superuser. (This prevents unprivileged users from
learning something about the contents of other people’s tables from the statistiggy Btags view is
restricted to show only rows about tables that the current user can read.) For example, we might do:

SELECT attname, n_distinct, most_common_vals FROM pg_stats WHERE tablename = ’road’;

atthame | n_distinct |

+ +
name | -0.467008 | {"I- 580 Ramp","l- 880
thepath | 20 | {"[(-122.089,37.71),(-122.0886,37.711)]"}
(2 rows)

pg_stats is described in detail iSection 43.35

203

Chapter 13. Performance Tips

The amount of information stored ipg_statistic , in particular the maximum number of entries

in the most_common_vals and histogram_bounds arrays for each column, can be set on a
column-by-column basis using teTER TABLE SET STATISTICScommand, or globally by setting

the default_statistics_target runtime parameter. The default limit is presently 10 entries.
Raising the limit may allow more accurate planner estimates to be made, particularly for columns with
irregular data distributions, at the price of consuming more spagpg_itatistic and slightly more

time to compute the estimates. Conversely, a lower limit may be appropriate for columns with simple
data distributions.

13.3. Controlling the Planner with Explicit ~ JOIN Clauses

It is possible to control the query planner to some extent by using the exq@igit syntax. To see why
this matters, we first need some background.

In a simple join query, such as
SELECT * FROM a, b, ¢ WHERE a.id = b.id AND b.ref = c.id;

the planner is free to join the given tables in any order. For example, it could generate a query plan that
joins A to B, using theWHEREoNditiona.id = b.id , and then joins C to this joined table, using the
otherwHEREondition. Or it could join B to C and then join A to that result. Or it could join A to C and
then join them with B, but that would be inefficient, since the full Cartesian product of A and C would
have to be formed, there being no applicable condition intRERElause to allow optimization of the

join. (All joins in the PostgreSQL executor happen between two input tables, so it's necessary to build up
the result in one or another of these fashions.) The important point is that these different join possibilities
give semantically equivalent results but may have hugely different execution costs. Therefore, the planner
will explore all of them to try to find the most efficient query plan.

When a query only involves two or three tables, there aren’t many join orders to worry about. But the
number of possible join orders grows exponentially as the number of tables expands. Beyond ten or so
input tables it's no longer practical to do an exhaustive search of all the possibilities, and even for six
or seven tables planning may take an annoyingly long time. When there are too many input tables, the
PostgreSQL planner will switch from exhaustive searchderseticprobabilistic search through a limited
number of possibilities. (The switch-over threshold is set bygthuw_threshold run-time parameter.)

The genetic search takes less time, but it won't necessarily find the best possible plan.

When the query involves outer joins, the planner has much less freedom than it does for plain (inner)
joins. For example, consider

SELECT * FROM a LEFT JOIN (b JOIN ¢ ON (b.ref = c.id)) ON (a.id = b.id);

Although this query’s restrictions are superficially similar to the previous example, the semantics are
different because a row must be emitted for each row of A that has no matching row in the join of B and
C. Therefore the planner has no choice of join order here: it must join B to C and then join A to that result.
Accordingly, this query takes less time to plan than the previous query.

Explicit inner join syntax INNER JOIN, CROSS JOIN or unadornedOIN) is semantically the same as
listing the input relations iIFROM so it does not need to constrain the join order. But it is possible to
instruct the PostgreSQL query planner to treat explicit irlid@N s as constraining the join order anyway.
For example, these three queries are logically equivalent:

204

Chapter 13. Performance Tips

SELECT * FROM a, b, ¢ WHERE a.id = b.id AND b.ref = c.id:
SELECT * FROM a CROSS JOIN b CROSS JOIN ¢ WHERE a.id = b.d AND b.ref = c.id:;
SELECT * FROM a JOIN (b JOIN ¢ ON (b.ref = c.id)) ON (a.id = b.id);

But if we tell the planner to honor th¥OIN order, the second and third take less time to plan than the first.
This effect is not worth worrying about for only three tables, but it can be a lifesaver with many tables.

To force the planner to follow th&OIN order for inner joins, set thigin_collapse_limit run-time
parameter to 1. (Other possible values are discussed below.)

You do not need to constrain the join order completely in order to cut search time, because it's OK to use
JOIN operators within items of a plaPROMist. For example, consider

SELECT * FROM a CROSS JOIN b, ¢, d, e WHERE ..;

With join_collapse_limit = 1, this forces the planner to join A to B before joining them to other
tables, but doesn’t constrain its choices otherwise. In this example, the number of possible join orders is
reduced by a factor of 5.

Constraining the planner’s search in this way is a useful technique both for reducing planning time and
for directing the planner to a good query plan. If the planner chooses a bad join order by default, you can
force it to choose a better order Wi®IN syntax --- assuming that you know of a better order, that is.
Experimentation is recommended.

A closely related issue that affects planning time is collapsing of subqueries into their parent query. For
example, consider

SELECT *
FROM x, vy,

(SELECT * FROM a, b, ¢ WHERE something) AS ss
WHERE somethingelse;

This situation might arise from use of a view that contains a join; the vis&t<ECTrule will be inserted
in place of the view reference, yielding a query much like the above. Normally, the planner will try to
collapse the subquery into the parent, yielding

SELECT * FROM x, y, a, b, ¢ WHERE something AND somethingelse;

This usually results in a better plan than planning the subquery separately. (For example, tiHEREr
conditions might be such that joining X to A first eliminates many rows of A, thus avoiding the need
to form the full logical output of the subquery.) But at the same time, we have increased the plan-
ning time; here, we have a five-way join problem replacing two separate three-way join problems. Be-
cause of the exponential growth of the number of possibilities, this makes a big difference. The plan-
ner tries to avoid getting stuck in huge join search problems by not collapsing a subquery if more than
from_collapse_limit FROM items would result in the parent query. You can trade off planning time
against quality of plan by adjusting this run-time parameter up or down.

from_collapse_limit and join_collapse_limit are similarly named because they do almost
the same thing: one controls when the planner will “flatten out” subselects, and the other controls
when it will flatten out explicit inner joins. Typically you would either gein_collapse_limit

equal to from_collapse_limit (so that explicit joins and subselects act similarly) or set
join_collapse_limit to 1 (if you want to control join order with explicit joins). But you might set
them differently if you are trying to fine-tune the trade off between planning time and run time.

205

Chapter 13. Performance Tips

13.4. Populating a Database

One may need to do a large number of table insertions when first populating a database. Here are some
tips and techniques for making that as efficient as possible.

13.4.1. Disable Autocommit

Turn off autocommit and just do one commit at the end. (In plain SQL, this means iBEGIY at the

start andCOMMITat the end. Some client libraries may do this behind your back, in which case you need
to make sure the library does it when you want it done.) If you allow each insertion to be committed
separately, PostgreSQL is doing a lot of work for each row added. An additional benefit of doing all
insertions in one transaction is that if the insertion of one row were to fail then the insertion of all rows
inserted up to that point would be rolled back, so you won't be stuck with partially loaded data.

13.4.2. Use COPY FROM

UseCOPY FROM STDIt load all the rows in one command, instead of using a seri#¢3HRT com-
mands. This reduces parsing, planning, etc. overhead a great deal. If you do this then it is not necessary to
turn off autocommit, since it is only one command anyway.

13.4.3. Remove Indexes

If you are loading a freshly created table, the fastest way is to create the table, bulk load the table’s data
usingCOPY then create any indexes needed for the table. Creating an index on pre-existing data is quicker
than updating it incrementally as each row is loaded.

If you are augmenting an existing table, you can drop the index, load the table, then recreate the index. Of
course, the database performance for other users may be adversely affected during the time that the index
is missing. One should also think twice before dropping unigue indexes, since the error checking afforded
by the unique constraint will be lost while the index is missing.

13.4.4. Increase sort_mem

Temporarily increasing theort_mem configuration variable when restoring large amounts of data can
lead to improved performance. This is because when a B-tree index is created from scratch, the existing
content of the table needs to be sorted. Allowing the merge sort to use more buffer pages means that fewer
merge passes will be required.

13.4.5. Run ANALYZEAfterwards

It's a good idea to ruiANALYZEor VACUUM ANALYZzanytime you've added or updated a lot of data,
including just after initially populating a table. This ensures that the planner has up-to-date statistics about
the table. With no statistics or obsolete statistics, the planner may make poor choices of query plans,
leading to bad performance on queries that use your table.

206

11l. Server Administration

This part covers topics that are of interest to a PostgreSQL database administrator. This includes instal-

lation of the software, set up and configuration of the server, management of users and databases, and
maintenance tasks. Anyone who runs a PostgreSQL server, either for personal use, but especially in pro-
duction, should be familiar with the topics covered in this part.

The information in this part is arranged approximately in the order in which a new user should read it.
But the chapters are self-contained and can be read individually as desired. The information in this part is
presented in a narrative fashion in topical units. Readers looking for a complete description of a particular
command should look intBart VI.

The first few chapters are written so that they can be understood without prerequisite knowledge, so that
new users who need to set up their own server can begin their exploration with this part. The rest of this
part which is about tuning and management presupposes that the reader is familiar with the general use
of the PostgreSQL database system. Readers are encouraged to Raok latnd Part 1l for additional
information.

Chapter 14. Installation Instructions

This chapter describes the installation of PostgreSQL from the source code distribution.

14.1. Short Version

Jconfigure

gmake

su

gmake install

adduser postgres

mkdir /usr/local/pgsql/data

chown postgres /usr/local/pgsql/data

su - postgres

Jusr/local/pgsql/bin/initdb -D /usr/local/pgsql/data
lusr/local/pgsql/bin/postmaster -D /usr/local/pgsql/data >logfile 2 >&1 &
/usr/local/pgsqgl/bin/createdb test
/usr/local/pgsql/bin/psgl test

The long version is the rest of this chapter.

14.2. Requirements

In general, a modern Unix-compatible platform should be able to run PostgreSQL. The platforms that had
received specific testing at the time of release are list&kution 14.below. In thedoc subdirectory of

the distribution there are several platform-specific FAQ documents you might wish to consult if you are
having trouble.

The following software packages are required for building PostgreSQL.:

« GNU make is required; other make programs witt work. GNU make is often installed under the
namegmake; this document will always refer to it by that name. (On some systems GNU make is the
default tool with the nameake.) To test for GNU make enter

gmake --version
It is recommended to use version 3.76.1 or later.

« You need an ISO/ANSI C compiler. Recent versions of GCC are recommendable, but PostgreSQL is
known to build with a wide variety of compilers from different vendors.

« gzip is needed to unpack the distribution in the first place.

- The GNU Readline library (for comfortable line editing and command history retrieval) will be used
by default. If you don’t want to use it then you must specify thethout-readline option for
configure . (On NetBSD, thdibedit library is Readline-compatible and is usedilifeadline
is not found.)

« To build on Windows NT or Windows 2000 you need the Cygwin and cygipc packages. See the file
doc/FAQ_MSWIN for details.

209

Chapter 14. Installation Instructions

The following packages are optional. They are not required in the default configuration, but they are
needed when certain build options are enabled, as explained below.

« To build the server programming language PL/Perl you need a full Perl installation, including the
libperl library and the header files. Since PL/Perl will be a shared library, Ittyeer| library
must be a shared library also on most platforms. This appears to be the default in recent Perl versions,
but it was not in earlier versions, and in general it is the choice of whomever installed Perl at your site.

If you don’t have the shared library but you need one, a message like this will appear during the build
to point out this fact:

*** Cannot build PL/Perl because libperl is not a shared library.
*** You might have to rebuild your Perl installation. Refer to
*** the documentation for details.

(If you don't follow the on-screen output you will merely notice that the PL/Perl library object,
plperl.so or similar, will not be installed.) If you see this, you will have to rebuild and install Perl
manually to be able to build PL/Perl. During the configuration process for Perl, request a shared
library.

- To build the PL/Python server programming language, you need a Python installation, including the
header files. Since PL/Python will be a shared library, ithgython library must be a shared library
also on most platforms. This is not the case in a default Python installation.

If after building and installing you have a file call@thython.so (possibly a different extension),
then everything went well. Otherwise you should have seen a notice like this flying by:

*** Cannot build PL/Python because libpython is not a shared library.
*** You might have to rebuild your Python installation. Refer to
*** the documentation for details.

That means you have to rebuild (part of) your Python installation to supply this shared library.

The catch is that the Python distribution or the Python maintainers do not provide any direct way to do
this. The closest thing we can offer you is the information in Python FAQ'3G®some operating sys-
tems you don't really have to build a shared library, but then you will have to convince the PostgreSQL
build system of this. Consult th@akefile in thesrc/pl/plpython directory for details.

- If you want to build Tcl or Tk components (clients and the PL/Tcl language) you of course need a Tcl
installation.

- To build the JDBC driver, you need Ant 1.5 or higher and a JDK. Ant is a special tool for building
Java-based packages. It can be downloaded from the Ant wéb site

If you have several Java compilers installed, it depends on the Ant configuration which one gets used.
Precompiled Ant distributions are typically set up to read a.filerc in the current user’'s home
directory for configuration. For example, to use a different JDK than the default, this may work:

JAVA HOME-=/usr/local/sun-jdk1.3

1. http://www.python.org/doc/FAQ.html#3.30
2. http://jakarta.apache.org/ant/index.html

210

Chapter 14. Installation Instructions

JAVACMD=3$JAVA_HOME/bin/java

Note: Do not try to build the driver by calling ant or even javac directly. This will not work. Run
gmake normally as described below.

- To enable Native Language Support (NLS), that is, the ability to display a program’s messages in a
language other than English, you need an implementation of the Gettext APl. Some operating systems
have this built-in (e.g., Linux, NetBSD, Solaris), for other systems you can download an add-on package
from here: http://developer.postgresql.org/~petere/bsd-gettext/. If you are using the Gettext implemen-
tation in the GNU C library then you will additionally need the GNU Gettext package for some ultility
programs. For any of the other implementations you will not need it.

- Kerberos, OpenSSL, or PAM, if you want to support authentication using these services.

If you are building from a CVS tree instead of using a released source package, or if you want to do
development, you also need the following packages:

« Flex and Bison are needed to build a CVS checkout or if you changed the actual scanner and parser
definition files. If you need them, be sure to get Flex 2.5.4 or later and Bison 1.875 or later. Other yacc
programs can sometimes be used, but doing so requires extra effort and is not recommended. Other lex
programs will definitely not work.

If you need to get a GNU package, you can find it at your local GNU mirror site (see
http://lwww.gnu.org/order/ftp.html for a list) or at ftp://ftp.gnu.org/gnul/.

Also check that you have sufficient disk space. You will need about 65 MB for the source tree during
compilation and about 15 MB for the installation directory. An empty database cluster takes about 25
MB, databases take about five times the amount of space that a flat text file with the same data would take.
If you are going to run the regression tests you will temporarily need up to an extra 90 MB. Uife the
command to check for disk space.

14.3. Getting The Source

The PostgreSQL 7.4.2 sources can be obtained by anonymous FTP from
ftp://ftp.postgresql.org/pub/source/v7.4.2/postgresql-7.4.2.tar.gz. Use a mirror if possible. After you have
obtained the file, unpack it:

gunzip postgresql-7.4.2.tar.gz
tar xf postgresql-7.4.2.tar

This will create a directorgostgresql-7.4.2 under the current directory with the PostgreSQL sources.
Change into that directory for the rest of the installation procedure.

211

Chapter 14. Installation Instructions

14.4. If You Are Upgrading

The internal data storage format changes with new releases of PostgreSQL. Therefore, if you are up-
grading an existing installation that does not have a version number “7.4.x”, you must back up and
restore your data as shown here. These instructions assume that your existing installation is under the
Jusr/local/pgsql directory, and that the data area is/usr/local/pgsgl/data . Substitute your

paths appropriately.

1. Make sure that your database is not updated during or after the backup. This does not affect the
integrity of the backup, but the changed data would of course not be included. If necessary, edit the
permissions in the fil&sr/local/pgsqgl/data/pg_hba.conf (or equivalent) to disallow access
from everyone except you.

2. To back up your database installation, type:
pg_dumpall > outputfile

If you need to preserve OIDs (such as when using them as foreign keys), then us®gi®n when
runningpg_dumpall

pg_dumpall does not save large objects. Ch&gction 22.1.4f you need to do this.

To make the backup, you can use e dumpall command from the version you are currently
running. For best results, however, try to use pgedumpall command from PostgreSQL 7.4.2,
since this version contains bug fixes and improvements over older versions. While this advice might
seem idiosyncratic since you haven't installed the new version yet, it is advisable to follow it if you
plan to install the new version in parallel with the old version. In that case you can complete the
installation normally and transfer the data later. This will also decrease the downtime.

3. Ifyou are installing the new version at the same location as the old one then shut down the old server,
at the latest before you install the new files:

kill -INT ‘cat /usr/local/pgsql/data/postmaster.pid | sed 1q'

Versions prior to 7.0 do not have thi®stmaster.pid file. If you are using such a version you
must find out the process ID of the server yourself, for example by typsmgax | grep
postmaster , and supply it to th&ill command.

On systems that have PostgreSQL started at boot time, there is probably a start-up file that will
accomplish the same thing. For example, on a Red Hat Linux system one might find that

[etc/rc.d/init.d/postgresql stop
works. Another possibility ipg_ctl stop

4. If you are installing in the same place as the old version then it is also a good idea to move the old
installation out of the way, in case you have trouble and need to revert to it. Use a command like this:

mv /usr/local/pgsql /usr/local/pgsql.old

After you have installed PostgreSQL 7.4.2, create a new database directory and start the new server.
Remember that you must execute these commands while logged in to the special database user account
(which you already have if you are upgrading).

/usr/local/pgsql/bin/initdb -D /usr/local/pgsql/data
lusr/local/pgsql/bin/postmaster -D /usr/local/pgsql/data

212

Chapter 14. Installation Instructions

Finally, restore your data with
lusr/local/pgsql/bin/psqgl -d templatel -f outputfile

using thenewpsql.

These topics are discussed at lengtBattion 22.3which you are encouraged to read in any case.

14.5. Installation Procedure

1. Configuration

The first step of the installation procedure is to configure the source tree for your system and choose
the options you would like. This is done by running thumfigure script. For a default installation
simply enter

Jconfigure

This script will run a number of tests to guess values for various system dependent variables and
detect some quirks of your operating system, and finally will create several files in the build tree to
record what it found. (You can also rganfigure in a directory outside the source tree if you want

to keep the build directory separate.)

The default configuration will build the server and utilities, as well as all client applications and
interfaces that require only a C compiler. All files will be installed undser/local/pgsq| by
default.

You can customize the build and installation process by supplying one or more of the following
command line options teonfigure

--prefix= PREFIX

Install all files under the directo®REFIX instead ofusr/local/pgsgl . The actual files will
be installed into various subdirectories; no files will ever be installed directly int@REeFIX
directory.
If you have special needs, you can also customize the individual subdirectories with the follow-
ing options.

--exec-prefix= EXEC-PREFIX

You can install architecture-dependent files under a different pEEXEC-PREFIX, than what
PREFIX was set to. This can be useful to share architecture-independent files between hosts.
If you omit this, therEXEC-PREFIX is set equal t&’REFIX and both architecture-dependent

and independent files will be installed under the same tree, which is probably what you want.

--bindir=" DIRECTORY

Specifies the directory for executable programs. The defaBXEC-PREFIX/bin , which nor-
mally meangusr/local/pgsgl/bin

--datadir=" DIRECTORY

Sets the directory for read-only data files used by the installed programs. The default is
PREFIX/share . Note that this has nothing to do with where your database files will be placed.

213

Chapter 14. Installation Instructions

--sysconfdir= DIRECTORY
The directory for various configuration fileBREFIX/etc by default.
--libdir= DIRECTORY

The location to install libraries and dynamically loadable modules. The default is
EXEC-PREFIX/lib

--includedir= DIRECTORY
The directory for installing C and C++ header files. The defauR&FIX/include
--docdir= DIRECTORY

Documentation files, except “man” pages, will be installed into this directory. The default is
PREFIX/doc .

--mandir= DIRECTORY

The man pages that come with PostgreSQL will be installed under this directory, in their respec-
tive manx subdirectories. The default ’FREFIX/man .

Note: Care has been taken to make it possible to install PostgreSQL into shared installation
locations (such as /usr/locallinclude) without interfering with the namespace of the rest of
the system. First, the string “/postgresql " is automatically appended to datadir , sysconfdir
and docdir , unless the fully expanded directory name already contains the string “postgres "
or “pgsqgl . For example, if you choose /usr/local as prefix, the documentation will be
installed in /usr/local/doc/postgresq| , but if the prefix is /opt/postgres , then it will be
in /opt/postgres/doc . The public C header files of the client interfaces are installed into
includedir and are namespace-clean. The internal header files and the server header files are
installed into private directories under includedir . See the documentation of each interface for
information about how to get at the its header files. Finally, a private subdirectory will also be
created, if appropriate, under libdir ~ for dynamically loadable modules.

--with-includes= DIRECTORIES

DIRECTORIESis a colon-separated list of directories that will be added to the list the com-
piler searches for header files. If you have optional packages (such as GNU Readline) installed
in a non-standard location, you have to use this option and probably also the corresponding
--with-libraries option.

Example:--with-includes=/opt/gnu/include:/usr/sup/include
--with-libraries= DIRECTORIES

DIRECTORIES:is a colon-separated list of directories to search for libraries. You will probably
have to use this option (and the correspondingth-includes option) if you have packages
installed in non-standard locations.

Example:--with-libraries=/opt/gnu/lib:/usr/sup/lib

214

Chapter 14. Installation Instructions

--enable-nls[= LANGUAGES

Enables Native Language Support (NLS), that is, the ability to display a program’s messages in
a language other than EnglidlANGUAGES a space separated list of codes of the languages
that you want supported, for examplenable-nis="de fr' . (The intersection between
your list and the set of actually provided translations will be computed automatically.) If you do
not specify a list, then all available translations are installed.

To use this option, you will need an implementation of the Gettext API; see above.
--with-pgport= NUMBER

SetNUMBERSs the default port number for server and clients. The default is 5432. The port can

always be changed later on, but if you specify it here then both server and clients will have the
same default compiled in, which can be very convenient. Usually the only good reason to select
a non-default value is if you intend to run multiple PostgreSQL servers on the same machine.

--with-perl

Build the PL/Perl server-side language.
--with-python

Build the PL/Python server-side language.
--with-tcl

Build components that require Tcl/Tk, which are libpgtcl, pgtclsh, pgtksh, and PL/Tcl. But see
below about-without-tk

--without-tk

If you specify--with-tcl and this option, then the program that requires Tk (pgtksh) will be

excluded.
--with-tclconfig= DIRECTORY
--with-tkconfig= DIRECTORY
Tcl/Tk installs the filestclConfig.sh andtkConfig.sh , which contain configuration in-

formation needed to build modules interfacing to Tcl or Tk. These files are normally found
automatically at their well-known locations, but if you want to use a different version of Tcl or
Tk you can specify the directory in which to find them.

--with-java
Build the JDBC driver and associated Java packages.

--with-krb4[= DIRECTORY
--with-krb5[= DIRECTORY

Build with support for Kerberos authentication. You can use either Kerberos version 4 or 5, but
not both. TheDIRECTORYargument specifies the root directory of the Kerberos installation;
fusr/fathena is assumed as default. If the relevant header files and libraries are not under a
common parent directory, then you must use-théth-includes and--with-libraries

options in addition to this option. If, on the other hand, the required files are in a location that is
searched by default (e.dusr/lib), then you can leave off the argument.

configure will check for the required header files and libraries to make sure that your Kerberos
installation is sufficient before proceeding.

215

Chapter 14. Installation Instructions

--with-krb-srvnam= NAME

The name of the Kerberos service principaktgres is the default. There’s probably no reason
to change this.

--with-openssl[= DIRECTORY

Build with support for SSL (encrypted) connections. This requires the OpenSSL package to be
installed. TheDIRECTORYargument specifies the root directory of the OpenSSL installation;
the default iSusr/locallss|

configure will check for the required header files and libraries to make sure that your OpenSSL
installation is sufficient before proceeding.

--with-pam
Build with PAM (Pluggable Authentication Modules) support.
--without-readline

Prevents the use of the Readline library. This disables command-line editing and history in psq|,
S0 it is not recommended.

--with-rendezvous
Build with Rendezvous support.
--disable-spinlocks

Allow the builds to succeed even if PostgreSQL has no CPU spinlock support for the platform.
The lack of spinlock support will result in poor performance; therefore, this option should only
be used if the build aborts and informs you that the platform lacks spinlock support.

--enable-thread-safety

Make the client libraries thread-safe. This allows concurrent threads in libpq and ECPG pro-
grams to safely control their private connection handles.

--without-zlib

Prevents the use of the Zlib library. This disables compression support in pg_dump. This option
is only intended for those rare systems where this library is not available.

--enable-debug

Compiles all programs and libraries with debugging symbols. This means that you can run the
programs through a debugger to analyze problems. This enlarges the size of the installed exe-
cutables considerably, and on non-GCC compilers it usually also disables compiler optimization,
causing slowdowns. However, having the symbols available is extremely helpful for dealing with
any problems that may arise. Currently, this option is recommended for production installations
only if you use GCC. But you should always have it on if you are doing development work or
running a beta version.

--enable-cassert

Enablesassertionchecks in the server, which test for many “can’t happen” conditions. This is
invaluable for code development purposes, but the tests slow things down a little. Also, having
the tests turned on won't necessarily enhance the stability of your server! The assertion checks
are not categorized for severity, and so what might be a relatively harmless bug will still lead

216

Chapter 14. Installation Instructions

to server restarts if it triggers an assertion failure. Currently, this option is not recommended for
production use, but you should have it on for development work or when running a beta version.

--enable-depend

Enables automatic dependency tracking. With this option, the makefiles are set up so that all
affected object files will be rebuilt when any header file is changed. This is useful if you are
doing development work, but is just wasted overhead if you intend only to compile once and
install. At present, this option will work only if you use GCC.

If you prefer a C compiler different from the omenfigure picks then you can set the environment
variableCCto the program of your choice. By defautpnfigure will pick gcc unless this is in-
appropriate for the platform. Similarly, you can override the default compiler flags witbRbaGS
variable.

You can specify environment variables on thafigure command line, for example:
Jconfigure CC=/opt/bin/gcc CFLAGS="-O2 -pipe’

Build
To start the build, type
gmake

(Remember to use GNU make.) The build may take anywhere from 5 minutes to half an hour de-
pending on your hardware. The last line displayed should be

All of PostgreSQL is successfully made. Ready to install.

Regression Tests

If you want to test the newly built server before you install it, you can run the regression tests at this
point. The regression tests are a test suite to verify that PostgreSQL runs on your machine in the way
the developers expected it to. Type

gmake check

(This won't work as root; do it as an unprivileged usé&hapter 26contains detailed information
about interpreting the test results. You can repeat this test at any later time by issuing the same
command.

Installing The Files

Note: If you are upgrading an existing system and are going to install the new files over the
old ones, then you should have backed up your data and shut down the old server by now, as
explained in Section 14.4 above.

To install PostgreSQL enter

gmake install

217

Chapter 14. Installation Instructions

This will install files into the directories that were specifiegiap 1 Make sure that you have appro-
priate permissions to write into that area. Normally you need to do this step as root. Alternatively, you
could create the target directories in advance and arrange for appropriate permissions to be granted.

You can usggmake install-strip instead ofgmake install to strip the executable files and
libraries as they are installed. This will save some space. If you built with debugging support, stripping
will effectively remove the debugging support, so it should only be done if debugging is no longer
needed.install-strip tries to do a reasonable job saving space, but it does not have perfect
knowledge of how to strip every unneeded byte from an executable file, so if you want to save all the
disk space you possibly can, you will have to do manual work.

The standard installation provides only the header files needed for client application development. If
you plan to do any server-side program development (such as custom functions or data types written in
C), then you may want to install the entire PostgreSQL include tree into your target include directory.
To do that, enter

gmake install-all-headers

This adds a megabyte or two to the installation footprint, and is only useful if you don't plan to keep
the whole source tree around for reference. (If you do, you can just use the source’s include directory
when building server-side software.)

Client-only installation: If you want to install only the client applications and interface libraries,
then you can use these commands:

gmake -C src/bin install

gmake -C src/include install

gmake -C src/interfaces install
gmake -C doc install

Uninstallation: To undo the installation use the commagidake uninstall . However, this will not
remove any created directories.

Cleaning: After the installation you can make room by removing the built files from the source tree
with the commandmake clean . This will preserve the files made by thenfigure program, so that

you can rebuild everything withmake later on. To reset the source tree to the state in which it was

distributed, usgmake distclean . If you are going to build for several platforms from the same source

tree you must do this and re-configure for each build.

If you perform a build and then discover that yaumfigure options were wrong, or if you change
anything thatonfigure investigates (for example, software upgrades), then it's a good ideagtoake
distclean before reconfiguring and rebuilding. Without this, your changes in configuration choices may
not propagate everywhere they need to.

14.6. Post-Installation Setup

14.6.1. Shared Libraries

On some systems that have shared libraries (which most systems do) you need to tell your system how
to find the newly installed shared libraries. The systems on which thistisecessary include BSD/OS,
FreeBSD, HP-UX, IRIX, Linux, NetBSD, OpenBSD, Tru64 UNIX (formerly Digital UNIX), and Solaris.

218

Chapter 14. Installation Instructions

The method to set the shared library search path varies between platforms, but the most widely usable
method is to set the environment variabl® LIBRARY_PATHIlike so: In Bourne shellssf, ksh , bash,
zsh)

LD_LIBRARY_PATH=/usr/local/pgsql/lib
export LD_LIBRARY_PATH

orincsh ortcsh
setenv LD_LIBRARY_PATH /usr/local/pgsql/lib

Replacelusr/local/pgsql/lib with whatever you setlibdir to in step 1 You should put these
commands into a shell start-up file such/es/profile or ~/.bash_profile . Some good informa-
tion about the caveats associated with this method can be found at http://www.visi.com/~barr/Idpath.html.

On some systems it might be preferable to set the environment variabiRUN_PATHeforebuilding.

On Cygwin, put the library directory in tHeATHor move thedll files into thebin directory.

If in doubt, refer to the manual pages of your system (perliegzs orrld). If you later on get a message
like

psql: error in loading shared libraries
libpg.s0.2.1: cannot open shared object file: No such file or directory

then this step was necessary. Simply take care of it then.
If you are on BSD/OS, Linux, or SunOS 4 and you have root access you can run

/sbin/ldconfig /ustr/local/pgsql/lib

(or equivalent directory) after installation to enable the run-time linker to find the shared libraries faster.
Refer to the manual page bifconfig ~ for more information. On FreeBSD, NetBSD, and OpenBSD the
command is

/sbin/ldconfig -m /usr/local/pgsql/lib

instead. Other systems are not known to have an equivalent command.

14.6.2. Environment Variables

If you installed into/usr/local/pgsql or some other location that is not searched for programs by
default, you should addlisr/local/pgsql/bin (or whatever you setbindir ~ to in step 1 into your

PATH Strictly speaking, this is not necessary, but it will make the use of PostgreSQL much more conve-
nient.

To do this, add the following to your shell start-up file, such-Alsash_profile (or /etc/profile ,
if you want it to affect every user):

PATH=/ust/local/pgsql/bin:$PATH
export PATH

If you are usingesh ortesh , then use this command:

219

Chapter 14. Installation Instructions

set path = (/usr/local/pgsql/bin $path)

To enable your system to find the man documentation, you need to add lines like the following to a shell
start-up file unless you installed into a location that is searched by default.

MANPATH=/usr/local/pgsgl/man:$MANPATH
export MANPATH

The environment variableBGHOSTand PGPORTspecify to client applications the host and port of the
database server, overriding the compiled-in defaults. If you are going to run client applications remotely
then itis convenient if every user that plans to use the databage@e@STThis is not required, however:

the settings can be communicated via command line options to most client programs.

14.7. Supported Platforms

PostgreSQL has been verified by the developer community to work on the platforms listed below. A
supported platform generally means that PostgreSQL builds and installs according to these instructions
and that the regression tests pass.

Note: If you are having problems with the installation on a supported platform, please write to

<pgsql-bugs@postgresgl.org > or <pgsql-ports@postgresql.org >, not to the people listed here.
O] Processor \Version Reported Remarks
AIX RS6000 7.4 2003-10-25, see also
Hans-Jirgen doc/FAQ_AIX
Schonig

(<hs@cybertec.at [>)

BSD/OS X86 7.4 2003-10-24, Bruce 4.3
Momjian
(<pgman@candle.pha.pa.us >)

FreeBSD Alpha 7.4 2003-10-25, Peter 4.8
Eisentraut
(<peter_e@gmx.net | >)

FreeBSD X86 7.4 2003-10-24, Peter 4.9
Eisentraut
(<peter_e@gmx.net | >)

220

Chapter 14. Installation Instructions

0S Processor \Version Reported Remarks
HP-UX PA-RISC 7.4 2003-10-31, 10.20gcc andcc; see alsp
;Tom Lane doc/FAQ_HPUX

(<tgl@sss.pgh.pa.us| >);
2003-11-04, 11.00,
Peter Eisentraut

(<peter_e@gmx.net | >)

IRIX MIPS 7.4 2003-11-12, Roberp.5.20,cc only
E. Bruccoleri
(<bruc@stone.congenomics.com >)

Linux Alpha 7.4 2003-10-25, Noel 2.4
Kothe
(<noel@debian.org | >)

Linux arm41 7.4 2003-10-25, Noel 2.4
Kothe
(<noel@debian.org | >)

Linux Itanium 7.4 2003-10-25, Noel 2.4
Kothe
(<noel@debian.org | >)

Linux m68k 7.4 2003-10-25, Noel 2.4
Kothe
(<noel@debian.org | >)

Linux MIPS 7.4 2003-10-25, Noel 2.4
Kothe
(<noel@debian.org | >)

Linux Opteron 7.4 2003- 2.6
11-01, Jani Averbach
(<jaa@cc.jyu.fi >)

Linux PPC 7.4 2003-10-25, Noel
Kothe
(<noel@debian.org | >)

Linux S/390 7.4 2003-10-25, Noel 2.4
Kothe
(<noel@debian.org | >)

221

Chapter 14. Installation Instructions

0S Processor \Version Reported Remarks
Linux Sparc 7.4 2003-10-24, Peter [2.4, 32-bit
Eisentraut

(<peter_e@gmx.net | >)

Linux x86 7.4 003-10-24, Peter [2.4
Eisentraut
(<peter_e@gmx.net | >)

Mac OS X PPC 7.4 2003-10-24, 10.2.8,
Adam Witnhey
(<awitney@sghms.a¢.uk >),
10.3, Marko
Karppinen

(<marko@karppinen!f

>)

NetBSD arm32 7.4 2003-11-12, Patrickl.6ZE/acorn32
Welche
(<priwl@newn.cam.ac.uk >)

NetBSD Sparc 7.4.1 2003-11-26, Peter [1.6.1, 32-hit
Eisentraut
(<peter_e@gmx.net | >)

NetBSD X86 7.4 2003-10-24, Peter [1.6
Eisentraut
(<peter_e@gmx.net | >)

OpenBSD Sparc 7.4 2003-11-01, Peter 3.4
Eisentraut
(<peter_e@gmx.net | >)

OpenBSD X86 7.4 2003-10-24, Peter [3.2
Eisentraut
(<peter_e@gmx.net | >)

Solaris Sparc 7.4 2003-10-26, 2.8; see also
Christopher Browng@loc/FAQ_Solaris
(<cbbrowne@libertyrms.info >)

Solaris x86 7.4 2003-10-26, Kurt [2.6; see also
Roeckx doc/FAQ_Solaris

(<Q@ping.be >)

222

Chapter 14. Installation Instructions

0S

Processor

\Version

Reported

Remarks

Tru64 UNIX

Alpha

7.4

2003-10-25, 5.1b,
Peter Eisentraut
(<peter_e@gmx.net
2003-10-29, 4.0g,
Alessio Bragadini
(<alessio@albourne.

>);

com >)

UnixWare

X86

7.4

2003-11-03, Larry
Rosenman
(<ler@lerctr.org

7.1.3; join test may
fail, see also
HIC/FAQ_SCO

Windows with
Cygwin

X86

7.4

2003-10-24, Peter
Eisentraut
(<peter_e@gmx.net

see
doc/FAQ_MSWIN

>)

'Windows

X86

7.4

2003-10-27, Dave
Page
(<dpage@vale-housi

native is client-side

ng.co.uk >)

only, seeChapter 15

1Y

D

Unsupported Platforms: The following platforms are either known not to work, or they used to work in

a previous release and we did not receive explicit confirmation of a successful test with version 7.4 at the
time this list was compiled. We include these here to let you know that these platotrdudbe supported

if given some attention.

ET

Thai

0S Processor \Version Reported Remarks
BeOS X86 7.2 2001-11-29, Cyril |needs updates to
Velter semaphore code
(<cyril.velter@libertysurf.fr >)
Linux PlayStation 2 7.4 2003-11-02, Peter | needs new
Eisentraut config.guess
(<peter_e@gmx.net |--tsable-spinlocks
#undef
HAS_TEST_AND_Sk
disable
tas_dummy()
Linux PA-RISC 7.4 2003-10-25, Noéel |needs
Kothe --disable-spinlocks
(<noel@debian.org |otherwise OK
NetBSD Alpha 7.2 2001-11-20, Thomas5W

(<tom@minnesota.com >)

223

Chapter 14. Installation Instructions

0S

Processor

\Version

Reported

Remarks

NetBSD

MIPS

7.2.1

2002-06-13,
Warwick Hunter
(<whunter@agile.tv

1.5.3

>)

NetBSD

PPC

7.2

2001-11-28, Bill
Studenmund

(<wrstuden@netbsdjorg >)

1.5

NetBSD

IVAX

7.1

2001-03-30, Tom I.
Helbekkmo
(<tih@kpnQwest.no

1.5

>)

QNX 4 RTOS

X86

7.2

2001-12-10, Bernd
Tegge

(<tegge@repas-aeg.@dsoder/FAQ_QNX4

needs updates to
semaphore code; s

QNX RTOS v6

X86

7.2

2001-11-20, Igor
Kovalenko

(<Igor.Kovalenko@mfapi@@d.com >)

patches available ir
archives, but too laf

N

SCO OpenServer

X86

7.3.1

2002-12-11,
Shibashish Satpath
(<shib@postmark.ne

5.0.4,gcc ; see also
Woc/FAQ_SCO
t >)

SunOS 4

Sparc

7.2

2001-12-04, Tatsud
Ishii
(<t-ishii@sra.co.jp

>)

224

Chapter 15. Installation on Windows

Although PostgreSQL is written for Unix-like operating systems, the C client library (libpq) and the
interactive terminal (psql) can be compiled natively under Windows. The makefiles included in the source
distribution are written for Microsoft Visual C++ and will probably not work with other systems. It should
be possible to compile the libraries manually in other cases.

Tip: If you are using Windows 98 or newer you can build and use all of PostgreSQL “the Unix way” if
you install the Cygwin toolkit first. In that case see Chapter 14.

To build everything that you can on Windows, change intostlee directory and type the command

nmake /f win32.mak

This assumes that you have Visual C++ in your path.

The following files will be built:

interfaces\libpg\Release\libpg.dll

The dynamically linkable frontend library
interfaces\libpg\Release\libpgdil.lib

Import library to link your programs ttibpg.dll
interfaces\libpg\Release\libpg.lib

Static library version of the frontend library
bin\psql\Release\psqgl.exe

The PostgreSQL interactive terminal

The only file that really needs to be installed is tibgqg.dll library. This file should in most cases
be placed in thaVINNT\SYSTEM32directory (or inWINDOWS\SYSTEMN a Windows 95/98/ME sys-
tem). If this file is installed using a setup program, it should be installed with version checking using the
VERSIONINFOresource included in the file, to ensure that a newer version of the library is not overwritten.

If you plan to do development using libpg on this machine, you will have to addrthieclude and
src\interfaces\libpg subdirectories of the source tree to the include path in your compilers settings.

To use the library, you must add thiepqdil.lib file to your project. (In Visual C++, just right-click
on the project and choose to add it.)

psql is compiled as a “console application”. As the Windows console windows use a different encoding
than the rest of the system, you must take special care when using 8-bit characters at the psql prompt.
When psql detects a problematic console code page, it will warn you at startup. To change the console
code page, two things are neccessary:

225

Chapter 15. Installation on Windows

- Set the code page by enteriognd.exe /c chep 1252 . (1252 is a code page that is appropri-
ate for German,; replace it with your value.) If you are using Cygwin, you can put this command in
[etc/profile

. Set the console font to “Lucida Console”, because the raster font does not work with the ANSI code
page.

226

Chapter 16. Server Run-time Environment

This chapter discusses how to set up and run the database server and the interactions with the operating
system.

16.1. The PostgreSQL User Account

As with any other server daemon that is connected to outside world, it is advisable to run PostgreSQL
under a separate user account. This user account should only own the data that is managed by the server,
and should not be shared with other daemons. (For example, using theohséy is a bad idea.) It is

not advisable to install executables owned by this user because compromised systems could then modify
their own binaries.

To add a Unix user account to your system, look for a commaechdd or adduser . The user name
postgres is often used but is by no means required.

16.2. Creating a Database Cluster

Before you can do anything, you must initialize a database storage area on disk. We callatabase

cluster. (SQL uses the term catalog cluster instead.) A database cluster is a collection of databases is
accessible by a single instance of a running database server. After initialization, a database cluster will
contain a database namethplatel . As the name suggests, this will be used as a template for subse-
qguently created databases; it should not be used for actual workCt&gser 1&or information about
creating databases.)

In file system terms, a database cluster will be a single directory under which all data will be stored. We call
this thedata directoryor data area It is completely up to you where you choose to store your data. There

is no default, although locations such /asr/local/pgsgl/data or /var/lib/pgsgl/data are
popular. To initialize a database cluster, use the comnatad , which is installed with PostgreSQL.

The desired file system location of your database system is indicated iy tygion, for example

$ initdb -D /usr/local/pgsql/data

Note that you must execute this command while logged into the PostgreSQL user account, which is
described in the previous section.

Tip: As an alternative to the -D option, you can set the environment variable PGDATA

initdo will attempt to create the directory you specify if it does not already exist. It is likely that it will

not have the permission to do so (if you followed our advice and created an unprivileged account). In that
case you should create the directory yourself (as root) and change the owner to be the PostgreSQL user.
Here is how this might be done:

root# mkdir /usr/local/pgsql/data

root# chown postgres /usr/local/pgsqgl/data
root# su postgres

postgres$ initdb -D /usr/local/pgsql/data

227

Chapter 16. Server Run-time Environment

initdb will refuse to run if the data directory looks like it it has already been initialized.

Because the data directory contains all the data stored in the database, it is essential that it be secured from
unauthorized accesmitdb therefore revokes access permissions from everyone but the PostgreSQL
user.

However, while the directory contents are secure, the default client authentication setup allows any lo-
cal user to connect to the database and even become the database superuser. If you do not trust other
local users, we recommend you usi&db ’'s -W or --pwprompt option to assign a password to the
database superuser. Afteitdb , modify thepg_hba.conf file to usemd5 or password instead of

trust authenticatiomeforeyou start the server for the first time. (Other approaches include isging
authentication or file system permissions to restrict connectionsCBagter 19or more information.)

initdb also initializes the default locale for the database cluster. Normally, it will just take the locale
settings in the environment and apply them to the initialized database. It is possible to specify a different
locale for the database; more information about that can be fouS@dtion 20.1The sort order used
within a particular database cluster is setitiydb and cannot be changed later, short of dumping all
data, rerunningpitdo , and reloading the data. So it's important to make this choice correctly the first
time.

16.3. Starting the Database Server

Before anyone can access the database, you must start the database server. The database server program
is calledpostmaster . Thepostmaster must know where to find the data it is supposed to use. This is
done with theD option. Thus, the simplest way to start the server is:

$ postmaster -D /usr/local/pgsqgl/data

which will leave the server running in the foreground. This must be done while logged into the PostgreSQL
user account. WithouD, the server will try to use the data directory in the environment varBRATA
If neither of these succeed, it will fail.

To start thepostmaster in the background, use the usual shell syntax:
$ postmaster -D /ust/local/pgsgl/data >lodfile 2 >&1 &

It is an important to store the server’s stdout and stderr output somewhere, as shown above. It will help
for auditing purposes and to diagnose problems. &ssion 21.3or a more thorough discussion of log
file handling.)

The postmaster also takes a number of other command line options. For more information, see the
reference page arfsection 16.helow. In particular, in order for the server to accept TCP/IP connections
(rather than just Unix-domain socket ones), you must specifyi thaption.

This shell syntax can get tedious quickly. Therefore the shell script wraggpetl is provided to sim-
plify some tasks. For example:

pg_ctl start -l logfile

will start the server in the background and put the output into the named log fileDTbption has the
same meaning here as in thastmaster . pg_ctl is also capable of stopping the server.

228

Chapter 16. Server Run-time Environment

Normally, you will want to start the database server when the computer boots. Autostart scripts are op-
erating system-specific. There are a few distributed with PostgreSQL irotiéb/start-scripts
directory. This may require root privileges.

Different systems have different conventions for starting up daemons at boot time. Many systems have

a file /etc/rc.local or /etc/rc.d/rc.local . Others usec.d directories. Whatever you do, the
server must be run by the PostgreSQL user accandtnot by rootor any other user. Therefore you
probably should form your commands uskwg -c '..." postgres . For example:

su -c ’'pg_ctl start -D /usr/local/pgsgl/data -I serverlog’ postgres

Here are a few more operating system specific suggestions. (Always replace these with the proper instal-
lation directory and the user name.)

- For FreeBSD, look at the fileontrib/start-scripts/freebsd in the PostgreSQL source distri-
bution.

« On OpenBSD, add the following lines to the fikec/rc.local

if [-x /usr/local/pgsql/bin/pg_ctl -a -x /usr/local/pgsqgl/bin/postmaster]; then
su - -c ’lusr/local/pgsql/bin/pg_ctl start -I /var/postgresqgl/llog -s’ postgres
echo -n ’ postgresql’
fi
« On Linux systems either add
lusr/local/pgsql/bin/pg_ctl start -I logfile -D /usr/local/pgsqgl/data

to /etc/rc.d/rc.local or look at the filecontrib/start-scripts/linux in the PostgreSQL
source distribution.

« On NetBSD, either use the FreeBSD or Linux start scripts, depending on preference.
« On Solaris, create a file calleekc/init.d/postgresq| that contains the following line:
su - postgres -c "/usr/local/pgsql/bin/pg_ctl start -l logfile -D /usr/local/pgsql/data”

Then, create a symbolic link to it iletc/rc3.d asS99postgresql

While thepostmaster is running, its PID is stored in the filgostmaster.pid in the data directory.
This is used to prevent multipl@stmaster processes running in the same data directory and can also
be used for shutting down tlpestmaster process.

16.3.1. Server Start-up Failures

There are several common reasons the server might fail to start. Check the server’s log file, or start it by
hand (without redirecting standard output or standard error) and see what error messages appear. Below
we explain some of the most common error messages in more detail.

LOG: could not bind IPv4 socket: Address already in use
HINT: Is another postmaster already running on port 5432? If not, wait a few seconds and retry.
FATAL: could not create TCP/IP listen socket

229

Chapter 16. Server Run-time Environment

This usually means just what it suggests: you tried to start anptisenaster on the same port where
one is already running. However, if the kernel error message iaduéss already in use or some
variant of that, there may be a different problem. For example, trying to Statt@master on a reserved
port number may draw something like:

$ postmaster -i -p 666

LOG: could not bind IPv4 socket: Permission denied

HINT: Is another postmaster already running on port 6667 If not, wait a few seconds and retry.
FATAL: could not create TCP/IP listen socket

A message like

FATAL: could not create shared memory segment: Invalid argument
DETAIL: Failed system call was shmget(key=5440001, size=4011376640, 03600).

probably means your kernel’s limit on the size of shared memory is smaller than the work area PostgreSQL
is trying to create (4011376640 bytes in this example). Or it could mean that you do not have System-V-
style shared memory support configured into your kernel at all. As a temporary workaround, you can try
starting the server with a smaller-than-normal number of buff@s{itch). You will eventually want to
reconfigure your kernel to increase the allowed shared memory size. You may also see this message when
trying to start multiple servers on the same machine, if their total space requested exceeds the kernel limit.

An error like

FATAL: could not create semaphores: No space left on device
DETAIL: Failed system call was semget(5440126, 17, 03600).

doesnot mean you've run out of disk space. It means your kernel’s limit on the number of System V
semaphores is smaller than the number PostgreSQL wants to create. As above, you may be able to work
around the problem by starting the server with a reduced number of allowed connedliangtth), but

you'll eventually want to increase the kernel limit.

If you get an “illegal system call” error, it is likely that shared memory or semaphores are not supported
in your kernel at all. In that case your only option is to reconfigure the kernel to enable these features.

Details about configuring System V IPC facilities are giveisaction 16.5.1

16.3.2. Client Connection Problems

Although the error conditions possible on the client side are quite varied and application-dependent, a few
of them might be directly related to how the server was started up. Conditions other than those shown
below should be documented with the respective client application.

psql: could not connect to server. Connection refused
Is the server running on host “"server.joe.com" and accepting
TCP/IP connections on port 54327

This is the generic “I couldn’t find a server to talk to” failure. It looks like the above when TCP/IP
communication is attempted. A common mistake is to forget to configure the server to allow TCP/IP
connections.

230

Chapter 16. Server Run-time Environment

Alternatively, you'll get this when attempting Unix-domain socket communication to a local server:

psql: could not connect to server: No such file or directory
Is the server running locally and accepting
connections on Unix domain socket "/tmp/.s.PGSQL.5432"?

The last line is useful in verifying that the client is trying to connect to the right place. If there is in fact
no server running there, the kernel error message will typically be eitharection refused or No

such file or directory , as illustrated. (It is important to realize thadnnection refused in this
context doesiot mean that the server got your connection request and rejected it. That case will produce
a different message, as shownSaction 19.3 Other error messages suchGsinection timed out

may indicate more fundamental problems, like lack of network connectivity.

16.4. Run-time Configuration

There are a lot of configuration parameters that affect the behavior of the database system. In this subsec-
tion, we describe how to set configuration parameters; the following subsections discuss each parameter
in detail.

All parameter names are case-insensitive. Every parameter takes a value of one of the four types:
boolean, integer, floating point, and string. Boolean valuesOayeOFF, TRUE FALSE, YES NQ 1, 0
(case-insensitive) or any non-ambiguous prefix of these.

One way to set these parameters is to edit thepfitegresgl.conf in the data directory. (A default file
is installed there.) An example of what this file might look like is:

This is a comment
log_connections = yes
syslog = 2

search_path = ’'$user, public’

One parameter is specified per line. The equal sign between name and value is optional. Whitespace is
insignificant and blank lines are ignored. Hash ma#jsrtroduce comments anywhere. Parameter values
that are not simple identifiers or numbers should be single-quoted.

The configuration file is reread whenever fhestmaster process receives a SIGHUP signal (which

is most easily sent by means jgf_ctl reload). Thepostmaster also propagates this signal to all
currently running server processes so that existing sessions also get the new value. Alternatively, you can
send the signal to a single server process directly.

A second way to set these configuration parameters is to give them as a command line option to the
postmaster , such as:

postmaster -c log_connections=yes -c syslog=2

Command-line options override any conflicting settingsdstgresgl.conf

Occasionally it is also useful to give a command line option to one particular session only. The environ-
ment variableeGOPTIONSan be used for this purpose on the client side:

231

Chapter 16. Server Run-time Environment
env PGOPTIONS="-c geqo=off psql
(This works for any libpg-based client application, not just psql.) Note that this won'’t work for parameters

that are fixed when the server is started, such as the port number.

Furthermore, it is possible to assign a set of option settings to a user or a database. Whenever a ses-
sion is started, the default settings for the user and database involved are loaded. The cosum@aRds
DATABASEANdALTER USERrespectively, are used to configure these settings. Per-database settings over-
ride anything received from thgostmaster command-line or the configuration file, and in turn are
overridden by per-user settings; both are overridden by per-session options.

Some parameters can be changed in individual SQL sessions wiiEtheommand, for example:
SET ENABLE_SEQSCAN TO OFF;
If SETis allowed, it overrides all other sources of values for the parameter. Superusers are alls®&&d to
more values than ordinary users.
The SHOWcommand allows inspection of the current values of all parameters.

The virtual tablepg_settings (described irSection 43.3%also allows displaying and updating session
run-time parameters. It is equivalent36lOVandSET, but can be more convenient to use because it can
be joined with other tables, or selected from using any desired selection condition.

16.4.1. Connections and Authentication

16.4.1.1. Connection Settings

tcpip_socket (boolean)

If this is true, then the server will accept TCP/IP connections. Otherwise only local Unix domain
socket connections are accepted. It is off by default. This option can only be set at server start.

max_connections (integer)

Determines the maximum number of concurrent connections to the database server. The default is
typically 100, but may be less if your kernel settings will not support it (as determined during initdb).
This parameter can only be set at server start.

Increasing this parameter may cause PostgreSQL to request more System V shared memory or
semaphores than your operating system’s default configuration allowsSedtien 16.5.%for in-
formation on how to adjust these parameters, if necessary.

superuser_reserved_connections (integer)

Determines the number of “connection slots” that are reserved for connections by PostgreSQL
superusers. At mostmax_connections connections can ever be active simultaneously.
Whenever the number of active concurrent connections is at leastconnections minus
superuser_reserved_connections , hew connections will be accepted only for superusers.

The default value is 2. The value must be less than the valoaxfconnections . This parameter
can only be set at server start.

port (integer)

The TCP port the server listens on; 5432 by default. This option can only be set at server start.

232

Chapter 16. Server Run-time Environment

unix_socket_directory (string)

Specifies the directory of the Unix-domain socket on which the server is to listen for connections
from client applications. The default is normaltynp , but can be changed at build time.

unix_socket_group (string)

Sets the group owner of the Unix domain socket. (The owning user of the socket is always the user
that starts the server.) In combination with the optiaix_socket_permissions this can be used

as an additional access control mechanism for this socket type. By default this is the empty string,
which uses the default group for the current user. This option can only be set at server start.

unix_socket_permissions (integer)

Sets the access permissions of the Unix domain socket. Unix domain sockets use the usual Unix file
system permission set. The option value is expected to be an numeric mode specification in the form
accepted by thehmod andumask system calls. (To use the customary octal format the number must
start with a0 (zero).)

The default permissions afF77, meaning anyone can connect. Reasonable alternativég zoe
(only user and group, see also undeix_socket_group) and0700 (only user). (Note that ac-
tually for a Unix domain socket, only write permission matters and there is no point in setting or
revoking read or execute permissions.)

This access control mechanism is independent of the one descriGéadynter 19
This option can only be set at server start.
virtual_host (string)

Specifies the host name or IP address on which the server is to listen for connections from client
applications. The default is to listen on all configured addresses (including localhost).

rendezvous_name (string)

Specifies the Rendezvous broadcast name. By default, the computer name is used, specified as .

16.4.1.2. Security and Authentication

authentication_timeout (integer)

Maximum time to complete client authentication, in seconds. If a would-be client has not completed
the authentication protocol in this much time, the server breaks the connection. This prevents hung
clients from occupying a connection indefinitely. This option can only be set at server start or in the
postgresgl.conf file. The default is 60.

ss| (boolean)
Enables SSL connections. Please r8adtion 16.before using this. The default is off.
password_encryption (boolean)

When a password is specified@REATE USERr ALTER USERwithout writing eitherENCRYPTED
or UNENCRYPTEDRhis option determines whether the password is to be encrypted. The default is on
(encrypt the password).

233

Chapter 16. Server Run-time Environment

krb_server_keyfile (string)

Sets the location of the Kerberos server key file. Seetion 19.2.3or details.
db_user_namespace (boolean)

This allows per-database user names. It is off by default.

If this is on, you should create userswagrname@dbname. Whenusername is passed by a con-

necting client@and the database name is appended to the user name and that database-specific user
name is looked up by the server. Note that when you create users with names cor@siiting the

SQL environment, you will need to quote the user name.

With this option enabled, you can still create ordinary global users. Simply ag@@&hdn specifying
the user name in the client. Ti@will be stripped off before the user name is looked up by the server.

Note: This feature is intended as a temporary measure until a complete solution is found. At that
time, this option will be removed.

16.4.2. Resource Consumption

16.4.2.1. Memory

shared_buffers (integer)

Sets the number of shared memory buffers used by the database server. The default is typically 1000,
but may be less if your kernel settings will not support it (as determined during initdb). Each buffer

is 8192 bytes, unless a different valueBtiCKSZwas chosen when building the server. This setting
must be at least 16, as well as at least twice the valu@aof connections ; however, settings
significantly higher than the minimum are usually needed for good performance. Values of a few
thousand are recommended for production installations. This option can only be set at server start.

Increasing this parameter may cause PostgreSQL to request more System V shared memory than
your operating system’s default configuration allows. Seetion 16.5.Xor information on how to
adjust these parameters, if necessary.

sort_mem (integer)

Specifies the amount of memory to be used by internal sort operations and hash tables before switch-
ing to temporary disk files. The value is specified in kilobytes, and defaults to 1024 kilobytes (1 MB).
Note that for a complex query, several sort or hash operations might be running in parallel; each one
will be allowed to use as much memory as this value specifies before it starts to put data into tempo-
rary files. Also, several running sessions could be doing sort operations simultaneously. So the total
memory used could be many times the value@f mem . Sort operations are used DRDER BY

merge joins, ancCREATE INDEXHash tables are used in hash joins, hash-based aggregation, and
hash-based processingInf subqueries. BecauSsREATE INDEXs used when restoring a database,
increasingsort_mem before doing a large restore operation can improve performance.

234

Chapter 16. Server Run-time Environment

vacuum_mem(integer)

Specifies the maximum amount of memory to be usedfAgUUMo keep track of to-be-reclaimed
rows. The value is specified in kilobytes, and defaults to 8192 kB. Larger settings may improve the
speed of vacuuming large tables that have many deleted rows.

16.4.2.2. Free Space Map

max_fsm_pages (integer)
Sets the maximum number of disk pages for which free space will be tracked in the shared free-space

map. Six bytes of shared memory are consumed for each page slot. This setting must be more than
16 * max_fsm_relations . The default is 20000. This option can only be set at server start.

max_fsm_relations (integer)

Sets the maximum number of relations (tables and indexes) for which free space will be tracked in
the shared free-space map. Roughly fifty bytes of shared memory are consumed for each slot. The
default is 1000. This option can only be set at server start.

16.4.2.3. Kernel Resource Usage

max_files_per_process (integer)

Sets the maximum number of simultaneously open files allowed to each server subprocess. The de-
fault is 1000. If the kernel is enforcing a safe per-process limit, you don’t need to worry about this
setting. But on some platforms (notably, most BSD systems), the kernel will allow individual pro-
cesses to open many more files than the system can really support when a large number of processes
all try to open that many files. If you find yourself seeing “Too many open files” failures, try reducing

this setting. This option can only be set at server start.

preload_libraries (string)

This variable specifies one or more shared libraries that are to be preloaded at server start.
A parameterless initialization function can optionally be called for each library. To specify that,
add a colon and the name of the initialization function after the library name. For example
'$libdir/mylib:mylib_init’ would causemylib to be preloaded anchylib_init to be
executed. If more than one library is to be loaded, separate their names with commas.

If mylib or mylib_init are not found, the server will fail to start.

PostgreSQL procedural language libraries may be preloaded in this way, typically by using the syntax
'$libdir/pIXXX:pIXXX_init’ wherexXXis pgsql , perl ,tcl , or python .

By preloading a shared library (and initializing it if applicable), the library startup time is avoided
when the library is first used. However, the time to start each new server process may increase, even
if that process never uses the library.

235

Chapter 16. Server Run-time Environment

16.4.3. Write Ahead Log
See als@ection 25.3or details on WAL tuning.

16.4.3.1. Settings

fsync (boolean)

If this option is on, the PostgreSQL server will usefdyaic() system call in several places to make

sure that updates are physically written to disk. This insures that a database cluster will recover to

a consistent state after an operating system or hardware crash. (Crashes of the database server itself
arenotrelated to this.)

However, usingsync() results in a performance penalty: when a transaction is committed, Post-
greSQL must wait for the operating system to flush the write-ahead log to disk. Wjren is
disabled, the operating system is allowed to do its best in buffering, ordering, and delaying writes.
This can result in significantly improved performance. However, if the system crashes, the results of
the last few committed transactions may be lost in part or whole. In the worst case, unrecoverable
data corruption may occur.

Due to the risks involved, there is no universally correct settingfdymc . Some administrators
always disablésync , while others only turn it off for bulk loads, where there is a clear restart point
if something goes wrong, whereas some administrators alwaysfiaaee enabled. The default is

to enablefsync , for maximum reliability. If you trust your operating system, your hardware, and
your utility company (or your battery backup), you can consider disaliding: .

This option can only be set at server start or inghstgresqgl.conf file.
wal_sync_method (string)

Method used for forcing WAL updates out to disk. Possible valuedsgre (call fsync() at

each commit)fdatasync (call fdatasync() at each commit)ppen_sync (write WAL files with

open() option O_SYNGQ, andopen_datasync (write WAL files with open() option O_DSYNL

Not all of these choices are available on all platforms. This option can only be set at server start or in
the postgresql.conf file.

wal_buffers (integer)

Number of disk-page buffers in shared memory for WAL logging. The default is 8. This option can
only be set at server start.

16.4.3.2. Checkpoints

checkpoint_segments (integer)

Maximum distance between automatic WAL checkpoints, in log file segments (each segment is
normally 16 megabytes). The default is three. This option can only be set at server start or in the
postgresgl.conf file.

checkpoint_timeout (integer)

Maximum time between automatic WAL checkpoints, in seconds. The default is 300 seconds. This
option can only be set at server start or in plestgresgl.conf file.

236

Chapter 16. Server Run-time Environment

checkpoint_warning (integer)

Write a message to the server logs if checkpoints caused by the filling of checkpoint segment files
happens more frequently than this number of seconds. The default is 30 seconds. Zero turns off the
warning.

commit_delay (integer)

Time delay between writing a commit record to the WAL buffer and flushing the buffer out to disk, in
microseconds. A nonzero delay allows multiple transactions to be committed with orfyyoo@

system call, if system load is high enough additional transactions may become ready to commit
within the given interval. But the delay is just wasted if no other transactions become ready to com-
mit. Therefore, the delay is only performed if at leastnmit_siblings other transactions are
active at the instant that a server process has written its commit record. The default is zero (no de-
lay).

commit_siblings (integer)

Minimum number of concurrent open transactions to require before performingriimeit_delay
delay. A larger value makes it more probable that at least one other transaction will become ready to
commit during the delay interval. The default is five.

16.4.4. Query Planning

16.4.4.1. Planner Method Configuration

Note: These configuration parameters provide a crude method for influencing the query plans chosen
by the query optimizer. If the default plan chosen by the optimizer for a particular query is not optimal, a
temporary solution may be found by using one of these configuration parameters to force the optimizer
to choose a better plan. Other ways to improve the quality of the plans chosen by the optimizer include
configuring the Planner Cost Constants, running ANALYZEmore frequently, and increasing the amount
of statistics collected for a particular column using ALTER TABLE SET STATISTICS

enable_hashagg (boolean)

Enables or disables the query planner’s use of hashed aggregation plan types. The default is on. This
is used for debugging the query planner.

enable_hashjoin (boolean)

Enables or disables the query planner’s use of hash-join plan types. The default is on. This is used
for debugging the query planner.

enable_indexscan (boolean)

Enables or disables the query planner’s use of index-scan plan types. The default is on. This is used
for debugging the query planner.

237

Chapter 16. Server Run-time Environment

enable_mergejoin (boolean)

Enables or disables the query planner’s use of merge-join plan types. The default is on. This is used
for debugging the query planner.

enable_nestloop (boolean)

Enables or disables the query planner's use of nested-loop join plans. It's not possible to suppress
nested-loop joins entirely, but turning this variable off discourages the planner from using one if there
are other methods available. The default is on. This is used for debugging the query planner.

enable_seqgscan (boolean)

Enables or disables the query planner’s use of sequential scan plan types. It's not possible to suppress
sequential scans entirely, but turning this variable off discourages the planner from using one if there
are other methods available. The default is on. This is used for debugging the query planner.

enable_sort (boolean)

Enables or disables the query planner’s use of explicit sort steps. It's not possible to suppress explicit
sorts entirely, but turning this variable off discourages the planner from using one if there are other
methods available. The default is on. This is used for debugging the query planner.

enable_tidscan (boolean)

Enables or disables the query planner’s use of TID scan plan types. The default is on. This is used
for debugging the query planner.

16.4.4.2. Planner Cost Constants

Note: Unfortunately, there is no well-defined method for determining ideal values for the family of
“cost” variables that appear below. You are encouraged to experiment and share your findings.

effective_cache_size (floating point)

Sets the planner’s assumption about the effective size of the disk cache (that is, the portion of the
kernel's disk cache that will be used for PostgreSQL data files). This is measured in disk pages,
which are normally 8192 bytes each. The default is 1000.

random_page_cost (floating point)

Sets the query planner’s estimate of the cost of a nonsequentially fetched disk page. This is measured
as a multiple of the cost of a sequential page fetch. A higher value makes it more likely a sequential
scan will be used, a lower value makes it more likely an index scan will be used. The default is four.

cpu_tuple_cost (floating point)

Sets the query planner’s estimate of the cost of processing each row during a query. This is measured
as a fraction of the cost of a sequential page fetch. The default is 0.01.

238

Chapter 16. Server Run-time Environment

cpu_index_tuple_cost (floating point)

Sets the query planner’s estimate of the cost of processing each index row during an index scan. This
is measured as a fraction of the cost of a sequential page fetch. The default is 0.001.

cpu_operator_cost (floating point)

Sets the planner’s estimate of the cost of processing each operatwrHiERElause. This is mea-
sured as a fraction of the cost of a sequential page fetch. The default is 0.0025.

16.4.4.3. Genetic Query Optimizer

geqo (boolean)

Enables or disables genetic query optimization, which is an algorithm that attempts to do query plan-
ning without exhaustive searching. This is on by default. See also the variougetioer settings.

geqo_threshold (integer)

Use genetic query optimization to plan queries with at least this rr&@ntems involved. (Note

that an outedOIN construct counts as only o&ROMtem.) The default is 11. For simpler queries

it is usually best to use the deterministic, exhaustive planner, but for queries with many tables the
deterministic planner takes too long.

geqo_effort (integer)
geqo_generations (integer)
geqo_pool_size (integer)
geqo_selection_bias (floating point)

Various tuning parameters for the genetic query optimization algorithm: The pool size is the number
of individuals in one population. Valid values are between 128 and 1024. If it is set to 0 (the default)
a pool size of 22(QS+1), where QS is the numbeFRDNtems in the query, is taken. The effort

is used to calculate a default for generations. Valid values are between 1 and 80, 40 being the de-
fault. Generations specifies the number of iterations in the algorithm. The number must be a positive
integer. If O is specified theBffort * Log2(PoolSize) is used. The run time of the algorithm

is roughly proportional to the sum of pool size and generations. The selection bias is the selective
pressure within the population. Values can be from 1.50 to 2.00; the latter is the default.

16.4.4.4. Other Planner Options

default_statistics_target (integer)

Sets the default statistics target for table columns that have not had a column-specific target set via
ALTER TABLE SET STATISTICS Larger values increase the time needed taNaLYZE but may
improve the quality of the planner’s estimates. The default is 10.

239

Chapter 16. Server Run-time Environment

from_collapse_limit (integer)

The planner will merge sub-queries into upper queries if the resulting FROM list would have no more
than this many items. Smaller values reduce planning time but may yield inferior query plans. The
default is 8. It is usually wise to keep this less th@no_threshold

join_collapse_limit (integer)

The planner will flatten explicit innefOIN constructs into lists ofROMtems whenever a list of no
more than this many items would result. Usually this is set the sanfrerascollapse_limit

Setting it to 1 prevents any flattening of inn#DIN s, allowing explicitJOIN syntax to be used to
control the join order. Intermediate values might be useful to trade off planning time against quality
of plan.

16.4.5. Error Reporting and Logging

16.4.5.1. Syslog

syslog (integer)

PostgreSQL allows the use of syslog for logging. If this option is set to 1, messages go both to syslog
and the standard output. A setting of 2 sends output only to syslog. (Some messages will still go to
the standard output/error.) The default is 0, which means syslog is off. This option must be set at
server start.

syslog_facility (string)

This option determines the syslog “facility” to be used when logging via syslog is enabled. You may
choose fromLOCALQ LOCALJ, LOCAL2 LOCAL3 LOCAL4 LOCAL5 LOCALG LOCAL7 the default
is LOCALQ See also the documentation of your system’s syslog.

syslog_ident (string)

If logging to syslog is enabled, this option determines the program name used to identify PostgreSQL
messages in syslog log messages. The defapdisigres

16.4.5.2. When To Log

client_min_messages (string)

Controls which message levels are sent to the client. Valid valueBEB&IGS5 DEBUG4 DEBUG3
DEBUG2DEBUG1LOG NOTICE, WARNINGandERROREach level includes all the levels that follow
it. The later the level, the fewer messages are sent. The defaN@T#CE Note thatLOGhas a
different rank here than ilog_min_messages

log_min_messages (string)

Controls which message levels are written to the server log. Valid valueBEBEGS DEBUG#
DEBUG3DEBUG2DEBUG1INFO, NOTICE WARNINGERRORLOG FATAL, andPANIC. Each level

240

Chapter 16. Server Run-time Environment

includes all the levels that follow it. The later the level, the fewer messages are sent to the log. The
default isSNOTICE Note thatLOGhas a different rank here than éfient_min_messages . Only
superusers can increase this option.

log_error_verbosity (string)

Controls the amount of detail written in the server log for each message that is logged. Valid values
areTERSE DEFAULT andVERBOSEeach adding more fields to displayed messages.

log_min_error_statement (string)

Controls whether or not the SQL statement that causes an error condition will also be recorded in
the server log. All SQL statements that cause an error of the specified level, or a higher level, are
logged. The default i®ANIC (effectively turning this feature off for normal use). Valid values are
DEBUG5DEBUG4DEBUG3DEBUG2DEBUG1INFO, NOTICE WARNINGERRORFATAL, andPANIC.

For example, if you set this tBRRORhen all SQL statements causing errors, fatal errors, or panics
will be logged. Enabling this option can be helpful in tracking down the source of any errors that
appear in the server log. Only superusers can increase this option.

log_min_duration_statement (integer)

Sets a minimum statement execution time (in milliseconds) for statement to be logged. All SQL
statements that run in the time specified or longer will be logged with their duration. Setting this to
zero will print all queries and their durations. Minus-one (the default) disables this. For example,
if you set it to250 then all SQL statements that run 250ms or longer will be logged. Enabling this
option can be useful in tracking down unoptimized queries in your applications. Only superusers can
increase this or set it to minus-one if this option is set by the administrator.

silent_mode (boolean)

Runs the server silently. If this option is set, the server will automatically run in background and any
controlling terminals are disassociated. Thus, no messages are written to standard output or standard
error (same effect gsostmaster ’s -S option). Unless syslog logging is enabled, using this option

is discouraged since it makes it impossible to see error messages.

Here is a list of the various message severity levels used in these settings:

DEBUGI1-5]

Provides information for use by developers.
INFO

Provides information implicitly requested by the user, e.g., dWiRGQUUM VERBOSE
NOTICE

Provides information that may be helpful to users, e.g., truncation of long identifiers and the creation
of indexes as part of primary keys.

WARNING
Provides warnings to the user, e @QQMMIToutside a transaction block.
ERROR

Reports an error that caused the current transaction to abort.

241

Chapter 16. Server Run-time Environment

LOG

Reports information of interest to administrators, e.g., checkpoint activity.
FATAL

Reports an error that caused the current session to abort.
PANIC

Reports an error that caused all sessions to abort.

16.4.5.3. What To Log

debug_print_parse (boolean)

debug_print_rewritten (boolean)
debug_print_plan (boolean)
debug_pretty print (boolean)

These options enable various debugging output to be sent to the client or server log. For each ex-
ecuted query, they print the resulting parse tree, the query rewriter output, or the execution plan.
debug_pretty_print indents these displays to produce a more readable but much longer output
format.client_min_messages or log_min_messages must beDEBUGIor lower to send output

to the client or server logs. These options are off by default.

log_connections (boolean)

This outputs a line to the server logs detailing each successful connection. This is off by
default, although it is probably very useful. This option can only be set at server start or in the
postgresqgl.conf configuration file.

log_duration (boolean)

Causes the duration of every completed statement to be logged. To use this option, enable
log_statement andlog_pid so you can link the statement to the duration using the process ID.
The default is off. Only superusers can turn off this option if it is enabled by the administrator.

log_pid (boolean)

Prefixes each message in the server log file with the process ID of the server process. This is useful
to sort out which messages pertain to which connection. The default is off. This parameter does not
affect messages logged via syslog, which always contain the process ID.

log_statement (boolean)

Causes each SQL statement to be logged. The default is off. Only superusers can turn off this option
if it is enabled by the administrator.

log_timestamp (boolean)

Prefixes each server log message with a time stamp. The default is off.

242

Chapter 16. Server Run-time Environment

log_hostname (boolean)

By default, connection logs only show the IP address of the connecting host. If you want it to show
the host name you can turn this on, but depending on your host name resolution setup it might impose
a non-negligible performance penalty. This option can only be set at server start.

log_source_port (boolean)

Shows the outgoing port number of the connecting host in the connection log messages. You could
trace back the port number to find out what user initiated the connection. Other than that, it's pretty
useless and therefore off by default. This option can only be set at server start.

16.4.6. Runtime Statistics

16.4.6.1. Statistics Monitoring

log_statement_stats (boolean)
log_parser_stats (boolean)
log_planner_stats (boolean)
log_executor_stats (boolean)

For each query, write performance statistics of the respective module to the server log. This is a crude
profiling instrument. All of these options are disabled by default. Only superusers can turn off any of
these options if they have been enabled by the administrator.

16.4.6.2. Query and Index Statistics Collector

stats_start_collector (boolean)

Controls whether the server should start the statistics-collection subprocess. This is on by default,
but may be turned off if you know you have no interest in collecting statistics. This option can only
be set at server start.

stats_command_string (boolean)

Enables the collection of statistics on the currently executing command of each session, along with
the time at which that command began execution. This option is off by default. Note that even when
enabled, this information is not visible to all users, only to superusers and the user owning the ses-
sion being reported on; so it should not represent a security risk. This data can be accessed via the

pg_stat_activity system view; refer t&€hapter 23or more information.
stats_block_level (boolean)
stats_row_level (boolean)

These enable the collection of block-level and row-level statistics on database activity, respectively.
These options are off by default. This data can be accessed g thiat andpg_statio family
of system views; refer t€hapter 23or more information.

243

Chapter 16. Server Run-time Environment

stats_reset_on_server_start (boolean)

If on, collected statistics are zeroed out whenever the server is restarted. If off, statistics are accumu-
lated across server restarts. The default is on. This option can only be set at server start.

16.4.7. Client Connection Defaults

16.4.7.1. Statement Behavior

search_path (string)

This variable specifies the order in which schemas are searched when an object (table, data type,
function, etc.) is referenced by a simple name with no schema component. When there are objects
of identical names in different schemas, the one found first in the search path is used. An object that

is not in any of the schemas in the search path can only be referenced by specifying its containing

schema with a qualified (dotted) name.

The value forsearch_path has to be a comma-separated list of schema names. If one of the list
items is the special valuguser , then the schema having the name returne&bgSION_USERS
substituted, if there is such a schema. (If ifotser is ignored.)

The system catalog schenmy, catalog , is always searched, whether it is mentioned in the path
or not. If it is mentioned in the path then it will be searched in the specified orgey. ¢htalog is

not in the path then it will be searchedforesearching any of the path items. It should also be noted
that the temporary-table schenpa, temp_ nnn, is implicitly searched before any of these.

When objects are created without specifying a particular target schema, they will be placed in the
first schema listed in the search path. An error is reported if the search path is empty.

The default value for this parametergiser, public’ (where the second part will be ignored

if there is no schema namedblic). This supports shared use of a database (where no users have
private schemas, and all share usewdlic), private per-user schemas, and combinations of these.
Other effects can be obtained by altering the default search path setting, either globally or per-user.

The current effective value of the search path can be examined via the SQL function
current_schemas() . This is not quite the same as examining the valuseafch_path , since
current_schemas() shows how the requests appearingearch_path were resolved.

For more information on schema handling, Seetion 5.8
check_function_bodies (boolean)

This parameter is normally true. When set false, it disables validation of the function body string in
CREATE FUNCTIONDisabling validation is occasionally useful to avoid problems such as forward
references when restoring function definitions from a dump.

default_transaction_isolation (string)

Each SQL transaction has an isolation level, which can be either “read committed” or “serializable”.
This parameter controls the default isolation level of each new transaction. The default is “read
committed”.

244

Chapter 16. Server Run-time Environment

ConsultChapter 122andSET TRANSACTIONfor more information.
default_transaction_read_only (boolean)

A read-only SQL transaction cannot alter non-temporary tables. This parameter controls the default
read-only status of each new transaction. The default is false (read/write).

ConsultSET TRANSACTIONfor more information.
statement_timeout (integer)

Aborts any statement that takes over the specified number of milliseconds. A value of zero turns off
the timer, which is the default value.

16.4.7.2. Locale and Formatting

datestyle (string)

Sets the display format for date and time values, as well as the rules for interpreting ambiguous
date input values. For historical reasons, this variable contains two independent components: the
output format specificationg0, Postgres , SQL, or German) and the date field order specification
(DMY MDY or YMD. These can be set separately or together. The keywsands and European

are synonyms fobMY the keyword2JS NonEuro, andNonEuropean are synonyms foMDY See
Section 8.5or more information. The default iSO, MDY.

timezone (string)

Sets the time zone for displaying and interpreting time stamps. The default is to use whatever the
system environment specifies as the time zone Sgetion 8.5or more information.

australian_timezones (boolean)

If set to true,ACST, CST, EST, and SAT are interpreted as Australian time zones rather than as
North/South American time zones and Saturday. The default is false.

extra_float_digits (integer)

This parameter adjusts the number of digits displayed for floating-point values, incliditg ,

float8 , and geometric data types. The parameter value is added to the standard number of dig-
its (FLT_DIG or DBL_DIG as appropriate). The value can be set as high as 2, to include partially-
significant digits; this is especially useful for dumping float data that needs to be restored exactly. Or
it can be set negative to suppress unwanted digits.

client_encoding (string)
Sets the client-side encoding (character set). The default is to use the database encoding.
Ic_messages (string)

Sets the language in which messages are displayed. Acceptable values are system-dependent; see
Section 20.1for more information. If this variable is set to the empty string (which is the default)
then the value is inherited from the execution environment of the server in a system-dependent way.

On some systems, this locale category does not exist. Setting this variable will still work, but there
will be no effect. Also, there is a chance that no translated messages for the desired language exist.
In that case you will continue to see the English messages.

245

Chapter 16. Server Run-time Environment

Ic_monetary (string)

Sets the locale to use for formatting monetary amounts, for example witlo thiear family of
functions. Acceptable values are system-dependentSeeton 20.1for more information. If this
variable is set to the empty string (which is the default) then the value is inherited from the execution
environment of the server in a system-dependent way.

Ic_numeric (string)

Sets the locale to use for formatting numbers, for example witlothehar() family of functions.
Acceptable values are system-dependentSsstion 20.Xor more information. If this variable is set

to the empty string (which is the default) then the value is inherited from the execution environment
of the server in a system-dependent way.

Ic_time (string)

Sets the locale to use for formatting date and time values. (Currently, this setting does nothing, but it
may in the future.) Acceptable values are system-dependeresgi®n 20.Xor more information.

If this variable is set to the empty string (which is the default) then the value is inherited from the
execution environment of the server in a system-dependent way.

16.4.7.3. Other Defaults

explain_pretty_print (boolean)

Determines whetheEXPLAIN VERBOSHIses the indented or non-indented format for displaying
detailed query-tree dumps. The default is on.

dynamic_library_path (string)

If a dynamically loadable module needs to be opened and the specified name does not have a directory
component (i.e. the name does not contain a slash), the system will search this path for the specified
file. (The name that is used is the name specified iICREATE FUNCTIONr LOADcommand.)

The value fordynamic_library_path has to be a colon-separated list of absolute directory names.
If a directory name starts with the special vaklibdir , the compiled-in PostgreSQL package
library directory is substituted. This where the modules provided by the PostgreSQL distribution are
installed. (Usepg_config --pkglibdir to print the name of this directory.) For example:

dynamic_library_path = ’/usr/local/lib/postgresgl:/home/my_project/lib:$libdir’

The default value for this parameterggbdir’ . Ifthe value is set to an empty string, the automatic
path search is turned off.

This parameter can be changed at run time by superusers, but a setting done that way will only persist

until the end of the client connection, so this method should be reserved for development purposes.

The recommended way to set this parameter is iptisegresgl.conf configuration file.
max_expr_depth (integer)

Sets the maximum expression nesting depth of the parser. The default value of 10000 is high enough
for any normal query, but you can raise it if needed. (But if you raise it too high, you run the risk of
server crashes due to stack overflow.)

246

Chapter 16. Server Run-time Environment

16.4.8. Lock Management

deadlock_timeout (integer)

This is the amount of time, in milliseconds, to wait on a lock before checking to see if there is

a deadlock condition. The check for deadlock is relatively slow, so the server doesn’t run it every
time it waits for a lock. We (optimistically?) assume that deadlocks are not common in production
applications and just wait on the lock for a while before starting the check for a deadlock. Increasing
this value reduces the amount of time wasted in needless deadlock checks, but slows down reporting
of real deadlock errors. The default is 1000 (i.e., one second), which is probably about the smallest
value you would want in practice. On a heavily loaded server you might want to raise it. Ideally the
setting should exceed your typical transaction time, so as to improve the odds that a lock will be
released before the waiter decides to check for deadlock.

max_locks_per_transaction (integer)

The shared lock table is sized on the assumption that at m@stlocks_per_transaction *
max_connections distinct objects will need to be locked at any one time. The default, 64, has
historically proven sufficient, but you might need to raise this value if you have clients that touch
many different tables in a single transaction. This option can only be set at server start.

16.4.9. Version and Platform Compatibility

16.4.9.1. Previous PostgreSQL Versions

add_missing_from (boolean)

Whentrue , tables that are referenced by a query will be automatically added teRb&clause

if not already present. The defaulttrse for compatibility with previous releases of PostgreSQL.
However, this behavior is not SQL-standard, and many people dislike it because it can mask mistakes.
Set tofalse for the SQL-standard behavior of rejecting references to tables that are not listed in
FROM

regex_flavor (string)

The regular expression “flavor” can be setddvanced , extended , or basic . The default is
advanced . Theextended setting may be useful for exact backwards compatibility with pre-7.4
releases of PostgreSQL.

sql_inheritance (boolean)

This controls the inheritance semantics, in particular whether subtables are included by various com-
mands by default. They were not included in versions prior to 7.1. If you need the old behavior you
can set this variable to off, but in the long run you are encouraged to change your applications to use
the ONLYkey word to exclude subtables. Sgection 5.5or more information about inheritance.

247

Chapter 16. Server Run-time Environment
16.4.9.2. Platform and Client Compatibility

transform_null_equals (boolean)

When turned on, expressions of the fosrpr = NULL(or NULL = expr) are treated asxpr IS
NULL, that is, they return true #xpr evaluates to the null value, and false otherwise. The correct
behavior ofexpr = NULLIs to always return null (unknown). Therefore this option defaults to off.

However, filtered forms in Microsoft Access generate queries that appear tsxpse= NULL to

test for null values, so if you use that interface to access the database you might want to turn this
option on. Since expressions of the fompr = NULL always return the null value (using the
correct interpretation) they are not very useful and do not appear often in normal applications, so
this option does little harm in practice. But new users are frequently confused about the semantics of
expressions involving null values, so this option is not on by default.

Note that this option only affects the literal operator, not other comparison operators or other
expressions that are computationally equivalent to some expression involving the equals operator
(such asN). Thus, this option is not a general fix for bad programming.

Refer toSection 9.%or related information.

16.4.10. Developer Options

The following options are intended for work on the PostgreSQL source, and in some cases to assist with
recovery of severely damaged databases. There should be no reason to use them in a production database
setup. As such, they have been excluded from the sapuslgresgl.conf file. Note that many of

these options require special source compilation flags to work at all.

debug_assertions (boolean)

Turns on various assertion checks. This is a debugging aid. If you are experiencing strange problems
or crashes you might want to turn this on, as it might expose programming mistakes. To use this op-
tion, the macrdJSE_ASSERT_CHECKIN@ust be defined when PostgreSQL is built (accomplished

by theconfigure option --enable-cassert). Note thatDEBUG_ASSERTIONSefaults to on if
PostgreSQL has been built with assertions enabled.

pre_auth_delay (integer)

If nonzero, a delay of this many seconds occurs just after a new server process is forked, before it
conducts the authentication process. This is intended to give an opportunity to attach to the server
process with a debugger to trace down misbehavior in authentication.

trace_notify (boolean)

Generates a great amount of debugging output for LFETEN and NOTIFY commands.
client_min_messages or log_min_messages must beDEBUGIor lower to send this output to
the client or server log, respectively.

248

Chapter 16. Server Run-time Environment

trace_locks (boolean)
trace_lwlocks (boolean)

trace_userlocks (boolean)
trace_lock_oidmin (boolean)
trace_lock_table (boolean)
debug_deadlocks (boolean)
log_btree_build_stats (boolean)

Various other code tracing and debugging options.
wal_debug (integer)

If nonzero, turn on WAL-related debugging output.
zero_damaged_pages (boolean)

Detection of a damaged page header normally causes PostgreSQL to report an error, aborting the cur-
rent transaction. Settingero_damaged_pages to true causes the system to instead report a warn-

ing, zero out the damaged page, and continue processing. This belvdlibestroy data namely

all the rows on the damaged page. But it allows you to get past the error and retrieve rows from any
undamaged pages that may be present in the table. So it is useful for recovering data if corruption
has occurred due to hardware or software error. You should generally not set this true until you have
given up hope of recovering data from the damaged page(s) of a table. The default setting is off, and
it can only be changed by a superuser.

16.4.11. Short Options

For convenience there are also single letter command-line option switches available for some parameters.
They are described ifiable 16-1

Table 16-1. Short option key

Short option Equivalent

-B X shared_buffers = X

-d X log_min_messages = DEBUG x
-F fsync = off

-h x virtual_host = X

-i tcpip_socket = on

-k x unix_socket_directory = X
-l ssl = on

-N x max_connections = X

-p X port = X

fi ,-th ,-fm,-fn ,-fs ,-ft a enable_indexscan=off ,

enable_hashjoin=off ,

enable_mergejoin=off ,

enable_nestloop=off , enable_segscan=off
enable_tidscan=off

249

Chapter 16. Server Run-time Environment

Short option Equivalent

-S a log_statement_stats = on

-S Xa sort_ mem = X

-tpa , -tpl ,-te a log_parser_stats=on ,
log_planner_stats=on ,
log_executor_stats=on

Notes:a. For historical reasons, these options must be passed to the individual server processopadineaster

op

16.5. Managing Kernel Resources

A large PostgreSQL installation can quickly exhaust various operating system resource limits. (On some
systems, the factory defaults are so low that you don’t even need a really “large” installation.) If you have
encountered this kind of problem, keep reading.

16.5.1. Shared Memory and Semaphores

Shared memory and semaphores are collectively referred to as “System V IPC” (together with message
queues, which are not relevant for PostgreSQL). Almost all modern operating systems provide these
features, but not all of them have them turned on or sufficiently sized by default, especially systems with

BSD heritage. (For the QNX and BeOS ports, PostgreSQL provides its own replacement implementation
of these facilities.)

The complete lack of these facilities is usually manifested by an lllegal system call error upon server start.
In that case there’s nothing left to do but to reconfigure your kernel. PostgreSQL won't work without
them.

When PostgreSQL exceeds one of the various hard IPC limits, the server will refuse to start and should
leave an instructive error message describing the problem encountered and what to do about it. (See also
Section 16.3.) The relevant kernel parameters are named consistently across different sy&blas;

16-2 gives an overview. The methods to set them, however, vary. Suggestions for some platforms are
given below. Be warned that it is often necessary to reboot your machine, and possibly even recompile the
kernel, to change these settings.

Table 16-2. System V IPC parameters

Name Description Reasonable values
SHMMAX Maximum size of shared memor50 kB + 8.2 kB *
segment (bytes) shared_buffers +14.2 kB *
max_connections up to infinity
SHMMIN Minimum size of shared memoryl.
segment (bytes)
SHMALL Total amount of shared memoryiif bytes, same aSHMMAXf pages,
available (bytes or pages) ceil(SHMMAX/PAGE_SIZE)
SHMSEG Maximum number of shared |only 1 segment is needed, but the
memory segments per process |default is much higher

250

Chapter 16. Server Run-time Environment

Name Description Reasonable values
SHMMNI Maximum number of shared [like SHMSE®Ius room for other
memory segments system-widejapplications
SEMMNI Maximum number of semaphoréat leastceil(max_connections
identifiers (i.e., sets) f 16)
SEMMNS Maximum number of semaphoréﬁeiI(max_connections /
system-wide 16) * 17 plus room for other
applications
SEMMSL Maximum number of semaphoréet least 17
per set
SEMMAP Number of entries in semaphoresee text
map
SEMVMX Maximum value of semaphore |[at least 1000 (The default is often
32767, don’t change unless asked
to.)

The most important shared memory paramet8HsIMAXhe maximum size, in bytes, of a shared memory
segment. If you get an error message fraimget like Invalid argument, it is possible that this limit has

been exceeded. The size of the required shared memory segment varies both with the number of requested
buffers (B option) and the number of allowed connectior¢ option), although the former is the most
significant. (You can, as a temporary solution, lower these settings to eliminate the failure.) As a rough
approximation, you can estimate the required segment size by multiplying the number of buffers and the
block size (8 kB by default) plus ample overhead (at least half a megabyte). Any error message you might
get will contain the size of the failed allocation request.

Less likely to cause problems is the minimum size for shared memory segraeimMsi(y, which should

be at most approximately 256 kB for PostgreSQL (it is usually just 1). The maximum number of segments
system-wide $SHMMNJ or per-processSHMSEEBshould not cause a problem unless your system has them

set to zero. Some systems also have a limit on the total amount of shared memory in the system; see the
platform-specific instructions below.

PostgreSQL uses one semaphore per allowed connedtiap(ion), in sets of 16. Each such set will also
contain a 17th semaphore which contains a “magic number”, to detect collision with semaphore sets used
by other applications. The maximum number of semaphores in the system issEMMNIVhich conse-
guently must be at least as highrasx_connections plus one extra for each 16 allowed connections (see

the formula inTable 16-2. The parameteBEMMNIdetermines the limit on the number of semaphore sets
that can exist on the system at one time. Hence this parameter must be ediléast_connections

/ 16) . Lowering the number of allowed connections is a temporary workaround for failures, which are
usually confusingly worded No space left on device, from the functémnget .

In some cases it might also be necessary to increas#MARo be at least on the order BEMMNSThis
parameter defines the size of the semaphore resource map, in which each contiguous block of available
semaphores needs an entry. When a semaphore set is freed it is either added to an existing entry that
is adjacent to the freed block or it is registered under a new map entry. If the map is full, the freed
semaphores get lost (until reboot). Fragmentation of the semaphore space could over time lead to fewer
available semaphores than there should be.

The SEMMSlparameter, which determines how many semaphores can be in a set, must be at least 17 for
PostgreSQL.

251

Chapter 16. Server Run-time Environment

Various other settings related to “semaphore undo”, sudEsVNAnd SEMUMEare not of concern for
PostgreSQL.

BSD/OS

Shared Memory. By default, only 4 MB of shared memory is supported. Keep in mind that shared
memory is not pageable; it is locked in RAM. To increase the amount of shared memory supported by
your system, add the following to your kernel configuration fileSAMALLvalue of 1024 represents

4 MB of shared memory. The following increases the maximum shared memory area to 32 MB:

options "SHMALL=8192"
options "SHMMAX=\(SHMALL*PAGE_SIZE\)"

For those running 4.3 or later, you will probably need to incre&SRNEL_VIRTUAL_MBbove the
default248. Once all changes have been made, recompile the kernel, and reboot.

For those running 4.0 and earlier releases,psg¢ch to find thesysptsize value in the current
kernel. This is computed dynamically at boot time.

$ bpatch -r sysptsize

0x9 = 9
Next, addSYSPTSIZE as a hard-coded value in the kernel configuration file. Increase the value you
found usingopatch . Add 1 for every additional 4 MB of shared memaory you desire.

options "SYSPTSIZE=16"
sysptsize cannot be changed lysctl

Semaphores. You may need to increase the number of semaphores. By default, PostgreSQL allo-
cates 34 semaphores, which is over half the default system total of 60. Set the values you want in
your kernel configuration file, e.g.:

options "SEMMNI=40"
options "SEMMNS=240"

FreeBSD
NetBSD
OpenBSD

The optionsSYSVSHMaNd SYSVSEMeed to be enabled when the kernel is compiled. (They are by
default.) The maximum size of shared memory is determined by the opHSMMAXPGEN pages).
The following shows an example of how to set the various parameters:

options SYSVSHM

options SHMMAXPGS=4096
options SHMSEG=256
options SYSVSEM

options SEMMNI=256
options SEMMNS=512
options SEMMNU=256
options SEMMAP=256

(On NetBSD and OpenBSD the key word is actualtyion singular.)

You might also want to configure your kernel to lock shared memory into RAM and prevent it from
being paged out to swap. Use thectl settingkern.ipc.shm_use_phys

252

Chapter 16. Server Run-time Environment

HP-UX

The default settings tend to suffice for normal installations. On HP-UX 10, the factory default for
SEMMN$s 128, which might be too low for larger database sites.

IPC parameters can be set in the System Administration Manager (SAM) ulelerel
Configuration— Configurable Parameters. Hit Create A New Kernel when you're done.

Linux

The default shared memory limit (bo8HMMAXNdSHMALL is 32 MB in 2.2 kernels, but it can be
changed in theroc file system (without reboot). For example, to allow 128 MB:

$ echo 134217728 >/proc/sys/kernel/shmall
$ echo 134217728 >/proc/sys/kernel/shmmax

You could put these commands into a script run at boot-time.

Alternatively, you can useysctl , if available, to control these parameters. Look for a file called
letc/sysctl.conf and add lines like the following to it:

kernel.shmall = 134217728
kernel.shmmax = 134217728

This file is usually processed at boot time, bysctl can also be called explicitly later.

Other parameters are sufficiently sized for any application. If you want to see

for yourself look in /usr/src/linux/include/asm- xxx /shmpara m.h and
lusr/src/linux/include/linux/sem.h
MacOS X

In OS X 10.2 and earlier, edit the filystem/Library/Startupltems/SystemTuning/SystemTuning
and change the values in the following commands:

sysctl -w kern.sysv.shmmax
sysctl -w kern.sysv.shmmin
sysctl -w kern.sysv.shmmni
sysctl -w kern.sysv.shmseg
sysctl -w kern.sysv.shmall

In OS X 10.3, these commands have been moveéetéoc and must be edited there.
SCO OpenServer

In the default configuration, only 512 kB of shared memory per segment is allowed, which is about
enough forrB 24 -N 12 . To increase the setting, first change to the directewy/conf/cf.d
To display the current value HMMAXUN

Jconfigure -y SHMMAX

To set a new value faBHMMAXuUN
Jconfigure SHMMAX= value

wherevalue is the new value you want to use (in bytes). After setiriMMAXebuild the kernel:
Jlink_unix

and reboot.

253

Chapter 16. Server Run-time Environment

Solaris

At least in version 2.6, the default maximum size of a shared memory segments is too low for Post-
greSQL. The relevant settings can be changeetimrsystem , for example:

set shmsys:shminfo_shmmax=0x2000000
set shmsys:shminfo_shmmin=1

set shmsys:shminfo_shmmni=256

set shmsys:shminfo_shmseg=256

set semsys:seminfo_semmap=256
set semsys:seminfo_semmni=512
set semsys:seminfo_semmns=512
set semsys:seminfo_semms|=32

You need to reboot for the changes to take effect.

See also http://www.sunworld.com/swol-09-1997/swol-09-insidesolaris.html for information on
shared memory under Solaris.

UnixWare
On UnixWare 7, the maximum size for shared memory segments is 512 kB in the default configura-
tion. This is enough for abouB 24 -N 12 . To display the current value &HMMAXUN
/etc/conf/bin/idtune -g SHMMAX

which displays the current, default, minimum, and maximum values. To set a new vaiieM&AX
run

/etc/conf/bin/idtune SHMMAX value

wherevalue is the new value you want to use (in bytes). After setiriMMAXebuild the kernel:
/etc/conf/bin/idbuild -B

and reboot.

16.5.2. Resource Limits

Unix-like operating systems enforce various kinds of resource limits that might interfere with the op-
eration of your PostgreSQL server. Of particular importance are limits on the number of processes per
user, the number of open files per process, and the amount of memory available to each process. Each
of these have a “hard” and a “soft” limit. The soft limit is what actually counts but it can be changed

by the user up to the hard limit. The hard limit can only be changed by the root user. The system call
setrlimit is responsible for setting these parameters. The shell’s built-in comoiarid (Bourne

shells) orimit (csh) is used to control the resource limits from the command line. On BSD-derived sys-
tems the filgetc/login.conf controls the various resource limits set during login. See the operating
system documentation for details. The relevant parametennatgoc , openfiles , anddatasize

For example:

default:\

.datasize-cur=256M:\
‘maxproc-cur=256:\

254

Chapter 16. Server Run-time Environment

:openfiles-cur=256:\

(-cur is the soft limit. Appendmax to set the hard limit.)

Kernels can also have system-wide limits on some resources.

« On Linux /proc/sys/fs/file-max determines the maximum number of open files that the kernel
will support. It can be changed by writing a different number into the file or by adding an assignment in
letc/sysctl.conf . The maximum limit of files per process is fixed at the time the kernel is compiled;
seelustr/src/linux/Documentation/proc.txt for more information.

The PostgreSQL server uses one process per connection so you should provide for at least as many pro-
cesses as allowed connections, in addition to what you need for the rest of your system. This is usually
not a problem but if you run several servers on one machine things might get tight.

The factory default limit on open files is often set to “socially friendly” values that allow many users to
coexist on a machine without using an inappropriate fraction of the system resources. If you run many
servers on a machine this is perhaps what you want, but on dedicated servers you may want to raise this
limit.

On the other side of the coin, some systems allow individual processes to open large numbers of
files; if more than a few processes do so then the system-wide limit can easily be exceeded. If you
find this happening, and you do not want to alter the system-wide limit, you can set PostgreSQL's
max_files_per_process configuration parameter to limit the consumption of open files.

16.5.3. Linux Memory Overcommit

In Linux 2.4 and later, the default virtual memory behavior is not optimal for PostgreSQL. Because of the
way that the kernel implements memory overcommit, the kernel may terminate the PostgreSQL server
(the postmaster process) if the memory demands of another process cause the system to run out of
virtual memory.

If this happens, you will see a kernel message that looks like this (consult your system documentation and
configuration on where to look for such a message):

Out of Memory: Killed process 12345 (postmaster).

This indicates that theostmaster process has been terminated due to memory pressure. Although
existing database connections will continue to function normally, no new connections will be accepted.
To recover, PostgreSQL will need to be restarted.

One way to avoid this problem is to run PostgreSQL on a machine where you can be sure that other
processes will not run the machine out of memory.

On Linux 2.6 and later, a better solution is to modify the kernel’s behavior so that it will not “overcommit”
memory. This is done by selecting strict overcommit mode via sysctl:

sysctl -w vm.overcommit_memory=2

255

Chapter 16. Server Run-time Environment

or placing an equivalent entry inetc/sysctl.conf . You may also wish to modify the
related setting vm.overcommit_ratio . For details see the kernel documentation file
Documentation/vm/overcommit-accounting

Some vendors’ Linux 2.4 kernels are reported to have early versions of the 2.6 overcommit sysctl. How-
ever, settinggm.overcommit_memory to 2 on a kernel that does not have the relevant code will make
things worse not better. It is recommended that you inspect the actual kernel source code (see the function
vm_enough_memory in the filemm/mmap.c) to verify what is supported in your copy before you try this

in a 2.4 installation. The presence of ttdercommit-accounting documentation file shouldot be

taken as evidence that the feature is there. If in any doubt, consult a kernel expert or your kernel vendor.

16.6. Shutting Down the Server

There are several ways to shut down the database server. You control the type of shutdown by sending
different signals to theostmaster process.

SIGTERM

After receiving SIGTERM, the server disallows new connections, but lets existing sessions end their
work normally. It shuts down only after all of the sessions terminate normally. This St
Shutdown

SIGINT

The server disallows new connections and sends all existing server processes SIGTERM, which will
cause them to abort their current transactions and exit promptly. It then waits for the server processes
to exit and finally shuts down. This is tifast Shutdown

SIGQUIT

This is thelmmediate Shutdowmnvhich will cause theostmaster process to send a SIGQUIT to

all child processes and exit immediately (without properly shutting itself down). The child processes
likewise exit immediately upon receiving SIGQUIT. This will lead to recovery (by replaying the
WAL log) upon next start-up. This is recommended only in emergencies.

Important: It is best not to use SIGKILL to shut down the server. This will prevent the server from
releasing shared memory and semaphores, which may then have to be done by manually.

The PID of the postmaster process can be found using thes program, or from the file
postmaster.pid in the data directory. So for example, to do a fast shutdown:

$ kill -INT ‘head -1 /usr/local/pgsgl/data/postmaster.pid‘

The programpg_ctl is a shell script that provides a more convenient interface for shutting down the
server.

256

Chapter 16. Server Run-time Environment

16.7. Secure TCP/IP Connections with SSL

PostgreSQL has native support for using SSL connections to encrypt client/server communications for
increased security. This requires that OpenSSL is installed on both client and server systems and that
support in PostgreSQL is enabled at build time Geapter 13

With SSL support compiled in, the PostgreSQL server can be started with SSL enabled by setting the
parametessl to on inpostgresgl.conf . When starting in SSL mode, the server will look for the files
server.key andserver.crt in the data directory, which should contain the server private key and
certificate, respectively. These files must be set up correctly before an SSL-enabled server can start. If the
private key is protected with a passphrase, the server will prompt for the passphrase and will not start until
it has been entered.

The server will listen for both standard and SSL connections on the same TCP port, and will negotiate
with any connecting client on whether to use SSL. Ghapter 1%bout how to force the server to require
use of SSL for certain connections.

For details on how to create your server private key and certificate, refer to the OpenSSL documentation.
A simple self-signed certificate can be used to get started for testing, but a certificate signed by a certificate
authority (CA) (either one of the global CAs or a local one) should be used in production so the client can
verify the server’s identity. To create a quick self-signed certificate, use the following OpenSSL command:

openss| req -new -text -out server.req

Fill out the information thabpenssl asks for. Make sure that you enter the local host name as “Common
Name”; the challenge password can be left blank. The program will generate a key that is passphrase
protected,; it will not accept a passphrase that is less than four characters long. To remove the passphrase
(as you must if you want automatic start-up of the server), run the commands

openssl rsa -in privkey.pem -out server.key
rm privkey.pem

Enter the old passphrase to unlock the existing key. Now do

openssl req -x509 -in server.req -text -key server.key -out server.crt
chmod og-rwx server.key

to turn the certificate into a self-signed certificate and to copy the key and certificate to where the server
will look for them.

16.8. Secure TCP/IP Connections with SSH Tunnels

One can use SSH to encrypt the network connection between clients and a PostgreSQL server. Done
properly, this provides an adequately secure network connection.

First make sure that an SSH server is running properly on the same machine as the PostgreSQL server and
that you can log in usingsh as some user. Then you can establish a secure tunnel with a command like
this from the client machine:

ssh -L 3333:foo.com:5432 joe@foo.com

257

Chapter 16. Server Run-time Environment

The first number in theL argument, 3333, is the port number of your end of the tunnel; it can be chosen
freely. The second number, 5432, is the remote end of the tunnel: the port number your server is using.
The name or the address in between the port numbers is the host with the database server you are going
to connect to. In order to connect to the database server using this tunnel, you connect to port 3333 on the
local machine:

psql -h localhost -p 3333 templatel

To the database server it will then look as though you are really jus@foo.com and it will use
whatever authentication procedure was set up for this user. In order for the tunnel setup to succeed you
must be allowed to connect viah asjoe@foo.com , just as if you had attempted to ussh to setup a
terminal session.

Tip: Several other applications exist that can provide secure tunnels using a procedure similar in
concept to the one just described.

258

Chapter 17. Database Users and Privileges

Every database cluster contains a set of database users. Those users are separate from the users managed
by the operating system on which the server runs. Users own database objects (for example, tables) and
can assign privileges on those objects to other users to control who has access to which object.

This chapter describes how to create and manage users and introduces the privilege system. More infor-
mation about the various types of database objects and the effects of privileges can be fGbagtar
5.

17.1. Database Users

Database users are conceptually completely separate from operating system users. In practice it might be
convenient to maintain a correspondence, but this is not required. Database user names are global across
a database cluster installation (and not per individual database). To create a userGREANRE USER

SQL command:

CREATE USERhame;

namefollows the rules for SQL identifiers: either unadorned without special characters, or double-quoted.
To remove an existing user, use the analogoROP USERommand:

DROP USERhame;

For convenience, the programeateuser anddropuser are provided as wrappers around these SQL
commands that can be called from the shell command line:

createuser name
dropuser name

In order to bootstrap the database system, a freshly initialized system always contains one predefined user.
This user will have the fixed ID 1, and by default (unless altered when runmidy) it will have the

same name as the operating system user that initialized the database cluster. Customarily, this user will be
namedpostgres . In order to create more users you first have to connect as this initial user.

Exactly one user identity is active for a connection to the database server. The user name to use for a
particular database connection is indicated by the client that is initiating the connection request in an
application-specific fashion. For example, tisgl program uses the) command line option to indicate

the user to connect as. Many applications assume the name of the current operating system user by de-
fault (includingcreateuser andpsgl). Therefore it is convenient to maintain a naming correspondence
between the two user sets.

The set of database users a given client connection may connect as is determined by the client authenti-
cation setup, as explained @hapter 19(Thus, a client is not necessarily limited to connect as the user
with the same name as its operating system user, in the same way a person is not constrained in its login
name by her real name.) Since the user identity determines the set of privileges available to a connected
client, it is important to carefully configure this when setting up a multiuser environment.

259

Chapter 17. Database Users and Privileges

17.2. User Attributes

A database user may have a number of attributes that define its privileges and interact with the client
authentication system.

superuser

A database superuser bypasses all permission checks. Also, only a superuser can create new users.
To create a database superuser,GREATE USERhame CREATEUSER

database creation

A user must be explicitly given permission to create databases (except for superusers, since those
bypass all permission checks). To create such a useCREBATE USERame CREATEDB

password

A password is only significant if the client authentication method requires the user to supply a pass-
word when connecting to the database. paesword , md5, andcrypt authentication methods

make use of passwords. Database passwords are separate from operating system passwords. Specify
a password upon user creation WtREATE USERhame PASSWORD string

A user’s attributes can be modified after creation witTER USERSee the reference pages @REATE
USERandALTER USERor details.

A user can also set personal defaults for many of the run-time configuration settings desc8betian
16.4 For example, if for some reason you want to disable index scans (hint: not a good idea) anytime you
connect, you can use

ALTER USER myname SET enable_indexscan TO off;

This will save the setting (but not set it immediately) and in subsequent connections it will appear as
thoughSET enable_indexscan TO off; had been called right before the session started. You can
still alter this setting during the session; it will only be the default. To undo any such settingl TER

USER username RESET varname ; .

17.3. Groups

As in Unix, groups are a way of logically grouping users to ease management of privileges: privileges can
be granted to, or revoked from, a group as a whole. To create a group, use

CREATE GROURame;
To add users to or remove users from a group, use

ALTER GROURmame ADD USERunamel, ... ;
ALTER GROURmame DROP USERunamel, ... ;

260

Chapter 17. Database Users and Privileges

17.4. Privileges

When a database object is created, it is assigned an owner. The owner is the user that executed the creation
statement. To change the owner of a table, index, sequence, or view, ¥sgHie TABLECOmmand. By

default, only an owner (or a superuser) can do anything with the object. In order to allow other users to
use it,privilegesmust be granted.

There are several different privilegeSELECT, INSERT, UPDATE DELETE RULE REFERENCES
TRIGGER CREATE TEMPORAR¥EXECUTEUSAGEandALL PRIVILEGES. For more information on the
different types of privileges support by PostgreSQL, se€2RANTreference page. The right to modify
or destroy an object is always the privilege of the owner only. To assign privilegeSRAsTcommand

is used. So, ifoe is an existing user, amgtcounts is an existing table, the privilege to update the table
can be granted with

GRANT UPDATE ON accounts TO joe;
The user executing this command must be the owner of the table. To grant a privilege to a group, use

GRANT SELECT ON accounts TO GROUP staff;
The special “user” nameUBLIC can be used to grant a privilege to every user on the system. Writing
ALL in place of a specific privilege specifies that all privileges will be granted.

To revoke a privilege, use the fittingly namr&vOKEommand:
REVOKE ALL ON accounts FROM PUBLIC;

The special privileges of the table owner (i.e., the right toDdROP GRANT REVOKE etc) are always
implicit in being the owner, and cannot be granted or revoked. But the table owner can choose to revoke
his own ordinary privileges, for example to make a table read-only for himself as well as others.

17.5. Functions and Triggers

Functions and triggers allow users to insert code into the backend server that other users may execute
without knowing it. Hence, both mechanisms permit users to “Trojan horse” others with relative impunity.
The only real protection is tight control over who can define functions.

Functions written in any language except SQL run inside the backend server process with the operating
systems permissions of the database server daemon process. It is possible to change the server’s internal
data structures from inside of trusted functions. Hence, among many other things, such functions can
circumvent any system access controls. This is an inherent problem with user-defined C functions.

261

Chapter 18. Managing Databases

Every instance of a running PostgreSQL server manages one or more databases. Databases are therefore
the topmost hierarchical level for organizing SQL objects (“database objects”). This chapter describes the
properties of databases, and how to create, manage, and destroy them.

18.1. Overview

A database is a named collection of SQL objects (“database objects”). Generally, every database object
(tables, functions, etc.) belongs to one and only one database. (But there are a few system catalogs, for
examplepg_database , that belong to a whole cluster and are accessible from each database within
the cluster.) More accurately, a database is a collection of schemas and the schemas contain the tables,
functions, etc. So the full hierarchy is: server, database, schema, table (or something else instead of a
table).

An application that connects to the database server specifies in its connection request the name of the
database it wants to connect to. It is not possible to access more than one database per connection. (But
an application is not restricted in the number of connections it opens to the same or other databases.) It
is possible, however, to access more than one schema from the same connection. Schemas are a purely
logical structure and who can access what is managed by the privilege system. Databases are physically
separated and access control is managed at the connection level. If one PostgreSQL server instance is to
house projects or users that should be separate and for the most part unaware of each other, it is therefore
recommendable to put them into separate databases. If the projects or users are interrelated and should
be able to use each other’s resources they should be put in the same databases but possibly into separate
schemas. More information about managing schemasSgation 5.8

Note: SQL calls databases “catalogs”, but there is no difference in practice.

18.2. Creating a Database

In order to create a databases, the PostgreSQL server must be up and runnBer{eeel6.B

Databases are created with the SQL comnmaREATE DATABASE

CREATE DATABASHame;

wherename follows the usual rules for SQL identifiers. The current user automatically becomes the
owner of the new database. It is the privilege of the owner of a database to remove it later on (which also
removes all the objects in it, even if they have a different owner).

The creation of databases is a restricted operationS8eton 17.%or how to grant permission.

Since you need to be connected to the database server in order to execREATE DATABASEOM-
mand, the question remains how tlirst database at any given site can be created. The first database is
always created by thieitdb command when the data storage area is initialized. $&eton 16.2 This
database is calle@mplatel . So to create the first “real” database you can conneetiplatel

262

Chapter 18. Managing Databases

The nameemplatel is no accident: When a new database is created, the template database is essen-
tially cloned. This means that any changes you makeritplatel are propagated to all subsequently
created databases. This implies that you should not use the template database for real work, but when used
judiciously this feature can be convenient. More details appe&edation 18.3

As an extra convenience, there is also a program that you can execute from the shell to create new
databasegyreatedb

createdb dbname

createdb does no magic. It connects to thmmplatel database and issues tBREATE DATABASE
command, exactly as described above. The reference pageansdb contains the invocation details.
Note thatcreatedb without any arguments will create a database with the current user name, which may
or may not be what you want.

Note: Chapter 19 contains information about how to restrict who can connect to a given database.

Sometimes you want to create a database for someone else. That user should become the owner of the new
database, so he can configure and manage it himself. To achieve that, use one of the following commands:

CREATE DATABASHEbname OWNERusername ;

from the SQL environment, or
createdb -O username dbname

You must be a superuser to be allowed to create a database for someone else.

18.3. Template Databases

CREATE DATABASHCctually works by copying an existing database. By default, it copies the standard
system database namesnplatel . Thus that database is the “template” from which new databases
are made. If you add objects templatel , these objects will be copied into subsequently created user
databases. This behavior allows site-local modifications to the standard set of objects in databases. For ex-
ample, if you install the procedural language PL/pgSQteimplatel , it will automatically be available

in user databases without any extra action being taken when those databases are made.

There is a second standard system database nam@thte0 . This database contains the same data

as the initial contents aemplatel , that is, only the standard objects predefined by your version of
PostgreSQLtemplate0 should never be changed afteitdo . By instructingCREATE DATABASH
copytemplate0 instead oftemplatel , you can create a “virgin” user database that contains none of

the site-local additions iremplatel . This is particularly handy when restoringpg._dump dump: the

dump script should be restored in a virgin database to ensure that one recreates the correct contents of the
dumped database, without any conflicts with additions that may now be presemplatel

To create a database by copyiegplate0 , use

CREATE DATABASHIbname TEMPLATE templateO;

from the SQL environment, or

263

Chapter 18. Managing Databases
createdb -T templateO dbname

from the shell.

It is possible to create additional template databases, and indeed one might copy any database in a cluster
by specifying its name as the template @REATE DATABASHL is important to understand, however,

that this is not (yet) intended as a general-purp@s@PY DATABASHacility. In particular, it is essential

that the source database be idle (no data-altering transactions in progress) for the duration of the copying
operation.CREATE DATABASHill check that no session (other than itself) is connected to the source
database at the start of the operation, but this does not guarantee that changes cannot be made while the
copy proceeds, which would result in an inconsistent copied database. Therefore, we recommend that
databases used as templates be treated as read-only.

Two useful flags exist inpg_database for each database: the colummnigtistemplate and
datallowconn . datistemplate may be set to indicate that a database is intended as a template
for CREATE DATABASHT this flag is set, the database may be cloned by any user @RIBATEDB
privileges; if it is not set, only superusers and the owner of the database may clonatiilltfwconn

is false, then no new connections to that database will be allowed (but existing sessions are not killed
simply by setting the flag false). ThemplateO database is normally markethtallowconn =

false to prevent modification of it. Bottemplate0 andtemplatel should always be marked with
datistemplate = true

After preparing a template database, or making any changes to one, it is a good idea to padaum
FREEZEoOr VACUUM FULL FREEZR that database. If this is done when there are no other open trans-
actions in the same database, then it is guaranteed that all rows in the database are “frozen” and will not
be subject to transaction ID wraparound problems. This is particularly important for a database that will
havedatallowconn set to false, since it will be impossible to do routine maintenamg@UUNN such a
database. Se®ection 21.1.3or more information.

Note: templatel and template0 do not have any special status beyond the fact that the name
templatel is the default source database name for CREATE DATABASENd the default database-
to-connect-to for various programs such as createdb . For example, one could drop templatel and
recreate it from template0 without any ill effects. This course of action might be advisable if one has
carelessly added a bunch of junk in templatel

18.4. Database Configuration

Recall fromSection 16.4hat the PostgreSQL server provides a large number of run-time configuration
variables. You can set database-specific default values for many of these settings.

For example, if for some reason you want to disable the GEQO optimizer for a given database, you'd
ordinarily have to either disable it for all databases or make sure that every connecting client is careful to
iISSUESET geqgo TO off; . To make this setting the default you can execute the command

ALTER DATABASE mydb SET gego TO off;

This will save the setting (but not set it immediately) and in subsequent connections it will appear as
thoughSET geqo TO off;, had been called right before the session started. Note that users can still

264

Chapter 18. Managing Databases

alter this setting during the session; it will only be the default. To undo any such setting TE&
DATABASEdbname RESET varname ; .

18.5. Alternative Locations

It is possible to create a database in a location other than the default location for the installation. But
remember that all database access occurs through the database server, so any location specified must be
accessible by the server.

Alternative database locations are referenced by an environment variable which gives the absolute path to
the intended storage location. This environment variable must be present in the server's environment, so
it must have been defined before the server was started. (Thus, the set of available alternative locations
is under the site administrator’s control; ordinary users can’t change it.) Any valid environment variable
name may be used to reference an alternative location, although using variable names with a prefix of
PGDATAs recommended to avoid confusion and conflict with other variables.

To create the variable in the environment of the server process you must first shut down the server, define
the variable, initialize the data area, and finally restart the server. (Segetiion 16.@&ndSection 16.3
To set an environment variable, type

PGDATA2=/home/postgres/data
export PGDATA2

in Bourne shells, or
setenv PGDATA2 /home/postgres/data

in csh or tcsh . You have to make sure that this environment variable is always defined in the server
environment, otherwise you won't be able to access that database. Therefore you probably want to set it
in some sort of shell start-up file or server start-up script.

To create a data storage are@BDATAZ2 ensure that the containing directory (heheme/postgres)
already exists and is writable by the user account that runs the serve3dsgen 16.L Then from the
command line, type

initlocation PGDATA2

(notinitlocation $PGDATA2). Then you can restart the server.

To create a database within the new location, use the command
CREATE DATABASHame WITH LOCATION ’location

wherelocation is the environment variable you usé;DATAZN this example. Thereatedb com-
mand has the optioiD for this purpose.

Databases created in alternative locations can be accessed and dropped like any other database.

Note: It can also be possible to specify absolute paths directly to the CREATE DATABASEommand
without defining environment variables. This is disallowed by default because it is a security risk. To
allow it, you must compile PostgreSQL with the C preprocessor macro ALLOW_ABSOLUTE_DBPATHS
defined. One way to do this is to run the compilation step like this:

265

Chapter 18. Managing Databases

gmake CPPFLAGS=-DALLOW_ABSOLUTE_DBPATHS all

18.6. Destroying a Database
Databases are destroyed with the commaR®OP DATABASE

DROP DATABASHEame;

Only the owner of the database (i.e., the user that created it) or a superuser, can drop a database. Dropping
a database removes all objects that were contained within the database. The destruction of a database
cannot be undone.

You cannot execute theROP DATABASEommand while connected to the victim database. You can,
however, be connected to any other database, includingitigatel databasetemplatel would be
the only option for dropping the last user database of a given cluster.

For convenience, there is also a shell program to drop databases:

dropdb dbname

(Unlike createdb , it is not the default action to drop the database with the current user name.)

266

Chapter 19. Client Authentication

When a client application connects to the database server, it specifies which PostgreSQL user name it
wants to connect as, much the same way one logs into a Unix computer as a particular user. Within the
SQL environment the active database user name determines access privileges to database objects -- see
Chapter 1#or more information. Therefore, it is essential to restrict which database users can connect.

Authenticatioris the process by which the database server establishes the identity of the client, and by ex-
tension determines whether the client application (or the user who runs the client application) is permitted
to connect with the user name that was requested.

PostgreSQL offers a number of different client authentication methods. The method used to authenticate
a particular client connection can be selected on the basis of (client) host address, database, and user.

PostgreSQL user names are logically separate from user names of the operating system in which the server
runs. If all the users of a particular server also have accounts on the server's machine, it makes sense to
assign database user names that match their operating system user names. However, a server that accepts
remote connections may have many database users who have no local operating system account, and in
such cases there need be no connection between database user names and OS user names.

19.1. The pg_hba.conf file

Client authentication is controlled by the filgpg_hba.conf in the data directory, e.g.,
/usr/local/pgsql/data/pg_hba.conf . (HBA stands for host-based authentication.) A default
pg_hba.conf file is installed when the data directory is initialized ibigdb

The general format of theg_hba.conf file is a set of records, one per line. Blank lines are ignored, as is

any text after thet comment character. A record is made up of a number of fields which are separated by
spaces and/or tabs. Fields can contain white space if the field value is quoted. Records cannot be continued
across lines.

Each record specifies a connection type, a client IP address range (if relevant for the connection type),

a database name, a user name, and the authentication method to be used for connections matching these
parameters. The first record with a matching connection type, client address, requested database, and user
name is used to perform authentication. There is no “fall-through” or “backup”: if one record is chosen
and the authentication fails, subsequent records are not considered. If no record matches, access is denied.

A record may have one of the seven formats

local database user authentication-method [authentication-option]

host database user IP-address IP-mask authentication-method [authentication-optior
hostssl database user IP-address IP-mask authentication-method [authentication-optiol
hostnossl database user IP-address IP-mask authentication-method [authentication-optior
host database user IP-address / IP-masklen authentication-method [authentication-op
hostssl database user IP-address / IP-masklen authentication-method [authentication-op
hostnossl database user IP-address / IP-masklen authentication-method [authentication-op

The meaning of the fields is as follows:

267

Chapter 19. Client Authentication

local

This record matches connection attempts using Unix-domain sockets. Without a record of this type,
Unix-domain socket connections are disallowed.

host

This record matches connection attempts using TCP/IP networks. Note that TCP/IP connections are
disabled unless the server is started with-theption or thecpip_socket configuration parameter
is enabled.

hostssl

This record matches connection attempts using SSL over TGRAP. records will match either
SSL or non-SSL connection attempts, bastssl records require SSL connections.

To make use of this option the server must be built with SSL support enabled. Furthermore, SSL must
be enabled by enabling tkel configuration parameter (s&ection 16.4or more information).

hostnossl

This record is similar tdostssl but with the opposite logic: it matches only regular connection
attempts not using SSL.

database

Specifies which databases this record matches. The athluspecifies that it matches all databases.

The valuesameuser specifies that the record matches if the requested database has the same name

as the requested user. The vahsnegroup specifies that the requested user must a member of

the group with the same name as the requested database. Otherwise, this is the name of a specific
PostgreSQL database. Multiple database names can be supplied by separating them with commas. A
file containing database names can be specified by preceding the file nan@ Wik file must be

in the same directory ggy_hba.conf

user

Specifies which PostgreSQL users this record matches. The alaluspecifies that it matches all

users. Otherwise, this is the name of a specific PostgreSQL user. Multiple user names can be supplied
by separating them with commas. Group names can be specified by preceding the group name with
+. A file containing user names can be specified by preceding the file nameéwitte file must be

in the same directory asy_hba.conf

IP-address
IP-mask

These two fields contain IP address and mask values in standard dotted decimal notation. (IP ad-
dresses can only be specified numerically, not as domain or host names.) Taken together they specify
the client machine IP addresses that this record matches. The precise logic is that

(‘actual-IP-address xor IP-address-field) and IP-mask-field
must be zero for the record to match.

An IP address given in IPv4 format will match IPv6 connections that have the corresponding address,
for example127.0.0.1 will match the IPv6 addressfff:127.0.0.1 . An entry given in IPv6
format will match only IPv6 connections, even if the represented address is in the IPv4-in-IPv6 range.
Note that entries in IPv6 format will be rejected if the system’s C library does not have support for
IPv6 addresses.

268

Chapter 19. Client Authentication

These fields only apply thost , hostssl , andhostnossl records.

IP-masklen

This field may be used as an alternative to Remask notation. It is an integer specifying the
number of high-order bits to set in the mask. The number must be between 0 and 32 (in the case of
an IPv4 address) or 128 (in the case of an IPv6 address) inclusive. 0 will match any address, while
32 (or 128, respectively) will match only the exact host specified. The same matching logic is used
as for a dotted notatioliP-mask .

There must be no white space betweenlthaddress and the or the/ and thelP-masklen
or the file will not be parsed correctly.

This field only applies thost , hostssl , andhostnossl records.

authentication-method

Specifies the authentication method to use when connecting via this record. The possible choices are
summarized here; details areSection 19.2
trust

The connection is allowed unconditionally. This method allows anyone that can connect to the
PostgreSQL database server to login as any PostgreSQL user they like, without the need for a
password. Se8ection 19.2.for details.

reject

The connection is rejected unconditionally. This is useful for “filtering out” certain hosts from
a group.

md>5

Requires the client to supply an MD5 encrypted password for authentication. This is the only
method that allows encrypted passwords to be storgwyishadow . SeeSection 19.2.%or
details.

crypt

Like the mds method but uses olderypt() encryption, which is needed for pre-7.2 clients.
md5is preferred for 7.2 and later clients. Sgection 19.2.2or details.

password

Same asnd5, but the password is sent in clear text over the network. This should not be used
on untrusted networks. S&ection 19.2.2or details.

krb4

Kerberos V4 is used to authenticate the user. This is only available for TCP/IP connections. See
Section 19.2.3or details.

krb5

Kerberos V5 is used to authenticate the user. This is only available for TCP/IP connections. See
Section 19.2.3or details.

ident

Obtain the operating system user hame of the client (for TCP/IP connections by contacting the
ident server on the client, for local connections by getting it from the operating system) and

269

Chapter 19. Client Authentication

check if the user is allowed to connect as the requested database user by consulting the map
specified after thelent key word.

If you use the mappameuser , the user names are required to be identical. If not, the map
name is looked up in the filpg_ident.conf in the same directory gsg_hba.conf . The
connection is accepted if that file contains an entry for this map name with the operating-system
user name and the requested PostgreSQL user name.

For local connections, this only works on machines that support Unix-domain socket credentials
(currently Linux, FreeBSD, NetBSD, OpenBSD, and BSD/OS).

SeeSection 19.2.dbelow for details.
pam

Authenticate using the Pluggable Authentication Modules (PAM) service provided by the oper-
ating system. SeBection 19.2.%or details.

authentication-option

The meaning of this optional field depends on the chosen authentication method and is described in
the next section.

Since thepg_hba.conf records are examined sequentially for each connection attempt, the order of the
records is significant. Typically, earlier records will have tight connection match parameters and weaker
authentication methods, while later records will have looser match parameters and stronger authentication
methods. For example, one might wish to wsst authentication for local TCP/IP connections but
require a password for remote TCP/IP connections. In this case a record spetifytingauthentication

for connections from 127.0.0.1 would appear before a record specifying password authentication for a
wider range of allowed client IP addresses.

Important: Do not prevent the superuser from accessing the templatel database. Various utility
commands need access to templatel

The pg_hba.conf file is read on start-up and when the main server progessnfaster) receives a
SIGHUP signal. If you edit the file on an active system, you will need to signgldkenaster (using
pg_ctl reload orkill -HUP) to make it re-read the file.

An example of gog_hba.conf file is shown inExample 19-1See the next section for details on the
different authentication methods.

Example 19-1. An examplepg_hba.conf file

Allow any user on the local system to connect to any database under
any user name using Unix-domain sockets (the default for local

connections).

#

270

Chapter 19. Client Authentication

TYPE DATABASE USER IP-ADDRESS IP-MASK METHOD
local all all trust

The same using local loopback TCP/IP connections.

#
TYPE DATABASE USER IP-ADDRESS IP-MASK METHOD
host all all 127.0.0.1 255.255.255.255 trust

The same as the last line but using a CIDR mask

#
TYPE DATABASE USER IP-ADDRESS/CIDR-mask METHOD
host all all 127.0.0.1/32 trust

Allow any user from any host with IP address 192.168.93.x to connect
to database "templatel" as the same user name that ident reports for
the connection (typically the Unix user name).

#
TYPE DATABASE USER IP-ADDRESS IP-MASK METHOD
host templatel all 192.168.93.0 255.255.255.0 ident sameuser

The same as the last line but using a CIDR mask

#
TYPE DATABASE USER IP-ADDRESS/CIDR-mask METHOD
host templatel all 192.168.93.0/24 ident sameuser

Allow a user from host 192.168.12.10 to connect to database

"templatel" if the user's password is correctly supplied.

#

TYPE DATABASE USER IP-ADDRESS IP-MASK METHOD
host templatel all 192.168.12.10 255.255.255.255 md5

In the absence of preceding "host" lines, these two lines will

reject all connection from 192.168.54.1 (since that entry will be
matched first), but allow Kerberos V connections from anywhere else
on the Internet. The zero mask means that no bits of the host IP
address are considered so it matches any host.

HOH R R R R R

TYPE DATABASE USER IP-ADDRESS IP-MASK METHOD
host all all 192.168.54.1 255.255.255.255 reject
host all all 0.0.0.0 0.0.0.0 krb5

Allow users from 192.168.x.x hosts to connect to any database, if
they pass the ident check. If, for example, ident says the user is
"bryanh” and he requests to connect as PostgreSQL user "guestl", the
connection is allowed if there is an entry in pg_ident.conf for map
"omicron" that says "bryanh" is allowed to connect as "guestl".

HOHH R R R H®

TYPE DATABASE USER IP-ADDRESS IP-MASK METHOD
host all all 192.168.0.0 255.255.0.0 ident omicron

If these are the only three lines for local connections, they will

allow local users to connect only to their own databases (databases
with the same name as their user name) except for administrators and

271

Chapter 19. Client Authentication

members of group "support" who may connect to all databases. The file
$PGDATA/admins contains a list of user names. Passwords are required in

all cases.

#

TYPE DATABASE USER IP-ADDRESS IP-MASK METHOD
local sameuser all md5

local all @admins md5

local all +support md5

The last two lines above can be combined into a single line:
local all @admins,+support md5

The database column can also use lists and file names, but not groups:
local dbl,db2,@demodbs all md5

19.2. Authentication methods

The following describes the authentication methods in more detail.

19.2.1. Trust authentication

Whentrust authentication is specified, PostgreSQL assumes that anyone who can connect to the server

is authorized to access the database as whatever database user he specifies (including the database su-
peruser). This method should only be used when there is adequate operating system-level protection on
connections to the server.

trust authentication is appropriate and very convenient for local connections on a single-user worksta-
tion. Itis usuallynotappropriate by itself on a multiuser machine. However, you may be able tastse

even on a multiuser machine, if you restrict access to the server’s Unix-domain socket file using file-system
permissions. To do this, set theix_socket_permissions (and possiblyinix_socket_group) con-
figuration parameters as describedSection 16.4.10r you could set thenix_socket_directory

configuration parameter to place the socket file in a suitably restricted directory.

Setting file-system permissions only helps for Unix-socket connections. Local TCP/IP connections are not
restricted by it; therefore, if you want to use file-system permissions for local security, remdwasthe
. 127.0.0.1 ... line frompg_hba.conf , or changeitto a nomust authentication method.

trust authentication is only suitable for TCP/IP connections if you trust every user on every machine that
is allowed to connect to the server by e hba.conf lines that specifyrust . It is seldom reasonable
to usetrust for any TCP/IP connections other than those from localhost (127.0.0.1).

19.2.2. Password authentication

The password-based authentication methodsvai® crypt , andpassword . These methods operate
similarly except for the way that the password is sent across the connection. If you are at all concerned
about password “sniffing” attacks themisis preferred, withcrypt a second choice if you must support
pre-7.2 clients. Plaipassword should especially be avoided for connections over the open Internet
(unless you use SSL, SSH, or other communications security wrappers around the connection).

272

Chapter 19. Client Authentication

PostgreSQL database passwords are separate from operating system user passwords. The password for
each database user is stored in plaeshadow system catalog table. Passwords can be managed with

the SQL commandSREATE USERNJALTER USERe.g.,CREATE USER foo WITH PASSWORD
'secret’; . By default, that is, if no password has been set up, the stored password is null and password
authentication will always fail for that user.

To restrict the set of users that are allowed to connect to certain databases, list the userssar the
column ofpg_hba.conf , as explained in the previous section.

19.2.3. Kerberos authentication

Kerberos is an industry-standard secure authentication system suitable for distributed computing over a
public network. A description of the Kerberos system is far beyond the scope of this document; in all
generality it can be quite complex (yet powerful). The Kerberos FaMIT Project Athendcan be a

good starting point for exploration. Several sources for Kerberos distributions exist.

While PostgreSQL supports both Kerberos 4 and Kerberos 5, only Kerberos 5 is recommended. Kerberos
4 is considered insecure and no longer recommended for general use.

In order to use Kerberos, support for it must be enabled at build timeCBagter 14or more information.
Both Kerberos 4 and 5 are supported, but only one version can be supported in any one build.

PostgreSQL operates like a normal Kerberos service. The name of the service principal is
servicename / hostname @ealm , where servicename is postgres (unless a different service
name was selected at configure time witfconfigure --with-krb-srvnam=whatever).
hostname is the fully qualified host name of the server machine. The service principal’s realm is the
preferred realm of the server machine.

Client principals must have their PostgreSQL user name as their first component, for example
pgusername/otherstuff@realm . At present the realm of the client is not checked by PostgreSQL; so

if you have cross-realm authentication enabled, then any principal in any realm that can communicate
with yours will be accepted.

Make sure that your server key file is readable (and preferably only readable) by the PostgreSQL server
account. (See alsBection 16.). The location of the key file is specified with they_server_keyfile

run-time configuration parameter. (See aBeaxrtion 16.4 The default igetc/srvtab if you are using
Kerberos 4 andrILE:/usr/local/pgsql/etc/krb5.keytab (or whichever directory was specified
assysconfdir at build time) with Kerberos 5.

To generate the keytab file, use for example (with version 5)

kadmin% ank -randkey postgres/server.my.domain.org
kadmin% ktadd -k krb5.keytab postgres/server.my.domain.org

Read the Kerberos documentation for details.

When connecting to the database make sure you have a ticket for a principal matching the requested
database user name. An example: For database userfre@meboth principalfred @ EXAMPLE.COMand
fred/users.example.com@EXAMPLE.COM can be used to authenticate to the database server.

1. http://www.nrl.navy.mil/CCS/people/kenh/kerberos-fag.html
2. ftp://athena-dist.mit.edu

273

Chapter 19. Client Authentication

If you use mod_auth_kerb from http://modauthkerb.sf.net and mod_perl on your Apache web server, you
can useAuthType KerberosV5SaveCredentials with a mod_perl script. This gives secure database
access over the web, no extra passwords required.

19.2.4. Ident-based authentication

The ident authentication method works by inspecting the client’s operating system user name and de-
termining the allowed database user names by using a map file that lists the permitted corresponding
user name pairs. The determination of the client’s user name is the security-critical point, and it works
differently depending on the connection type.

19.2.4.1. Ident Authentication over TCP/IP

The “Identification Protocol” is described RFC 1413 Virtually every Unix-like operating system ships

with an ident server that listens on TCP port 113 by default. The basic functionality of an ident server is
to answer questions like “What user initiated the connection that goes out of youX poid connects

to my portY?”. Since PostgreSQL knows bo¥iandY when a physical connection is established, it

can interrogate the ident server on the host of the connecting client and could theoretically determine the
operating system user for any given connection this way.

The drawback of this procedure is that it depends on the integrity of the client: if the client machine is
untrusted or compromised an attacker could run just about any program on port 113 and return any user
name he chooses. This authentication method is therefore only appropriate for closed networks where
each client machine is under tight control and where the database and system administrators operate in
close contact. In other words, you must trust the machine running the ident server. Heed the warning:

RFC 1413

The Identification Protocol is not intended as an authorization or access control protocol.

19.2.4.2. Ident Authentication over Local Sockets

On systems supportingO_PEERCREDequests for Unix-domain sockets (currently Linux, FreeBSD,
NetBSD, OpenBSD, and BSD/OS), ident authentication can also be applied to local connections. In this
case, no security risk is added by using ident authentication; indeed it is a preferable choice for local
connections on such systems.

On systems withousO_PEERCRERequests, ident authentication is only available for TCP/IP connec-
tions. As a work around, it is possible to specify the localhost address 127.0.0.1 and make connections to
this address.

19.2.4.3. Ident Maps

When using ident-based authentication, after having determined the name of the operating system user that
initiated the connection, PostgreSQL checks whether that user is allowed to connect as the database user
he is requesting to connect as. This is controlled by the ident map argument that folladenthekey

word in thepg_hba.conf file. There is a predefined ident magmeuser , which allows any operating

274

Chapter 19. Client Authentication

system user to connect as the database user of the same name (if the latter exists). Other maps must be
created manually.

Ident maps other thasameuser are defined in the fil@g_ident.conf in the data directory, which
contains lines of the general form:

map-name ident-username database-username

Comments and whitespace are handled in the usual wayn@pename is an arbitrary name that will be

used to refer to this mapping py_hba.conf . The other two fields specify which operating system user

is allowed to connect as which database user. The saagename can be used repeatedly to specify

more user-mappings within a single map. There is no restriction regarding how many database users a
given operating system user may correspond to and vice versa.

Thepg_ident.conf file is read on start-up and when the main server progessnfaster) receives a
SIGHUP signal. If you edit the file on an active system, you will need to signgldkenaster (using
pg_ctl reload orkill -HUP) to make it re-read the file.

A pg_ident.conf file that could be used in conjunction with thg hba.conf file in Example 19-1

is shown inExample 19-2In this example setup, anyone logged in to a machine on the 192.168 network
that does not have the Unix user nabnganh , ann, orrobert would not be granted access. Unix user
robert would only be allowed access when he tries to connect as PostgreSQhotiseot asrobert

or anyone elseann would only be allowed to connect asn. Userbryanh would be allowed to connect

as eithembryanh himself or agyuest1 .

Example 19-2. An examplepg_ident.conf file

MAPNAME IDENT-USERNAME PG-USERNAME
omicron bryanh bryanh

omicron ann ann

bob has user name robert on these machines

omicron robert bob

bryanh can also connect as guestl

omicron bryanh guestl

19.2.5. PAM Authentication

This authentication method operates similarlypéssword except that it uses PAM (Pluggable Authen-
tication Modules) as the authentication mechanism. The default PAM service nansggiesgl . You
can optionally supply you own service name afterhe key word in the filepg_hba.conf . For more
information about PAM, please read the Linux-PAM Paged the Solaris PAM Page

4. http:/lwww.kernel.org/pub/linux/libs/pam/
5. http://lwww.sun.com/software/solaris/pam/

275

Chapter 19. Client Authentication

19.3. Authentication problems

Genuine authentication failures and related problems generally manifest themselves through error mes-
sages like the following.

FATAL: no pg_hba.conf entry for host "123.123.123.123", user "andym", database "testdb"

This is what you are most likely to get if you succeed in contacting the server, but it does not want to talk
to you. As the message suggests, the server refused the connection request because it found no authorizing
entry in itspg_hba.conf configuration file.

FATAL: Password authentication failed for user "andym"

Messages like this indicate that you contacted the server, and it is willing to talk to you, but not until you
pass the authorization method specified ing@aehba.conf file. Check the password you are providing,
or check your Kerberos or ident software if the complaint mentions one of those authentication types.

FATAL: user "andym" does not exist

The indicated user name was not found.

FATAL: database "testdb" does not exist

The database you are trying to connect to does not exist. Note that if you do not specify a database name,
it defaults to the database user name, which may or may not be the right thing.

Tip: The server log may contain more information about an authentication failure than is reported to
the client. If you are confused about the reason for a failure, check the log.

276

Chapter 20. Localization

This chapter describes the available localization features from the point of view of the administrator.
PostgreSQL supports localization with two approaches:

- Using the locale features of the operating system to provide locale-specific collation order, number
formatting, translated messages, and other aspects.

- Providing a number of different character sets defined in the PostgreSQL server, including multiple-byte
character sets, to support storing text in all kinds of languages, and providing character set translation
between client and server.

20.1. Locale Support

Localesupport refers to an application respecting cultural preferences regarding alphabets, sorting, num-
ber formatting, etc. PostgreSQL uses the standard ISO C and POSIX locale facilities provided by the
server operating system. For additional information refer to the documentation of your system.

20.1.1. Overview

Locale support is automatically initialized when a database cluster is creatednitsiimg . initdb ~ will

initialize the database cluster with the locale setting of its execution environment; so if your system is
already set to use the locale that you want in your database cluster then there is nothing else you need to
do. If you want to use a different locale (or you are not sure which locale your system is set to), you can
tell initdb exactly which locale you want with the optietiocale . For example:

initdb --locale=sv_SE

This example sets the locale to Swedish)(as spoken in Swedersg). Other possibilities might be

en_US (U.S. English) andr_CA (Canada, French). If more than one character set can be useful for a
locale then the specifications look like this. CZ.1S08859-2 . What locales are available under what
names on your system depends on what was provided by the operating system vendor and what was
installed.

Occasionally it is useful to mix rules from several locales, e.g., use English collation rules but Spanish
messages. To support that, a set of locale subcategories exist that control only a certain aspect of the
localization rules.

LC_COLLATE String sort order

LC_CTYPE Character classification (What is a letter? The
upper-case equivalent?)

LC_MESSAGES Language of messages

LC_MONETARY Formatting of currency amounts

277

Chapter 20. Localization

LC_NUMERIC Formatting of numbers
LC_TIME Formatting of dates and times

The category names translate into namemiafb options to override the locale choice for a specific
category. For instance, to set the locale to French Canadian, but use U.S. rules for formatting currency,
useinitdb --locale=fr_CA --lc-monetary=en_US

If you want the system to behave as if it had no locale support, use the specialdar®eSIX.

The nature of some locale categories is that their value has to be fixed for the lifetime of a database cluster.
That is, oncenitdb has run, you cannot change them anymbo@.COLLATEandLC_CTYPEare those
categories. They affect the sort order of indexes, so they must be kept fixed, or indexes on text columns
will become corrupt. PostgreSQL enforces this by recording the valueS afOLLATEandLC_CTYPE

that are seen bipitdb . The server automatically adopts those two values when it is started.

The other locale categories can be changed as desired whenever the server is running by setting the
run-time configuration variables that have the same name as the locale categorigsctsae 16.40r

details). The defaults that are chosenibiydb are actually only written into the configuration file
postgresgl.conf to serve as defaults when the server is started. If you delete the assignments from
postgresgl.conf then the server will inherit the settings from the execution environment.

Note that the locale behavior of the server is determined by the environment variables seen by the server,
not by the environment of any client. Therefore, be careful to configure the correct locale settings before
starting the server. A consequence of this is that if client and server are set up to different locales, messages
may appear in different languages depending on where they originated.

Note: When we speak of inheriting the locale from the execution environment, this means the following
on most operating systems: For a given locale category, say the collation, the following environment
variables are consulted in this order until one is found to be set: LC_ALL, LC_COLLATE(the variable
corresponding to the respective category), LANG If none of these environment variables are set then
the locale defaults to C.

Some message localization libraries also look at the environment variable LANGUAGHEvhich overrides
all other locale settings for the purpose of setting the language of messages. If in doubt, please refer
to the documentation of your operating system, in particular the documentation about gettext, for more
information.

To enable messages translated to the user’s preferred language, NLS must have been enabled at build time.
This choice is independent of the other locale support.

20.1.2. Benefits

Locale support influences in particular the following features:

« Sort order in queries usingRDER BY

« Theto_char family of functions

278

Chapter 20. Localization

The only severe drawback of using the locale support in PostgreSQL is its speed. So use locales only if
you actually need them.

20.1.3. Problems

If locale support doesn't work in spite of the explanation above, check that the locale support in your
operating system is correctly configured. To check what locales are installed on your system, you may use
the commandbcale -a if your operating system provides it.

Check that PostgreSQL is actually using the locale that you think itdsCOLLATEandLC_CTYPE
settings are determined aiitdo time and cannot be changed without repeaiiigh . Other lo-
cale settings includingC_MESSAGE&ndLC_MONETARH¥re initially determined by the environment the
server is started in. You can check the COLLATEandLC_CTYPEsettings of a database with the utility
programpg_controldata

The directorysrc/test/locale in the source distribution contains a test suite for PostgreSQL'’s locale
support.

Client applications that handle server-side errors by parsing the text of the error message will obviously
have problems when the server's messages are in a different language. Authors of such applications are
advised to make use of the error code scheme instead.

Maintaining catalogs of message translations requires the on-going efforts of many volunteers that want
to see PostgreSQL speak their preferred language well. If messages in your language is currently not
available or fully translated, your assistance would be appreciated. If you want to help, refeCtafiter

46 or write to the developers’ mailing list.

20.2. Character Set Support

The character set support in PostgreSQL allows you to store text in a variety of character sets, including
single-byte character sets such as the 1ISO 8859 series and multiple-byte character sets such as EUC
(Extended Unix Code), Unicode, and Mule internal code. All character sets can be used transparently
throughout the server. (If you use extension functions from other sources, it depends on whether they wrote
their code correctly.) The default character set is selected while initializing your PostgreSQL database
cluster usingnitdo . It can be overridden when you create a database usi#agedb or by using the

SQL commandCREATE DATABASESO you can have multiple databases each with a different character
set.

20.2.1. Supported Character Sets

Table 20-1shows the character sets available for use in the server.

Table 20-1. Server Character Sets

Name Description
SQL_ASCII ASCII
EUC_JP Japanese EUC

279

Chapter 20. Localization

Name Description

EUC_CN Chinese EUC

EUC_KR Korean EUC

JOHAB Korean EUC (Hangle base)

EUC_TW Taiwan EUC

UNICODE Unicode (UTF-8)

MULE_INTERNAL Mule internal code

LATIN1 ISO 8859-1/ECMA 94 (Latin alphabet no.1)

LATIN2 ISO 8859-2/ECMA 94 (Latin alphabet no.2)

LATIN3 ISO 8859-3/ECMA 94 (Latin alphabet no.3)

LATIN4 ISO 8859-4/ECMA 94 (Latin alphabet no.4)

LATIN5S ISO 8859-9/ECMA 128 (Latin alphabet no.5)

LATING ISO 8859-10/ECMA 144 (Latin alphabet no.6)

LATIN7 ISO 8859-13 (Latin alphabet no.7)

LATINS ISO 8859-14 (Latin alphabet no.8)

LATINS ISO 8859-15 (Latin alphabet no.9)

LATIN10 ISO 8859-16/ASRO SR 14111 (Latin alphabet
no.10)

ISO_8859 5 ISO 8859-5/ECMA 113 (Latin/Cyrillic)

ISO_8859_6 ISO 8859-6/ECMA 114 (Latin/Arabic)

ISO_8859_7 ISO 8859-7/ECMA 118 (Latin/Greek)

ISO_8859_8 ISO 8859-8/ECMA 121 (Latin/Hebrew)

KOI8 KOI8-R(U)

WIN 'Windows CP1251

ALT \Windows CP866

WIN1256 \Windows CP1256 (Arabic)

TCVN TCVN-5712/Windows CP1258 (Vietnamese)

WINB74 'Windows CP874 (Thai)

Important: Before PostgreSQL 7.2, LATIN5 mistakenly meant ISO 8859-5. From 7.2 on, LATINS
means 1SO 8859-9. If you have a LATIN5 database created on 7.1 or earlier and want to migrate
to 7.2 or later, you should be careful about this change.

Not all APIs support all the listed character sets. For example, the PostgreSQL JDBC driver does not
SUppPOrtMULE_INTERNAL LATING , LATIN8 , andLATIN10 .

20.2.2. Setting the Character Set

initdb defines the default character set for a PostgreSQL cluster. For example,

initdo -E EUC_JP

280

Chapter 20. Localization

sets the default character set (encodingtec_JP (Extended Unix Code for Japanese). You can use
--encoding instead otE if you prefer to type longer option strings. If A& or --encoding option is
given,SQL_ASCII is used.

You can create a database with a different character set:

createdb -E EUC_KR korean

This will create a database namadlean that uses the character &1C_KR Another way to accomplish
this is to use this SQL command:

CREATE DATABASE korean WITH ENCODING 'EUC_KR’;

The encoding for a database is stored in the system caiglatabase . You can see that by using the
-1 option or thel command opsqgl .

$ psql -l
List of databases

Database | Owner | Encoding
euc_cn | t-ishii | EUC_CN
euc_jp | t-ishii | EUC_JP
euc_kr | t-ishii | EUC_KR
euc_tw | t-ishii | EUC_TW
mule_internal | t-ishii | MULE_INTERNAL
regression | t-ishii | SQL_ASCII
templatel | t-ishii | EUC_JP
test | t-ishii | EUC_JP
unicode | t-ishii | UNICODE
(9 rows)

20.2.3. Automatic Character Set Conversion Between Server and Client

PostgreSQL supports automatic character set conversion between server and client for certain character
sets. The conversion information is stored in plgeconversion system catalog. You can create a new
conversion by using the SQL comma@BEATE CONVERSIORo0stgreSQL comes with some predefined
conversions. They are listed Table 20-2

Table 20-2. Client/Server Character Set Conversions

Server Character Set /Available Client Character Sets
SQL_ASCII SQL_ASCII, UNICODE MULE_INTERNAL
EUC_JP EUC_JP, SJIS , UNICODE MULE_INTERNAL
EUC_CN EUC_CNUNICODE MULE_INTERNAL
EUC_KR EUC_KRUNICODE MULE_INTERNAL
JOHAB JOHAB UNICODE

EUC_TW EUC_TWBIG5, UNICODE MULE_INTERNAL

281

Chapter 20. Localization

Server Character Set Available Client Character Sets

LATIN1 LATIN1, UNICODE MULE_INTERNAL

LATIN2 LATINZ2 , WIN1250, UNICODE MULE_INTERNAL

LATIN3 LATIN3 , UNICODE MULE_INTERNAL

LATIN4 LATIN4 , UNICODE MULE_INTERNAL

LATINS LATINS , UNICODE

LATING LATING , UNICODE MULE_INTERNAL

LATIN7 LATIN7 , UNICODE MULE_INTERNAL

LATIN8 LATINS , UNICODE MULE_INTERNAL

LATIN9 LATIN9 , UNICODE MULE_INTERNAL

LATIN10 LATIN10 , UNICODE MULE_INTERNAL

1ISO_8859 5 ISO_8859 5 , UNICODE MULE_INTERNALWIN,
IALT, KOI8

ISO_8859 6 ISO_8859_6 , UNICODE

ISO_8859 7 ISO_8859 7 , UNICODE

1ISO_8859_8 ISO_8859_8 , UNICODE

UNICODE EUC_JPR, SJIS , EUC_KRUHC JOHAB EUC_CN

GBK EUC_TWBIG5, LATIN1 to LATIN10,
ISO_8859 5 ,1SO_8859 6 ,1SO_8859 7 ,
ISO_8859_8 , WIN, ALT, KOI8, WIN1256, TCVN
WINS74, GB18030, WIN1250

MULE_INTERNAL EUC_JP, SJIS , EUC_KREUC_CNEUC_TWBIG5,
LATINL to LATIN5S , WIN, ALT, WIN1250, BIG5,
ISO_8859 5 , KOI8

KOI8 ISO_8859_5 , WIN, ALT, KOI8, UNICODE
MULE_INTERNAL

WIN ISO_8859_5 , WIN, ALT, KOI8, UNICODE
MULE_INTERNAL

ALT ISO_8859_5 , WIN, ALT, KOI8, UNICODE
MULE_INTERNAL

WIN1256 WIN1256, UNICODE

TCVN TCVN UNICODE

\WIN874 WIN874, UNICODE

To enable the automatic character set conversion, you have to tell PostgreSQL the character set (encoding)
you would like to use in the client. There are several ways to accomplish this:

« Using the\encoding command in psglencoding allows you to change client encoding on the fly.
For example, to change the encodingtts , type:

\encoding SJIS

- Using libpq functions\encoding actually callsPQsetClientEncoding() for its purpose.

282

Chapter 20. Localization

int PQsetClientEncoding(PGconn * conn, const char * encoding);

whereconn is a connection to the server, aadcoding is the encoding you want to use. If the func-
tion successfully sets the encoding, it returns 0, otherwise -1. The current encoding for this connection
can be determined by using:

int PQclientEncoding(const PGconn * conn);

Note that it returns the encoding ID, not a symbolic string sudds JP. To convert an encoding 1D
to an encoding name, you can use:

char *pg_encoding_to_char(int encoding_id);

UsingSET client_encoding TO . Setting the client encoding can be done with this SQL command:
SET CLIENT_ENCODING TO value '

Also you can use the more standard SQL syr®8X NAMEZor this purpose:
SET NAMES value ’;

To query the current client encoding:
SHOW client_encoding;

To return to the default encoding:
RESET client_encoding;

Using PGCLIENTENCODINGIf environment variable®GCLIENTENCODINGs defined in the client’s
environment, that client encoding is automatically selected when a connection to the server is made.
(This can subsequently be overridden using any of the other methods mentioned above.)

Using the configuration variablelient_encoding . If the client_encoding variable in
postgresgl.conf is set, that client encoding is automatically selected when a connection to the
server is made. (This can subsequently be overridden using any of the other methods mentioned
above.)

If the conversion of a particular character is not possible -- suppose you EbasgPfor the server and
LATIN1 for the client, then some Japanese characters cannot be convdrtexNag -- it is transformed

to its hexadecimal byte values in parentheses, @26C) .

20.2.4. Further Reading

These are good sources to start learning about various kinds of encoding systems.

ftp://ftp.ora.com/pub/examples/nutshell/ujip/doc/cjk.inf

Detailed explanations &UC_JP, EUC_CNEUC_KREUC_Twappear in section 3.2.
http://www.unicode.org/

The web site of the Unicode Consortium

283

Chapter 20. Localization

RFC 2044
UTF-8 is defined here.

284

Chapter 21. Routine Database Maintenance
Tasks

There are a few routine maintenance chores that must be performed on a regular basis to keep a Post-
greSQL server running smoothly. The tasks discussed here are repetitive in nature and can easily be auto-
mated using standard Unix tools such as cron scripts. But it is the database administrator’s responsibility
to set up appropriate scripts, and to check that they execute successfully.

One obvious maintenance task is creation of backup copies of the data on a regular schedule. Without a
recent backup, you have no chance of recovery after a catastrophe (disk failure, fire, mistakenly dropping a
critical table, etc.). The backup and recovery mechanisms available in PostgreSQL are discussed at length
in Chapter 22

The other main category of maintenance task is periodic “vacuuming” of the database. This activity is
discussed irsection 21.1

Something else that might need periodic attention is log file management. This is discuSsedidm
21.3

PostgreSQL is low-maintenance compared to some other database management systems. Nonetheless,
appropriate attention to these tasks will go far towards ensuring a pleasant and productive experience with
the system.

21.1. Routine Vacuuming

PostgreSQL'&/ACuuntommand must be run on a regular basis for several reasons:

1. To recover disk space occupied by updated or deleted rows.
2. To update data statistics used by the PostgreSQL query planner.
3. To protect against loss of very old data dudremsaction ID wraparound

The frequency and scope of thieCUUMPperations performed for each of these reasons will vary depend-

ing on the needs of each site. Therefore, database administrators must understand these issues and develop
an appropriate maintenance strategy. This section concentrates on explaining the high-level issues; for de-
tails about command syntax and so on, sea/theuuncommand reference page.

Beginning in PostgreSQL 7.2, the standard formveiCUUMan run in parallel with normal database
operations (selects, inserts, updates, deletes, but not changes to table definitions). Routine vacuuming is
therefore not nearly as intrusive as it was in prior releases, and it's not as critical to try to schedule it at
low-usage times of day.

21.1.1. Recovering disk space

In normal PostgreSQL operation, ai?DATEor DELETEOf a row does not immediately remove the old
version of the row. This approach is necessary to gain the benefits of multiversion concurrency control (see
Chapter 12 the row version must not be deleted while it is still potentially visible to other transactions.
But eventually, an outdated or deleted row version is no longer of interest to any transaction. The space it

285

Chapter 21. Routine Database Maintenance Tasks

occupies must be reclaimed for reuse by new rows, to avoid infinite growth of disk space requirements.
This is done by runningg ACUUM

Clearly, a table that receives frequent updates or deletes will need to be vacuumed more often than tables
that are seldom updated. It may be useful to set up periodic cron tasks that vacuum only selected tables,
skipping tables that are known not to change often. This is only likely to be helpful if you have both large
heavily-updated tables and large seldom-updated tables --- the extra cost of vacuuming a small table isn’t
enough to be worth worrying about.

The standard form 0fACUUNS best used with the goal of maintaining a fairly level steady-state usage of
disk space. The standard form finds old row versions and makes their space available for re-use within the
table, but it does not try very hard to shorten the table file and return disk space to the operating system.
If you need to return disk space to the operating system you caRAGEUM FULL-- but what's the

point of releasing disk space that will only have to be allocated again soon? Moderately frequent standard
VACUUMunNs are a better approach than infrequeR€CUUM FULEuns for maintaining heavily-updated
tables.

Recommended practice for most sites is to schedule a databas&Adidainonce a day at a low-usage

time of day, supplemented by more frequent vacuuming of heavily-updated tables if necessary. (If you
have multiple databases in a cluster, don't forget to vacuum each one; the pregnamdb may be
helpful.) Use plaivACUUMNOtVACUUM FULLfor routine vacuuming for space recovery.

VACUUM FULIs recommended for cases where you know you have deleted the majority of rows in a
table, so that the steady-state size of the table can be shrunk substantiallya@ittum FULs more
aggressive approach.

If you have a table whose contents are deleted completely every so often, consider doingRWHDATE
rather than usin@ELETEfollowed by VACUUM

21.1.2. Updating planner statistics

The PostgreSQL query planner relies on statistical information about the contents of tables in order to
generate good plans for queries. These statistics are gathered AyAbh®¥ZEcommand, which can be
invoked by itself or as an optional stepWACUUMIt is important to have reasonably accurate statistics,
otherwise poor choices of plans may degrade database performance.

As with vacuuming for space recovery, frequent updates of statistics are more useful for heavily-updated
tables than for seldom-updated ones. But even for a heavily-updated table, there may be no need for
statistics updates if the statistical distribution of the data is not changing much. A simple rule of thumb
is to think about how much the minimum and maximum values of the columns in the table change.
For example, @éimestamp column that contains the time of row update will have a constantly-increasing
maximum value as rows are added and updated; such a column will probably need more frequent statistics
updates than, say, a column containing URLs for pages accessed on a website. The URL column may
receive changes just as often, but the statistical distribution of its values probably changes relatively slowly.

It is possible to ruTANALYZEon specific tables and even just specific columns of a table, so the flexibility
exists to update some statistics more frequently than others if your application requires it. In practice,
however, the usefulness of this feature is doubtful. Beginning in Postgre SQANARY ZEis a fairly fast
operation even on large tables, because it uses a statistical random sampling of the rows of a table rather
than reading every single row. So it's probably much simpler to just run it over the whole database every
so often.

286

Chapter 21. Routine Database Maintenance Tasks

Tip: Although per-column tweaking of ANALYZEfrequency may not be very productive, you may well
find it worthwhile to do per-column adjustment of the level of detail of the statistics collected by
ANALYZE Columns that are heavily used in WHERElauses and have highly irregular data distributions
may require a finer-grain data histogram than other columns. See ALTER TABLE SET STATISTICS

Recommended practice for most sites is to schedule a databasenid®¥ZEonce a day at a low-usage
time of day; this can usefully be combined with a nightiyxCUUMHowever, sites with relatively slowly
changing table statistics may find that this is overkill, and that less-freguxitYZEruns are sufficient.

21.1.3. Preventing transaction ID wraparound failures

PostgreSQL’s MVCC transaction semantics depend on being able to compare transaction ID (XID) hum-
bers: a row version with an insertion XID greater than the current transaction’s XID is “in the future” and
should not be visible to the current transaction. But since transaction IDs have limited size (32 bits at this
writing) a cluster that runs for a long time (more than 4 billion transactions) will stféersaction 1D
wraparound the XID counter wraps around to zero, and all of a sudden transactions that were in the past
appear to be in the future --- which means their outputs become invisible. In short, catastrophic data loss.
(Actually the data is still there, but that's cold comfort if you can’t get at it.)

Prior to PostgreSQL 7.2, the only defense against XID wraparound wasiriadie- at least every 4
billion transactions. This of course was not very satisfactory for high-traffic sites, so a better solution has
been devised. The new approach allows a server to remain up indefinitely, witidiut or any sort of
restart. The price is this maintenance requiremevery table in the database must be vacuumed at least
once every billion transactions

In practice this isn’t an onerous requirement, but since the consequences of failing to meet it can be
complete data loss (not just wasted disk space or slow performance), some special provisions have been
made to help database administrators keep track of the time since tha@&@stMThe remainder of this

section gives the details.

The new approach to XID comparison distinguishes two special XIDs, numbers 1 Badt&rapXID
andFrozenXID). These two XIDs are always considered older than every normal XID. Normal XIDs
(those greater than 2) are compared using modtfiarthmetic. This means that for every normal XID,
there are two billion XIDs that are “older” and two billion that are “newer”; another way to say it is that
the normal XID space is circular with no endpoint. Therefore, once a row version has been created with a
particular normal XID, the row version will appear to be “in the past” for the next two billion transactions,
no matter which normal XID we are talking about. If the row version still exists after more than two billion
transactions, it will suddenly appear to be in the future. To prevent data loss, old row versions must be
reassigned the XlBrozenXID sometime before they reach the two-billion-transactions-old mark. Once
they are assigned this special XID, they will appear to be “in the past” to all normal transactions regardless
of wraparound issues, and so such row versions will be good until deleted, no matter how long that is.
This reassignment of XID is handled MACUUM

VACUUI@ normal policy is to reassighrozenXID to any row version with a normal XID more than one
billion transactions in the past. This policy preserves the original insertion XID until it is not likely to be
of interest anymore. (In fact, most row versions will probably live and die without ever being “frozen”.)
With this policy, the maximum safe interval betwe#ACUUMunNs on any table is exactly one billion
transactions: if you wait longer, it's possible that a row version that was not quite old enough to be

287

Chapter 21. Routine Database Maintenance Tasks

reassigned last time is now more than two billion transactions old and has wrapped around into the future
---i.e., is lost to you. (Of course, it'll reappear after another two billion transactions, but that’s no help.)

Since periodicvACUUMuns are needed anyway for the reasons described earlier, it's unlikely that any
table would not be vacuumed for as long as a billion transactions. But to help administrators ensure this
constraint is metyACUUMtores transaction ID statistics in the system talgledatabase . In particu-

lar, thedatfrozenxid column of a databasejgy_database row is updated at the completion of any
database-wide vacuum operation (i\YACUUMhat does not name a specific table). The value stored in
this field is the freeze cutoff XID that was used by thatCcuuMommand. All normal XIDs older than

this cutoff XID are guaranteed to have been replaceérbyenXID within that database. A convenient

way to examine this information is to execute the query

SELECT datname, age(datfrozenxid) FROM pg_database;

The age column measures the number of transactions from the cutoff XID to the current transaction’s
XID.

With the standard freezing policy, thge column will start at one billion for a freshly-vacuumed database.
When theage approaches two billion, the database must be vacuumed again to avoid risk of wraparound
failures. Recommended practice is to vacuum each database at least once every half-a-billion (500 million)
transactions, so as to provide plenty of safety margin. To help meet this rule, each databas&caide
automatically delivers a warning if there are gny database entries showing aage of more than 1.5

billion transactions, for example:

play=# VACUUM;

WARNING: some databases have not been vacuumed in 1613770184 transactions

HINT: Better vacuum them within 533713463 transactions, or you may have a wraparound failure.
VACUUM

VACUUMvith the FREEZEoption uses a more aggressive freezing policy: row versions are frozen if they

are old enough to be considered good by all open transactions. In particulatAf@uUM FREEZB
performed in an otherwise-idle database, it is guaranteedathadw versions in that database will be

frozen. Hence, as long as the database is not modified in any way, it will not need subsequent vacu-
uming to avoid transaction ID wraparound problems. This technique is usedtdly to prepare the
template0 database. It should also be used to prepare any user-created databases that are to be marked

datallowconn =false in pg_database , since there isn't any convenient way to vacuum a database
that you can't connect to. Note theACUUM automatic warning message about unvacuumed databases
will ignore pg_database entries withdatallowconn = false , SO as to avoid giving false warnings

about these databases; therefore it's up to you to ensure that such databases are frozen correctly.

21.2. Routine Reindexing

In some situations it is worthwhile to rebuild indexes periodically with RENDEXcommand. (There
is alsocontrib/reindexdb which can reindex an entire database.) However, PostgreSQL 7.4 has sub-
stantially reduced the need for this activity compared to earlier releases.

288

Chapter 21. Routine Database Maintenance Tasks

21.3. Log File Maintenance

It's a good idea to save the database server’s log output somewhere, rather than just routing it to
/devinull . The log output is invaluable when it comes time to diagnose problems. However, the
log output tends to be voluminous (especially at higher debug levels) and you won’t want to save it
indefinitely. You need to “rotate” the log files so that new log files are started and old ones thrown away
every so often.

If you simply direct the stderr of thpostmaster into a file, the only way to truncate the log file is to
stop and restart thgostmaster . This may be OK for development setups but you won’t want to run a
production server that way.

The simplest production-grade approach to managing log output is to send it all to syslog and let syslog
deal with file rotation. To do this, set the configurations paranwtdog to 2 (to log to syslog only)

in postgresgl.conf . Then you can send|iGHUPsignal to the syslog daemon whenever you want to
force it to start writing a new log file. If you want to automate log rotation, the logrotate program can be
configured to work with log files from syslog.

On many systems, however, syslog is not very reliable, particularly with large log messages; it may trun-
cate or drop messages just when you need them the most. You may find it more useful to pipe the stderr
of the postmaster to some type of log rotation program. If you start the server withctl , then the

stderr of thepostmaster is already redirected to stdout, so you just need a pipe command:

pg_ctl start | logrotate

The PostgreSQL distribution doesn't include a suitable log rotation program, but there are many available
on the Internet; one is included in the Apache distribution, for example.

289

Chapter 22. Backup and Restore

As everything that contains valuable data, PostgreSQL databases should be backed up regularly. While the
procedure is essentially simple, it is important to have a basic understanding of the underlying techniques
and assumptions.

There are two fundamentally different approaches to backing up PostgreSQL data:

+ SQL dump

« File system level backup

22.1. SQL Dump

The idea behind the SQL-dump method is to generate a text file with SQL commands that, when fed back
to the server, will recreate the database in the same state as it was at the time of the dump. PostgreSQL
provides the utility program pg_dump for this purpose. The basic usage of this command is:

pg_dump dbname > outfile

As you see, pg_dump writes its results to the standard output. We will see below how this can be useful.

pg_dump is a regular PostgreSQL client application (albeit a particularly clever one). This means that you
can do this backup procedure from any remote host that has access to the database. But remember that
pg_dump does not operate with special permissions. In particular, you must have read access to all tables
that you want to back up, so in practice you almost always have to be a database superuser.

To specify which database server pg_dump should contact, use the command line -bptiosss and

-p port . The default host is the local host or whatever yepGHOSENvironment variable specifies. Sim-
ilarly, the default port is indicated by ti&GPORENVironment variable or, failing that, by the compiled-in
default. (Conveniently, the server will normally have the same compiled-in default.)

As any other PostgreSQL client application, pg_dump will by default connect with the database user name
that is equal to the current operating system user name. To override this, either spetifphi®n or set

the environment variableGUSERRemember that pg_dump connections are subject to the normal client
authentication mechanisms (which are describe@hiapter 1.

Dumps created by pg_dump are internally consistent, that is, updates to the database while pg_dump is
running will not be in the dump. pg_dump does not block other operations on the database while it is
working. (Exceptions are those operations that need to operate with an exclusive lock, suatiamm

FULL.)

Important: When your database schema relies on OIDs (for instance as foreign keys) you must
instruct pg_dump to dump the OIDs as well. To do this, use the -o command line option. “Large
objects” are not dumped by default, either. See pg_dump’s command reference page if you use large
objects.

290

Chapter 22. Backup and Restore

22.1.1. Restoring the dump

The text files created by pg_dump are intended to be read in by the psql program. The general command
form to restore a dump is

psqgl dbname < infile

whereinfile is what you used asutfile for the pg_dump command. The databagéname will

not be created by this command, you must create it yourself fsomlate0 before executing psql (e.g.,
with createdb -T template0 dbname). psql supports similar options to pg_dump for controlling the
database server location and the user name. See its reference page for more information.

If the objects in the original database were owned by different users, then the dump will instruct psql to
connect as each affected user in turn and then create the relevant objects. This way the original ownership
is preserved. This also means, however, that all these users must already exist, and furthermore that you
must be allowed to connect as each of them. It might therefore be necessary to temporarily relax the client
authentication settings.

Once restored, it is wise to rukNALYZEon each database so the optimizer has useful statistics. You can
also runvacuumdb -a -z to ANALYZEall databases.

The ability of pg_dump and psql to write to or read from pipes makes it possible to dump a database
directly from one server to another; for example:

pg_dump -h hostl dbname | psql -h host2 dbname

Important: The dumps produced by pg_dump are relative to template0 . This means that any
languages, procedures, etc. added to templatel will also be dumped by pg_dump. As a result,
when restoring, if you are using a customized templatel , you must create the empty database from
template0 , as in the example above.

Tip: Restore performance can be improved by increasing the configuration parameter sort_mem (see
Section 16.4.2.1).

22.1.2. Using pg_dumpall

The above mechanism is cumbersome and inappropriate when backing up an entire database cluster. For
this reason the pg_dumpall program is provided. pg_dumpall backs up each database in a given cluster,
and also preserves cluster-wide data such as users and groups. The call sequence for pg_dumpall is simply

pg_dumpall > outfile
The resulting dump can be restored with psql:

psql templatel < infile

201

Chapter 22. Backup and Restore

(Actually, you can specify any existing database name to start from, but if you are reloading in an empty
cluster therntemplatel is the only available choice.) It is always necessary to have database superuser
access when restoring a pg_dumpall dump, as that is required to restore the user and group information.

22.1.3. Large Databases

Since PostgreSQL allows tables larger than the maximum file size on your system, it can be problematic
to dump such a table to a file, since the resulting file will likely be larger than the maximum size allowed
by your system. As pg_dump can write to the standard output, you can just use standard Unix tools to
work around this possible problem.

Use compressed dumpsYou can use your favorite compression program, for example gzip.
pg_dump dbname | gzip > filename .gz
Reload with

createdb dbname
gunzip -c filename .gz | psql dbname

or

cat filename .gz | gunzip | psql dbname

Usesplit . Thesplit command allows you to split the output into pieces that are acceptable in size to
the underlying file system. For example, to make chunks of 1 megabyte:

pg_dump dbname | split -b 1m - filename
Reload with

createdb dbname
cat filename * | psgl dbname

Use the custom dump format. If PostgreSQL was built on a system with the zlib compression library
installed, the custom dump format will compress data as it writes it to the output file. For large databases,
this will produce similar dump sizes to usiggip , but has the added advantage that the tables can be
restored selectively. The following command dumps a database using the custom dump format:

pg_dump -Fc dbname > filename

See the pg_dump and pg_restore reference pages for details.

22.1.4. Caveats

pg_dump (and by implication pg_dumpall) has a few limitations which stem from the difficulty of recon-
structing certain information from the system catalogs.

Specifically, the order in which pg_dump writes the objects is not very sophisticated. This can lead to
problems for example when functions are used as column default values. The only answer is to manually

292

Chapter 22. Backup and Restore

reorder the dump. If you created circular dependencies in your schema then you will have more work to
do.

For reasons of backward compatibility, pg_dump does not dump large objects by default. To dump large
objects you must use either the custom or the TAR output format, and uge tpion in pg_dump. See

the reference pages for details. The directamtrib/pg_dumplo of the PostgreSQL source tree also
contains a program that can dump large objects.

Please familiarize yourself with the pg_dump reference page.

22.2. File system level backup

An alternative backup strategy is to directly copy the files that PostgreSQL uses to store the data in the
database. Iisection 16.2t is explained where these files are located, but you have probably found them
already if you are interested in this method. You can use whatever method you prefer for doing usual file
system backups, for example

tar -cf backup.tar /usr/local/pgsgl/data

There are two restrictions, however, which make this method impractical, or at least inferior to the
pg_dump method:

1. The database serverustbe shut down in order to get a usable backup. Half-way measures such as
disallowing all connections will not work as there is always some buffering going on. For this reason
it is also not advisable to trust file systems that claim to support “consistent snapshots”. Information
about stopping the server can be foundsiection 16.6Needless to say that you also need to shut
down the server before restoring the data.

2.1f you have dug into the details of the file system layout of the data you may be tempted to try to
back up or restore only certain individual tables or databases from their respective files or directories.
This will notwork because the information contained in these files contains only half the truth. The
other half is in the commit log filesg_clog/* , which contain the commit status of all transactions.
A table file is only usable with this information. Of course it is also impossible to restore only a table
and the associatgsh_clog data because that would render all other tables in the database cluster
useless.

An alternative file-system backup approach is to make a “consistent snapshot” of the data directory, if the
file system supports that functionality. Such a snapshot will save the database files in a state where the
database server was not properly shut down; therefore, when you start the database server on this backed
up directory, it will think the server had crashed and replay the WAL log. This is not a problem, just be
aware of it.

Note that the file system backup will not necessarily be smaller than an SQL dump. On the contrary, it
will most likely be larger. (pg_dump does not need to dump the contents of indexes for example, just the
commands to recreate them.)

293

Chapter 22. Backup and Restore

22.3. Migration Between Releases

As a general rule, the internal data storage format is subject to change between major releases of Post-
greSQL (where the number after the first dot changes). This does not apply to different minor releases
under the same major release (where the number of the second dot changes); these always have compat-
ible storage formats. For example, releases 7.0.1, 7.1.2, and 7.2 are not compatible, whereas 7.1.1 and
7.1.2 are. When you update between compatible versions, then you can simply reuse the data area in disk
by the new executables. Otherwise you need to “back up” your data and “restore” it on the new server,
using pg_dump. (There are checks in place that prevent you from doing the wrong thing, so no harm can
be done by confusing these things.) The precise installation procedure is not subject of this section; these
details are irChapter 14

The least downtime can be achieved by installing the new server in a different directory and running both
the old and the new servers in parallel, on different ports. Then you can use something like

pg_dumpall -p 5432 | psqgl -d templatel -p 6543

to transfer your data. Or use an intermediate file if you want. Then you can shut down the old server and
start the new server at the port the old one was running at. You should make sure that the database is
not updated after you run pg_dumpall, otherwise you will obviously lose that dateClsgeer 1%or
information on how to prohibit access. In practice you probably want to test your client applications on
the new setup before switching over.

If you cannot or do not want to run two servers in parallel you can do the back up step before installing
the new version, bring down the server, move the old version out of the way, install the new version, start
the new server, restore the data. For example:

pg_dumpall > backup

pg_ctl stop

mv /usr/local/pgsql /usr/local/pgsql.old
cd ~/postgresql-7.4.2

gmake install

initdb -D /usr/local/pgsgl/data
postmaster -D /usr/local/pgsql/data
psql templatel < backup

SeeChapter 1@&bout ways to start and stop the server and other details. The installation instructions will
advise you of strategic places to perform these steps.

Note: When you “move the old installation out of the way” it is no longer perfectly usable. Some parts
of the installation contain information about where the other parts are located. This is usually not a
big problem but if you plan on using two installations in parallel for a while you should assign them
different installation directories at build time.

294

Chapter 23. Monitoring Database Activity

A database administrator frequently wonders, “What is the system doing right now?” This chapter dis-
cusses how to find that out.

Several tools are available for monitoring database activity and analyzing performance. Most of this chap-
ter is devoted to describing PostgreSQL's statistics collector, but one should not neglect regular Unix mon-
itoring programs such gss andtop . Also, once one has identified a poorly-performing query, further
investigation may be needed using PostgreS@XBLAIN commandSection 13.1discusse£XPLAIN

and other methods for understanding the behavior of an individual query.

23.1. Standard Unix Tools

On most platforms, PostgreSQL modifies its command title as reported o that individual server
processes can readily be identified. A sample display is

$ ps auxww | grep “postgres

postgres 960 0.0 1.1 6104 1480 pts/1 SN 13:17 0:00 postmaster -i

postgres 963 0.0 1.1 7084 1472 pts/1 SN 13:17 0:00 postgres: stats buffer process
postgres 965 0.0 1.1 6152 1512 pts/1 SN 13:17 0:00 postgres: stats collector process
postgres 998 0.0 2.3 6532 2992 pts/1 SN 13:18 0:00 postgres: tgl runbug 127.0.0.1 idle
postgres 1003 0.0 2.4 6532 3128 pts/1 SN 13:19 0:00 postgres: tgl regression [local] SELEC
postgres 1016 0.1 2.4 6532 3080 pts/1 SN 13:19 0:00 postgres: tgl regression [local] idle in

(The appropriate invocation @k varies across different platforms, as do the details of what is shown.

This example is from a recent Linux system.) The first process listed here is the postmaster, the master
server process. The command arguments shown for it are the same ones given when it was launched.
The next two processes implement the statistics collector, which will be described in detail in the next
section. (These will not be present if you have set the system not to start the statistics collector.) Each
of the remaining processes is a server process handling one client connection. Each such process sets its
command line display in the form

postgres: user database host activity

The user, database, and connection source host items remain the same for the life of the client connection,
but the activity indicator changes. The activity mayitile (i.e., waiting for a client commandigle

in transaction (waiting for client inside éBEGIN block), or a command type name suchSE. ECT.

Also, waiting is attached if the server process is presently waiting on a lock held by another server
process. In the above example we can infer that process 1003 is waiting for process 1016 to complete its
transaction and thereby release some lock or other.

Tip: Solaris requires special handling. You must use /usr/ucb/ps , rather than /bin/ps . You also
must use two w flags, not just one. In addition, your original invocation of the postmaster command
must have a shorter ps status display than that provided by each server process. If you fail to do all
three things, the ps output for each server process will be the original postmaster command line.

295

Chapter 23. Monitoring Database Activity

23.2. The Statistics Collector

PostgreSQL'sstatistics collectoris a subsystem that supports collection and reporting of information
about server activity. Presently, the collector can count accesses to tables and indexes in both disk-block
and individual-row terms. It also supports determining the exact command currently being executed by
other server processes.

23.2.1. Statistics Collection Configuration

Since collection of statistics adds some overhead to query execution, the system can be configured to
collect or not collect information. This is controlled by configuration parameters that are normally set in
postgresgl.conf . (SeeSection 16.4or details about setting configuration parameters.)

The parametestats_start_collector must be set tarue for the statistics collector to be launched

at all. This is the default and recommended setting, but it may be turned off if you have no interest in
statistics and want to squeeze out every last drop of overhead. (The savings is likely to be small, however.)
Note that this option cannot be changed while the server is running.

The parameterstats_command_string , stats_block_level , andstats_row_level control how

much information is actually sent to the collector and thus determine how much run-time overhead occurs.
These respectively determine whether a server process sends its current command string, disk-block-level
access statistics, and row-level access statistics to the collector. Normally these parameters are set in
postgresgl.conf so that they apply to all server processes, but it is possible to turn them on or off in
individual sessions using th&ET command. (To prevent ordinary users from hiding their activity from

the administrator, only superusers are allowed to change these paramet&Em)ith

Note: Since the parameters stats_command_string , stats_block_level , and stats_row_level
default to false , very few statistics are collected in the default configuration. Enabling one or more
of these configuration variables will significantly enhance the amount of useful data produced by the
statistics collector, at the expense of additional run-time overhead.

23.2.2. Viewing Collected Statistics

Several predefined views are available to show the results of statistics collection, liStablén23-1
Alternatively, one can build custom views using the underlying statistics functions.

When using the statistics to monitor current activity, it is important to realize that the information does
not update instantaneously. Each individual server process transmits new access counts to the collector
just before waiting for another client command; so a query still in progress does not affect the displayed
totals. Also, the collector itself emits new totals at most onceppstat_stat_interval milliseconds

(500 by default). So the displayed totals lag behind actual activity.

Another important point is that when a server process is asked to display any of these statistics, it first
fetches the most recent totals emitted by the collector process and then continues to use this snapshot for
all statistical views and functions until the end of its current transaction. So the statistics will appear not to
change as long as you continue the current transaction. This is a feature, not a bug, because it allows you
to perform several queries on the statistics and correlate the results without worrying that the numbers are

296

Chapter 23. Monitoring Database Activity

changing underneath you. But if you want to see new results with each query, be sure to do the queries
outside any transaction block.

Table 23-1. Standard Statistics Views

View Name Description

pg_stat_activity One row per server process, showing process ID,
database, user, current query, and the time at which
the current query began execution. The columns that
report data on the current query are only available if
the parametestats_command_string has been
turned on. Furthermore, these columns read as pull
unless the user examining the view is a superuser or
the same as the user owning the process being
reported on. (Note that because of the collector’s
reporting delay, current query will only be
up-to-date for long-running queries.)

pg_stat_database One row per database, showing the number of gctive
backend server processes, total transactions
committed and total rolled back in that database,
total disk blocks read, and total number of buffer
hits (i.e., block read requests avoided by finding|the
block already in buffer cache).

pg_stat_all_tables For each table in the current database, total numbers
of sequential and index scans, total numbers of fows
returned by each type of scan, and totals of row
insertions, updates, and deletions.

pg_stat_sys_tables Same apg_stat_all_tables , except that only
system tables are shown.
pg_stat_user_tables Same apg_stat_all_tables , except that only

user tables are shown.

pg_stat_all_indexes For each index in the current database, the total
number of index scans that have used that index, the
number of index rows read, and the number of
successfully fetched heap rows. (This may be less
when there are index entries pointing to expired
heap rows.)

pg_stat_sys_indexes Same apg_stat_all_indexes , except that only
indexes on system tables are shown.

pg_stat_user_indexes Same apg_stat_all_indexes , except that only
indexes on user tables are shown.

297

Chapter 23. Monitoring Database Activity

View Name Description

pg_statio_all_tables For each table in the current database, the total
number of disk blocks read from that table, the

number of buffer hits, the numbers of disk blocks
read and buffer hits in all the indexes of that table
the numbers of disk blocks read and buffer hits from
the table’s auxiliary TOAST table (if any), and th
numbers of disk blocks read and buffer hits for the
TOAST table’s index.

pg_statio_sys_tables Same apg_statio_all_tables , except that
only system tables are shown.

1)

pg_statio_user_tables Same apg_statio_all_tables , except that
only user tables are shown.
pg_statio_all_indexes For each index in the current database, the numbers
of disk blocks read and buffer hits in that index.
pg_statio_sys_indexes Same apg_statio_all_indexes , except that
only indexes on system tables are shown.
pg_statio_user_indexes Same agg_statio_all_indexes , except that
only indexes on user tables are shown.
pg_statio_all_sequences For each sequence object in the current database, the
numbers of disk blocks read and buffer hits in that
sequence.
pg_statio_sys_sequences Same apg_statio_all_sequences , except that

only system sequences are shown. (Presently, no
system sequences are defined, so this view is always
empty.)
pg_statio_user_sequences Same apg_statio_all_sequences , except tha
only user sequences are shown.

—

The per-index statistics are particularly useful to determine which indexes are being used and how effec-
tive they are.

Thepg_statio_ views are primarily useful to determine the effectiveness of the buffer cache. When the
number of actual disk reads is much smaller than the number of buffer hits, then the cache is satisfying
most read requests without invoking a kernel call. However, these statistics do not give the entire story:
due to the way in which PostgreSQL handles disk 1/0, data that is not in the PostgreSQL buffer cache
may still reside in the kernel's I/O cache, and may therefore still be fetched without requiring a physical
read. Users interested in obtaining more detailed information on PostgreSQL 1/O behavior are advised to
use the PostgreSQL statistics collector in combination with operating system utilities that allow insight
into the kernel's handling of I/O.

Other ways of looking at the statistics can be set up by writing queries that use the same underlying
statistics access functions as these standard views do. These functions are Tistelé 3-2 The per-

database access functions take a database OID as argument to identify which database to report on. The
per-table and per-index functions take a table or index OID. (Note that only tables and indexes in the cur-
rent database can be seen with these functions.) The per-backend process access functions take a backend
process ID number, which ranges from one to the number of currently active backend processes.

298

Chapter 23. Monitoring Database Activity

Table 23-2. Statistics Access Functions

Function Return Type Description
pg_stat_get_db_numbackends (oidnteger Number of active backend
processes for database
pg_stat_get_db_xact_commit (oighigint Transactions committed in
database
pg_stat_get_db_xact_rollback (Joigint Transactions rolled back in
database
pg_stat_get_db_blocks_fetched bigjint) Number of disk block fetch
requests for database
pg_stat_get_db_blocks_hit (oid Pigint Number of disk block fetch
requests found in cache for
database
pg_stat_get_numscans (oid) bigint Number of sequential scans dophe

when argument is a table, or
number of index scans done when
argument is an index

pg_stat_get_tuples_returned (dadgint Number of rows read by
sequential scans when argument is
a table, or number of index rows
read when argument is an index

pg_stat_get_tuples_fetched (oighigint Number of valid (unexpired) table
rows fetched by sequential scan
when argument is a table, or

fetched by index scans using thi
index when argument is an index

n

[2)

pg_stat_get_tuples_inserted (dadgint Number of rows inserted into
table

pg_stat_get_tuples_updated (oighigint Number of rows updated in table

pg_stat_get_tuples_deleted (oithigint Number of rows deleted from
table

pg_stat_get_blocks_fetched (oidbigint Number of disk block fetch
requests for table or index

pg_stat_get_blocks_hit (oid) |bigint Number of disk block requests

found in cache for table or index

pg_stat_get_backend_idset () [set of integer Set of currently active backend
process IDs (from 1 to the number
of active backend processes). See
usage example in the text.

pg_backend_pid () integer Process ID of the backend process
attached to the current session

299

Chapter 23. Monitoring Database Activity

Function Return Type Description

pg_stat_get_backend_pid (integefint¢ger Process ID of the given backend
process

pg_stat_get_backend_dbid (integmid) Database ID of the given backend
process

pg_stat_get_backend_userid (inteighr) User ID of the given backend
process

pg_stat_get_backend_activity (fiettger) Active command of the given

backend process (null if the
current user is not a superuser nor

the same user as that of the session
being queried, or

stats_command_string is not
on)
pg_stat_get_backend_activity start ftimestéinggeith)time zone The time at which the given

backend process’ currently
executing query was started (nul
if the current user is not a
superuser nor the same user as|that
of the session being queried, or

stats_command_string is not
on)
pg_stat_reset () boolean Reset all currently collected
statistics
Note: pg_stat_get_db_blocks_fetched minus pg_stat_get_db_blocks_hit gives the number of

kernel read() calls issued for the table, index, or database; but the actual number of physical reads
is usually lower due to kernel-level buffering.

The functionpg_stat_get_backend_idset provides a convenient way to generate one row for each
active backend process. For example, to show the PIDs and current queries of all backend processes:

SELECT pg_stat_get backend_pid(s.backendid) AS procpid,
pg_stat_get_backend_activity(s.backendid) AS current_query
FROM (SELECT pg_stat_get backend_idset() AS backendid) AS s;

23.3. Viewing Locks

Another useful tool for monitoring database activity is fgelocks system table. It allows the database
administrator to view information about the outstanding locks in the lock manager. For example, this

300

Chapter 23. Monitoring Database Activity

capability can be used to:

« View all the locks currently outstanding, all the locks on relations in a particular database, all the locks
on a particular relation, or all the locks held by a particular PostgreSQL session.

- Determine the relation in the current database with the most ungranted locks (which might be a source
of contention among database clients).

- Determine the effect of lock contention on overall database performance, as well as the extent to which
contention varies with overall database traffic.

Details of thepg_locks view appear irSection 43.32For more information on locking and managing
concurrency with PostgreSQL, refer@hapter 12

301

Chapter 24. Monitoring Disk Usage

This chapter discusses how to monitor the disk usage of a PostgreSQL database system. In the current
release, the database administrator does not have much control over the on-disk storage layout, so this
chapter is mostly informative and can give you some ideas how to manage the disk usage with operating

system tools.

24.1. Determining Disk Usage

Each table has a primary heap disk file where most of the data is stored. To store long column val-
ues, there is also a TOAST file associated with the table, named based on the table’s OID (actually
pg_class.relfilenode), and an index on the TOAST table. There also may be indexes associated

with the base table.

You can monitor disk space from three places: from psql ugg@QUUNhformation, from psql using the
tools in contrib/dbsize , and from the command line using the toolscomtrib/oid2name . Using
psql on a recently vacuumed or analyzed database, you can issue queries to see the disk usage of any table:

SELECT relfilenode, relpages FROM pg_class WHERE relname = ’customer’;

relfilenode | relpages
16806 | 60
(1 row)

Each page is typically 8 kilobytes. (Remembelpages is only updated by ACUUMINdANALYZE)

To show the space used by TOAST tables, use a query like the following, substitutirfikkvede
number of the heap (determined by the query above):

SELECT relname, relpages
FROM pg_class
WHERE relname = ’'pg_toast _16806' OR relname = ’pg_toast_16806_index’

ORDER BY relname;

relname | relpages
+
pg_toast_ 16806 | 0
pg_toast_16806_index | 1

You can easily display index sizes, too:

SELECT c2.relname, c2.relpages
FROM pg_class ¢, pg_class c¢2, pg_index i
WHERE c.relname = ’'customer’
AND c.oid = i.indrelid
AND c2.0id = i.indexrelid
ORDER BY c2.relname;

relname | relpages

302

Chapter 24. Monitoring Disk Usage

+
customer_id_indexdex | 26

It is easy to find your largest tables and indexes using this information:

SELECT relname, relpages FROM pg_class ORDER BY relpages DESC;

relname | relpages
bigtable | 3290
customer [3144
contrib/dbsize loads functions into your database that allow you to find the size of a table or database

from inside psql without the need f®ACUUNOr ANALYZE

You can also useontrib/oid2name to show disk usage. SE&EADME.oid2name in that directory for
examples. It includes a script that shows disk usage for each database.

24.2. Disk Full Failure

The most important disk monitoring task of a database administrator is to make sure the disk doesn’t
grow full. A filled data disk may result in subsequent corruption of database indexes, but not of the tables
themselves. If the WAL files are on the same disk (as is the case for a default configuration) then a filled
disk during database initialization may result in corrupted or incomplete WAL files. This failure condition

is detected and the database server will refuse to start up.

If you cannot free up additional space on the disk by deleting other things you can move some of the
database files to other file systems and create a symlink from the original location. But note that pg_dump
cannot save the location layout information of such a setup; a restore would put everything back in one
place. To avoid running out of disk space, you can place the WAL files or individual databases in other
locations while creating them. See timtdb documentation an&ection 18.5or more information

about that.

Tip: Some file systems perform badly when they are almost full, so do not wait until the disk is full to
take action.

303

Chapter 25. Write-Ahead Logging (WAL)

Write-Ahead LoggingWAL) is a standard approach to transaction logging. Its detailed description may

be found in most (if not all) books about transaction processing. Briefly, WAL's central concept is that
changes to data files (where tables and indexes reside) must be written only after those changes have been
logged, that is, when log records have been flushed to permanent storage. If we follow this procedure, we
do not need to flush data pages to disk on every transaction commit, because we know that in the event of
a crash we will be able to recover the database using the log: any changes that have not been applied to the
data pages will first be redone from the log records (this is roll-forward recovery, also known as REDO)
and then changes made by uncommitted transactions will be removed from the data pages (roll-backward
recovery, UNDO).

25.1. Benefits of WAL

The first obvious benefit of using WAL is a significantly reduced number of disk writes, since only the log
file needs to be flushed to disk at the time of transaction commit; in multiuser environments, commits of
many transactions may be accomplished with a sifeylec() of the log file. Furthermore, the log file

is written sequentially, and so the cost of syncing the log is much less than the cost of flushing the data
pages.

The next benefit is consistency of the data pages. The truth is that, before WAL, PostgreSQL was never
able to guarantee consistency in the case of a crash. Before WAL, any crash during writing could result
in:

1. index rows pointing to nonexistent table rows
2.index rows lost in split operations
3. totally corrupted table or index page content, because of partially written data pages

Problems with indexes (problems 1 and 2) could possibly have been fixed by addiior@l calls,
but it is not obvious how to handle the last case without WAL; WAL saves the entire data page content in
the log if that is required to ensure page consistency for after-crash recovery.

25.2. Future Benefits

The UNDO operation is not implemented. This means that changes made by aborted transactions will still
occupy disk space and that a permanantclog file to hold the status of transactions is still needed,
since transaction identifiers cannot be reused. Once UNDO is implemegtethg will no longer be
required to be permanent; it will be possible to rempgeclog at shutdown. (However, the urgency of

this concern has decreased greatly with the adoption of a segmented storage meihoddgr : it is no

longer necessary to keep gid_clog entries around forever.)

With UNDO, it will also be possible to implemesavepointdo allow partial rollback of invalid transac-

tion operations (parser errors caused by mistyping commands, insertion of duplicate primary/unique keys
and so on) with the ability to continue or commit valid operations made by the transaction before the error.
At present, any error will invalidate the whole transaction and require a transaction abort.

304

Chapter 25. Write-Ahead Logging (WAL)

WAL offers the opportunity for a new method for database on-line backup and restore (BAR). To use this
method, one would have to make periodic saves of data files to another disk, a tape or another host and
also archive the WAL log files. The database file copy and the archived log files could be used to restore
just as if one were restoring after a crash. Each time a new database file copy was made the old log files
could be removed. Implementing this facility will require the logging of data file and index creation and
deletion; it will also require development of a method for copying the data files (operating system copy
commands are not suitable).

A difficulty standing in the way of realizing these benefits is that they require saving WAL entries for
considerable periods of time (e.g., as long as the longest possible transaction if transaction UNDO is
wanted). The present WAL format is extremely bulky since it includes many disk page snapshots. This is
not a serious concern at present, since the entries only need to be kept for one or two checkpoint intervals;
but to achieve these future benefits some sort of compressed WAL format will be needed.

25.3. WAL Configuration

There are several WAL-related configuration parameters that affect database performance. This section
explains their use. Consufiiection 16.4or details about setting configuration parameters.

Checkpointsare points in the sequence of transactions at which it is guaranteed that the data files have
been updated with all information logged before the checkpoint. At checkpoint time, all dirty data pages
are flushed to disk and a special checkpoint record is written to the log file. As result, in the event of

a crash, the recoverer knows from what record in the log (known as the redo record) it should start the
REDO operation, since any changes made to data files before that record are already on disk. After a
checkpoint has been made, any log segments written before the redo records are no longer needed and can
be recycled or removed. (When WAL-based BAR is implemented, the log segments would be archived
before being recycled or removed.)

The server spawns a special process every so often to create the next checkpoint. A checkpoint is cre-
ated everyheckpoint_segments log segments, or evegheckpoint_timeout seconds, whichever

comes first. The default settings are 3 segments and 300 seconds respectively. It is also possible to force a
checkpoint by using the SQL comma@HECKPOINT

Reducingcheckpoint_segments and/orcheckpoint_timeout causes checkpoints to be done more
often. This allows faster after-crash recovery (since less work will need to be redone). However, one must
balance this against the increased cost of flushing dirty data pages more often. In addition, to ensure
data page consistency, the first modification of a data page after each checkpoint results in logging the
entire page content. Thus a smaller checkpoint interval increases the volume of output to the log, partially
negating the goal of using a smaller interval, and in any case causing more disk I/O.

There will be at least one 16 MB segment file, and will normally not be more than 2 *
checkpoint_segments + 1 files. You can use this to estimate space requirements for WAL. Ordinarily,
when old log segment files are no longer needed, they are recycled (renamed to become the next
segments in the numbered sequence). If, due to a short-term peak of log output rate, there are more than
2 * checkpoint_segments + 1 segment files, the unneeded segment files will be deleted instead of
recycled until the system gets back under this limit.

There are two commonly used WAL functionisoginsert and LogFlush . Loglnsert is used to
place a new record into the WAL buffers in shared memory. If there is no space for the new record,
Loginsert will have to write (move to kernel cache) a few filled WAL buffers. This is undesirable be-

305

Chapter 25. Write-Ahead Logging (WAL)

causelLoglnsert is used on every database low level modification (for example, row insertion) at a time
when an exclusive lock is held on affected data pages, so the operation needs to be as fast as possible.
What is worse, writing WAL buffers may also force the creation of a new log segment, which takes even
more time. Normally, WAL buffers should be written and flushed hygFlush request, which is made,

for the most part, at transaction commit time to ensure that transaction records are flushed to permanent
storage. On systems with high log outpubgFlush requests may not occur often enough to prevent

WAL buffers being written byLoginsert . On such systems one should increase the number of WAL
buffers by modifying the configuration parameteti_buffers . The default number of WAL buffers is

8. Increasing this value will correspondingly increase shared memory usage.

Checkpoints are fairly expensive because they force all dirty kernel buffers to disk using the operating
systemsync() call. Busy servers may fill checkpoint segment files too quickly, causing excessive check-
pointing. If such forced checkpoints happen more frequently tiaekpoint warning seconds, a
message, will be output to the server logs recommending increasikpoint_segments

The commit_delay parameter defines for how many microseconds the server process will sleep after
writing a commit record to the log withoginsert but before performing &ogFlush . This delay

allows other server processes to add their commit records to the log so as to have all of them flushed with
a single log sync. No sleep will occurfifync is not enabled, nor if fewer tharwmmit_siblings other
sessions are currently in active transactions; this avoids sleeping when it's unlikely that any other session
will commit soon. Note that on most platforms, the resolution of a sleep request is ten milliseconds, so
that any nonzeroommit_delay setting between 1 and 10000 microseconds would have the same effect.
Good values for these parameters are not yet clear; experimentation is encouraged.

Thewal_sync_method parameter determines how PostgreSQL will ask the kernel to force WAL updates
out to disk. All the options should be the same as far as reliability goes, but it's quite platform-specific
which one will be the fastest. Note that this parameter is irrelevdsyrit has been turned off.

Setting thewal_debug parameter to any nonzero value will result in eaohginsert andLogFlush
WAL call being logged to the server log. At present, it makes no difference what the nonzero value is.
This option may be replaced by a more general mechanism in the future.

25.4. Internals

WAL is automatically enabled; no action is required from the administrator except ensuring that the ad-
ditional disk-space requirements of the WAL logs are met, and that any necessary tuning is done (see
Section 25.3

WAL logs are stored in the directoyy_xlog under the data directory, as a set of segment files, each
16 MB in size. Each segment is divided into 8 kB pages. The log record headers are described in
access/xlog.n ; the record content is dependent on the type of event that is being logged. Segment
files are given ever-increasing numbers as names, start@@@d00000000000 . The numbers do not
wrap, at present, but it should take a very long time to exhaust the available stock of numbers.

The WAL buffers and control structure are in shared memory and are handled by the server child pro-
cesses; they are protected by lightweight locks. The demand on shared memory is dependent on the
number of buffers. The default size of the WAL buffers is 8 buffers of 8 kB each, or 64 kB total.

Itis of advantage if the log is located on another disk than the main database files. This may be achieved by
moving the directorypg_xlog to another location (while the server is shut down, of course) and creating
a symbolic link from the original location in the main data directory to the new location.

306

Chapter 25. Write-Ahead Logging (WAL)

The aim of WAL, to ensure that the log is written before database records are altered, may be subverted
by disk drives that falsely report a successful write to the kernel, when, in fact, they have only cached the
data and not yet stored it on the disk. A power failure in such a situation may still lead to irrecoverable
data corruption. Administrators should try to ensure that disks holding PostgreSQL’s WAL log files do
not make such false reports.

After a checkpoint has been made and the log flushed, the checkpoint’'s position is saved in the file
pg_control . Therefore, when recovery is to be done, the server first reqdontrol and then the
checkpoint record; then it performs the REDO operation by scanning forward from the log position indi-
cated in the checkpoint record. Because the entire content of data pages is saved in the log on the first page
modification after a checkpoint, all pages changed since the checkpoint will be restored to a consistent
state.

Usingpg_control to get the checkpoint position speeds up the recovery process, but to handle possible
corruption ofpg_control , we should actually implement the reading of existing log segments in reverse
order -- newest to oldest -- in order to find the last checkpoint. This has not been implemented, yet.

307

Chapter 26. Regression Tests

The regression tests are a comprehensive set of tests for the SQL implementation in PostgreSQL. They
test standard SQL operations as well as the extended capabilities of PostgreSQL. From PostgreSQL 6.1
onward, the regression tests are current for every official release.

26.1. Running the Tests

The regression test can be run against an already installed and running server, or using a temporary in-
stallation within the build tree. Furthermore, there is a “parallel” and a “sequential” mode for running the
tests. The sequential method runs each test script in turn, whereas the parallel method starts up multiple
server processes to run groups of tests in parallel. Parallel testing gives confidence that interprocess com-
munication and locking are working correctly. For historical reasons, the sequential test is usually run
against an existing installation and the parallel method against a temporary installation, but there are no
technical reasons for this.

To run the regression tests after building but before installation, type

gmake check

in the top-level directory. (Or you can changesto/test/regress and run the command there.) This
will first build several auxiliary files, such as some sample user-defined trigger functions, and then run the
test driver script. At the end you should see something like

All 93 tests passed.

or otherwise a note about which tests failed. Seetion 26.Dbelow for more.

Because this test method runs a temporary server, it will not work when you are the root user (since the
server will not start as root). If you already did the build as root, you do not have to start all over. Instead,
make the regression test directory writable by some other user, log in as that user, and restart the tests. For
example

root# chmod -R a+w src/test/regress
root# chmod -R a+w contrib/spi
root# SuU - joeuser

joeuser$ cd top-level build directory
joeuser$ gmake check

(The only possible “security risk” here is that other users might be able to alter the regression test results
behind your back. Use common sense when managing user permissions.)
Alternatively, run the tests after installation.

The parallel regression test starts quite a few processes under your user ID. Presently, the maximum
concurrency is twenty parallel test scripts, which means sixty processes: there’s a server process, a psdl,
and usually a shell parent process for the psql for each test script. So if your system enforces a per-user
limit on the number of processes, make sure this limit is at least seventy-five or so, else you may get

308

Chapter 26. Regression Tests

random-seeming failures in the parallel test. If you are not in a position to raise the limit, you can cut
down the degree of parallelism by setting thaX_CONNECTIONsara